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Abstract. In this paper, we propose a novel, cluster-based energy balancing
scheme. We assume the existence of a fraction of “strong” nodes in terms of
abundant storage, computing and communication abilities as well as energy. With
the transformation of the flat network infrastructure into a hierarchical one, we
obtained significant improvements in energy balancing leading to a longer con-
nected time of the network. The improvement is quantified by mathematical anal-
ysis and extensive numerical simulations.

1 Introduction

Unbalanced energy consumption is an inherent problem in wireless sensor networks,
and it is largely orthogonal to the general energy efficiency problem. For example, in a
data gathering application, multi-hop wireless links are utilized to relay information to
destination points calledsinks. Inevitably, the nodes closer to the sink will experience
higher traffic and higher energy consumption rate. These nodes will be the first ones
which run out of power. Algorithms which allow “routing around” failed nodes will
increase the load even more on the remaining active nodes close to the sink.

Our proposed cluster-based energy balancing scheme is intended to ameliorate the
above energy unbalancing phenomena. We exploit the observation that in a heteroge-
neous sensor network there are nodes which are more powerful in terms of energy
reserve and wireless communication ability. We transform the flat communication in-
frastructure into a hierarchical one where “strong” nodes act as clusterheads to gather
information within the clusters and then communicate with the sink directly via single-
hop link. In such a way, the “hot spot” around the sink is divided into multiple regions
around the clusterheads in the hierarchical infrastructure. These distributed regions will
assume fewer burdens due to the smaller scale of sensor nodes within the clusters.

2 A cluster-based energy balancing scheme

2.1 Motivation

The sensor nodes usually collaborate with each other via multi-hop links. The multi-hop
organization presents many advantages, from the increase of the network capacity, abil-



ity to perform data fusion and a more efficient energy utilization. However, under many
scenarios, multi-hop sensor networks are utilizing energy in an unbalanced manner.

To illustrate this phenomena, let us consider a simple, unidirectional example in
Figure 1. We assume that all nodes communicate only with their neighbors and all
the nodes are sending their observations back to the sink. We assume the nodes to
be equi-distant, and thus the dissipated energy being roughly the same for each node.
Normally, if all nodes have the same initial energy upon deployment, the node closer to
the sink will drain earlier since it has heavier forwarding burden. Moreover, the further
nodes which may still have plentiful energy supplies cannot find the routes to the sink.
The energy unbalancing problem will aggravate with the increase of the network depth
(defined as the largest number of hop from a node to the sink) [7].
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Fig. 1. (K +1)-node line network assumed to be connected. It illustrates a transmission schedule
when only nodeK transmits a data packet to node 0 (sink) via multi-hop links.

The best resource utilization is achieved when every sensor node has the same rate
of energy dissipation (or as close as possible), such that the network remains functional
for the maximum possible time. Such a forwarding schedule is theoretically obtainable,
by the algorithms proposed by Bhardwaj and Chandrakasan [2].

Although the proposed algorithm executes on polynomial time only, it also requires
the global knowledge of the traffic, and thus is not feasible except for centrally managed
networks and very large data packets. For a typical sensor network, where the individual
measurements are small, the collection of global traffic information would be as expen-
sive as the actual data communication itself. Our algorithm proposes a cluster-based
organization of the traffic, which does not require global information, and proposes
to ameliorate the energy unbalancing problem by decreasing or confining the network
depth within each cluster.

2.2 Scheme description

In a heterogeneous sensor network, we identify a subset of nodes as “strong” nodes
with more powerful communication capabilities and energy resources. Instead of the
flat organization of nodes, we assume a hierarchical structure where the strong nodes



act as clusterheads. The clusterheads should be able to form a connected backbone be-
tween themselves such that they can communicate without relying on regular nodes. We
assume two types of communication: one between the the regular nodes and the cluster-
heads with low transmission power, and the communication between clusterheads with
higher transmission range spawning larger distances. In a practical deployment, these
two types of traffic may be carried on different frequency bands or encoding techniques.

During the initialization phase, strong nodes broadcast their willingness to act as
clusterheads. The sensor nodes decide to which cluster they wish to belong based on the
strength of signal from the broadcast: the stronger the signal, the closer the clusterhead
is and therefore the clusterhead with the strongest signal is chosen. At this point multiple
clustering algorithms can be used, provided that they can be adapted to the specific
condition of having a pre-determined clusterhead. On the other hand, algorithms which
rely on dynamic leader election [5] are not appropriate for this purpose.

