
An Evaluation of Distributed Database Tools

Begumhan Turgut, Ramez Elmasri, Nevin Aydin, and Damla Turgut
Department of Computer Science and Engineering

The University of Texas at Arlington
P.O. Box 19015

Arlington, TX 76019-0015
Email: { bturgut, elmasri, aydin, turgut} @cse.uta.edu

ABSTRACT

As the sharing and exchange of resources increase
rapidly, the reliable way of accessing and maintaining
these data have become extremely important. Because
of the diversity of the types of information stored,
and the fact that location of the users can vary greatly,
the need for distributed database systems that can
support these requirements have been in the
highlights. Users from various parts of the world with
different platforms or databases that are possibly
working on the same or similar areas should be able
to share the information among each other without
being concerned about either the location or the
format of the resource. There are various commercial
tools that help bring a solution to this area to some
degree depending on the different requirements they
have been based on. Here, the author tries to come up
with requirements that are essential to every
distributed database tool and based on these presents
an evaluation of three of the Distributed Database
System (DDS) tools namely Codebase 6, Attunity,
and Mariposa according the requirements that we
have proposed. According to our evaluation, we have
concluded that Codebase 6 accommodates most of
our requirements.

1. INTRODUCTION

The recent growth of the Internet as a major source of
resource storage and retrieval has led to storage of
information in a reliable database. The main problem is the
number of transactions that can be supported by a database
system i.e., the number of hits it can handle. This has led to
the use of many sources of data that can be accessed. In a
Distributed Database System (DDS), the data is stored in
regions that are distributed geographically and can be
accessed either locally or remotely.

Distributed database system can be defined as a
collection of multiple, logically interrelated databases
distributed over a computer network [7]. The DDS is
essentially a collection of co-operating nodes. An
authorized user can access any one of the nodes in the
system. The concept of DDS introduced some major
advances in the field of multimedia development. It also
influenced the scalabilit y issues in the system. The security
issues that drive many systems were found to be suitable in
a DDS. The main problem when data is distributed among
different systems is the read requests. Since it is diff icult to
maintain uniformity, the DDS supported the access of
systems that were stored in different environments. It

provides other eff icient features like location transparency,
partition transparency, query optimizing, portabilit y, etc.
The reason for the popularity of a DDS is due to the high
level of availabilit y, the data stored can be accessed from
remote nodes. Diverse users can share the data. It is
possible to keep track of the configuration information such
as location of files, etc.

A Distributed Database Management System (DDMS)
is used to develop applications that can create and maintain
a DDS [11, 14]. A Tool to develop, maintain and manage a
DDS must support the features such as concurrency
control, distribution of the load among the systems, and
maintenance of a secure environment by allowing only
authorized access to the system. A tool to analyze a system
that provides DDS capabiliti es would have to address the
different problems that a DDS encounters and has to
provide means to solve them successfully. There is an acute
need for tools that aid in the development of systems that
can help maintain DDS.

One of the alternative solutions is to use a database
server with connection to the central server from different
remote sites. The other options are to use network
computers at the remote sites to access high-speed servers
or to use a client/server architecture approach. The
client/server approach involves each server sharing
information, which is the most reasonable one to use as it
addresses the scalabilit y, availabilit y and performance at
the remote sites without a need to upgrade the main server
to a high-end server.

It is also important to differentiate the difference
between replicated vs. distributed databases. In a pure i.e.,
non-replicated distributed database, the system manages a
single copy of all data and supports the database objects.
Typically, distributed database applications use distributed
transactions to access both local and remote data and
modify the global database in real-time. The term
replication refers to the operation of copying and
maintaining database objects in multiple databases
belonging to a distributed system. While replication relies
on distributed database technology, database replication
offers applications benefits that are not possible within a
pure distributed database environment. Most commonly,
replication is used to improve local database performance
and protect the availabilit y of applications, because
alternate data access options exist. For example, an
application may normally access a local database rather
than a remote database server to minimize network traff ic
and achieve maximum performance. Furthermore, the
application can continue to function if the local server
experiences a failure, but other servers with replicated data
still remain accessible.

The organization of the paper is as follows. The
concept of Distributed Database Systems is explained in
detail i n section 2. This is followed by the Distributed
Database Management Systems in section 3. Section 4
discusses the evaluation of the DDS Tools and finally
section 5 presents the conclusions.

2. DISTRIBUTED DATABASE SYSTEMS (DDS)
In this section, we explain the concepts of a DDS. We
present an overview of the architecture of a DDS along
with the different types: homogeneous and heterogeneous
systems. We discuss the client/server architecture, database
links, and the requirements for distributed database
systems.

2.1 Architecture of Distributed Database Systems

A distributed database system allows applications to access
data from local and remote databases. In a homogenous
distributed system, all the databases are of the same type
i.e., ORACLE or SYBASE. In a heterogeneous distributed
system [14], the system can contain more than one type of
databases. Distributed databases use a client/server
architecture to process information requests.