After the clusters are formed, the sensor nodes can use various algorithms for
energy-efficient schedule for transmission such as in [7]. The clusterhead gathers the
information from the sensor node within its cluster via multi-hop link and then for-
wards the aggregated information to the sink through the backbone of clusterheads.

This approach has all the desirable properties of similar schemes [3], such as local-
ized traffic and scalability. The clusterheads are the natural points to implement data
fusion and data compression algorithms. First, there is a potential correlation in the
data from neighboring sensor nodes (given their physical proximity), and second, the
higher energy resources of the strong nodes allows them to execute more complex com-
putations. The proposed clustering scheme reduces the depth of the average multi-hop
path to the clusterhead and transforms the single heavy “hot spot” around the sink to
various distributed lighter “hot spots” around corresponding clusterheads. The ratio of
the strong nodes to regular nodes determines the average depth of the multi-hop path
inside the cluster. The essence of proposed the scheme explores the tradeoff between
the multi-hop communication within the clusters and single-hop communication among
clusters to achieve a better utilization of the energy resources.

3 Performance evaluation

3.1 Preliminaries

To facilitate the performance analysis, we make the following assumptions:

i There is only one sink node with abundant energy resources.
ii There areN identical regular sensor nodes uniformly distributed in a planar disk

whose radius isR.
iii There areSidentical “strong” nodes with pre-determined locations in the same area

such that they form clusters of roughly equal size.
iv The regular sensor nodes consume their energy much faster than the strong nodes

such that the bottleneck is the energy of the regular nodes.
v The maximum transmission range,r, of regular sensor nodes ensures the connec-

tivity of the network while the transmission range of “strong” nodes is large enough
for strong nodes and the sink to form a connected backbone.



vi There is no interference between the communication in the backbone and the intra-
cluster communication.

vii The nodes may fail only when they deplete their energy resource.
viii All nodes deploy an ideal MAC protocol and there is no collision among packets.

ix All nodes have an ideal sleep scheduling and consume energy only during trans-
mission and reception.

The energy consumption of a sensor node is divided between the three components
of a wireless sensor: sensing, computation and communication components [2].

1. Sensing: We assume that every sensor node capturesb bits/sec data from its envi-
ronment. The energy needed to sense a bit of data is (α3). Thus, the energy com-
sumed for sensing ispsense= α3b .

2. Computation: The computational power of a sensing node is used for operations,
such as data aggregation. It is difficult to quantify the energy used for data agre-
gation in absolute terms without specific knowledge about the nature of the data.
However, in our analysis, we are interested in therelativeperformance of the hierar-
chical organization against a flat network of sensor nodes. We will assume that any
scheme will benefit both organizations approximately equally, thus we will ignore
this term in our calculations.

3. Communication: We use the following model for the energy dissipation used for
communication [6]:

ptx(n1,n2) = (α11+α2d(n1,n2)n)b (1)

prx = α12b (2)

whereptx(n1,n2) is the power dissipated in noden1 when it is transmitting to node
n2, d(n1,n2) is the distance between the two nodes,n is the path loss index, and the
αi are positive constants.

3.2 Analysis

The energy consumption of the wireless sensor network is determined by the spatial
distribution of the sensor nodes. Although in our approach the strong nodes are in pre-
determined locations, the distribution of the locations of the regular nodes is essentially
random. Thus, our analysis will be based on establishing lower bounds of the energy
consumptions. We will rely on two theorems introduced in [1]:

Theorem 1: GivenD and number of intervening relays (K−1 ) as shown in Figure
1, Plink(D) is minimized when all the hop distances are equal toD

K .
This theorem gives us a bound of energy dissipation rate in a line network via multi-

hop links. It is interesting to note that increasing the number of hops can effectively
decrease the transmission power while increase the reception power. There is an optimal
number of hopsKopt which minimizes the total energy dissipation by trading of the
power consumed for transmission and reception.

Theorem 2: The optimal number of hopsKopt is always one of



Kopt = b D
dchar

cord D
dchar

e (3)

where the distancedchar , called the characteristic distance, is independent ofD and
is given by

dchar = n

√
α1

α2(n−1)
(4)

We conclude, that for any path loss indexn, the energy cost of transmitting a bit can
always be made linear with distance. Moreover, for any given distanceD, there is an
optimal numberKopt of intervening nodes. Using more or less than this optimal number
leads to energy inefficiencies.

Case I: flat network architecture. In our environment, there areN identical sensor
nodes uniformly distributed in a planar disk of radiusR. Using the results from [1], we
derive the lower bound of the energy dissipation rate:

Pf lat network≥ (
N

∑
i=1

α1
n

n−1
di

dchar
−Nα12)b (5)

where,di is the distance of sensori from the center of the disk.
Thus, the expected value of the lower bound of dissipated energy is as follows:

E[min(Pf lat network)] = [α1
n

n−1
RN

2dchar
−Nα12]b (6)

Case II: hierarchical clustering scheme. According to the clustering scheme de-
scribed above, whenS “strong” nodes are deployed,S clusters will automatically be
formed. In each cluster, the expected number of nodes isN

S .
The individual clusters have a similar structure like the flat network, but we also

need to consider both the reception energy consumption of the strong nodes and the
energy consumption related to the communication between the strong node and the
sink, which follows the equation (1):

Pclusterednetwork≥ S

N
S

∑
i=1

α1
n

n−1
di

dchar
b+

S

∑
i=1

(α11+α2d′ni )b (7)

where,di is a random variable following the uniform distribution over the interval
[0, R√

S
] andd′ni is a random variable following the uniform distribution over the interval

[0, R].
Thus, the expected value of the minimummin(Pclusterednetwork) is as follows:

E[min(Pclusterednetwork)] = [α1
n

n−1
RN

2
√

Sdchar
+Sα11+

α2S
Rn

n+1
]b

(8)



An important consequence is that the communication cost of multi-hop links in-
creases with the number of clusters while the communication cost of messaging on the
backbone increases with the number of clusters. Thus, there exists an optimal number
of clusters which trades off the power consumption between multi-hop and single-hop
links to minimize the energy dissipation rate. Applying the techniques of previous two
theorems, we can deduct that optimal number clusters is always one of

Sopt = b(
α1

n
n−1

RN
dchar

α11+α2
Rn

n+1

)
2
3 cord(

α1
n

n−1
RN

dchar

α11+α2
Rn

n+1

)
2
3 e (9)

This result is important from the practical deployment point of view of a sensor
network. We need to limit the number of clusters to the one shown in the Equation 9
even if we have a larger number of nodes which, based on their hardware characteristics,
would qualify as “strong” nodes.

3.3 Numerical simulation

We will numerically analyze the energy dissipation rate of our scheme compared with
the flat network architecture. In addition, we examine the impact of the various param-
eters,n, N, R, S. We assume a sensor network is composed ofN = 10000sensor nodes
distributed on a radius ofR= 1000meters with communication path loss indexn = 2
and data bit rateb = 1bits/sec.

Figure 2, left, shows the energy dissipation in function of the number of clustersS
ranging from 1%∼ 10% ofN. Another property of interest is the optimalpercentage
of clusterheads or strong nodes. Thus, in Figure 2 right, we plot the calculated optimum
percentage in function of the total number of nodes,N. We found that the optimal
percentage of strong nodes decreases with the number of total sensor nodes and it is
between 9% to 2% in a typical field of 10,000 to 100,000 nodes of deployment. Thus,
the remarkable gain in energy dissipation rate can be obtained with relatively small
percentage of strong nodes.
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Fig. 2.Energy dissipation vs. number of clusters (left) and the optimal percentage of clusterheads
to the total number of nodes,N (right)



Next, we determine the optimum number of “strong” nodes with the increase of
theR while keeping other parameters unchanged as can be seen in Figure 3. Thus, we
visualize the impact of the density of the network on the optimal energy dissipation rate
when the optimal number of “strong” nodes is deployed.
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Fig. 3.The impact of network density on the optimal performance of two paradigms of networks
wheren = 2, N = 10000.

By repeating the experiments withn = 4, we obtained the results in Figure 4 and
5. Contrary to our expectations, our clustering scheme does not show any benefits for
this experimental setup. This is explained by the fact that in an environment with large
path loss index, the single-hop operations are much more expensive than multi-hop
communications. We conclude that the benefits of our scheme is highly dependent on
the environment and the it is better adapted for low path loss index values.
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Fig. 4.Performance comparison of two paradigms of networks wheren= 4, N = 10000, R= 1000
(left) and the relationship betweenSopt

N andN wheren = 4, R= 1000(right)
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Fig. 5.The impact of network density on the optimal performance of two paradigms of networks
wheren = 4, N = 10000.

4 Conclusions

Through introducing a series of “strong” nodes as clusterheads, we change the commu-
nication structure of the original data fusion in wireless sensor networks from a flat to
an hierarchical one which has better energy-balancing properties. Compared to other
energy-balancing schemes, our scheme is rather simple and effective. Future work in-
cludes adapting the protocol that does not depend on neither the environment nor the
path loss index as well as an extensive simulation work to validate the analytical results.
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