Homogeneous Distributed Database System

A homogenous distributed database system is a network of
two or more databases of the same type. The Databases
reside on one or more machines. Figure 1 ill ustrates a
distributed system that connects three databases: HQ,
MFG, and SALES. An application can simultaneously
access or modify the data in several databases in a single
distributed environment [6]. For a client application, the
location and platform of the databases are transparent. The
synonyms can be created for remote objects in the
distributed system so that users can access them with the
same syntax as local objects. In this way, a distributed
system gives the appearance of native data access. Users on
MFG do not have to know that the data they access resides
on remote databases. If different versions of the same type
of databases are used, they are considered compatible.

Figure 1. Homogeneous Distributed Database
System [6]

Heterogeneous Distributed Database Systems

In a heterogeneous distributed database system, more than
one database type is used i.e., ORACLE and SYBASE. To
the application, the heterogeneous distributed database
system appears as a single, local database. The local
database server hides the distribution and heterogeneity of
the data. A database server can access a remote database
system using provided heterogeneous services [12, 13]. To
access a remote database of a different type, the system
needs to obtain a transparent gateway agent to
communicate. For instance, if you access the non-Oracle
data store using an Oracle Transparent Gateway, then the
agent is a system-specific application. If you include a
Sybase database in an Oracle distributed system, then you
need to obtain a Sybase-specific transparent gateway so
that the Oracle databases in the system can communicate
with it [6].

Client/Server Database Architecture

A database server is the software managing a database, and
a client is an application that requests information from a
server. Each computer in a network is a node that can host
one or more databases. Each node in a distributed database
system can act as a client, a server, or both, depending on
the situation. In Figure 2, the host for the HQ database is
acting as a database server when a statement is issued
against its local data for instance, the second statement in
each transaction issues a statement against the local DEPT
table. However, it is acting as a client when it issues a
statement against remote data for instance, the first
statement in each transaction is issued against the remote
table EMP in the SALES database. A client can connect
directly or indirectly to a database server. A direct
connection occurs when a client connects to a server and
accesses information from a database contained on that
server. In contrast, an indirect connection occurs when a
client connects to a server and then accesses information
contained in a database on a different server [6].

Figure 2. Client/Server Database Architecture [6]

Database Links

Database links are one of the most essential topics within
Distributed Database System in which is a connection
between two physical database servers that allow a client to
access them as one logical database. A database link is a
pointer that defines a one-way communication path from
one-database server to another database server. The link
pointer is actually defined as an entry in a data dictionary
table.

To access the link, the local database to which the user
has been connected must have an entry in the data
dictionary. A database link connection is one-way in the
sense that a client connected to local database 1 can use a
link stored in database 1 to access information in remote
database 2, but users connected to database 2 cannot use
the same link to access data in database 1. If local users on
database 2 want to access data on database 1, then they
must define a link that is stored in the data dictionary of
database 2. A database link connection allows local users to
access data on a remote database. For this connection to
occur, each database in the distributed system must have a
unique global database name in the network domain. The
global database name uniquely identifies a database server
in a distributed system. Database links are either private or
public. If they are private, then only the user who created
the link has access; if they are public, then all database
users have access. One principal difference among database
links is the way that connections to a remote database
occur. Figure 3 shows the database link.

Figure 3. Database Link [6]

Users can access a remote database through one of the
following different links:

• Connected user link connects as them, which
means that they must have an account on the
remote database with the same username as their
account on the local database.

• Fixed user link connects using the username and
password referenced in the link.

• Current user link connects as a global user. A
local user can connect as a global user in the
context of a stored procedure without storing the
global user's password in a link definition.

Some of the advantages of using a Database Link are as
follows:

• They allow users to access another user's objects

in a remote database so that they are bounded by
the privilege set of the object's owner. In other
words, a local user can access a link to a remote
database without having to be a user on the
remote database.

• They allow the user to grant limited access on
remote databases to local users. By using current
user links, the user can create centrally managed
global users whose password information is
hidden from both administrators and non-
administrators.

• By using fixed user links, the user can create
non-global users whose password information is
stored in unencrypted form in the data dictionary
table. Fixed user links are easy to create and
require low overhead because there are no SSL or
directory requirements, but a security risk results
from the storage of password information in the
data dictionary.

2.2 Requirements for Distributed Database Systems

These requirements are completely based on the domain
pertinent to our class of applications. These requirements
are the basis for the evaluation of the tools that helped
develop DDS.

1. Data should be made available to authorized users

locally or remotely. This property indicates that the
data stored in a system must be made available locally
and remotely.The system must be capable of handling
multiple environments, i.e., the system must be
capable of accessing data from a UNIX environment
as well as a windows environment.Access to data must
be consistent. This is a major issue when we distribute
a database by replication.The data stored must be
accessible only by authorized users. This addresses
one of the security concerns in such a system.

5. The system must be reliable i.e. if one of the servers’
fail then the other servers must share the load.

6. The system must have a fast response time when
handling read or write requests.The access to data
must be logged to detect unauthorized intrusion and
detect tampering. This is again another security
feature. This feature is present to detect tampering.The
system must handle large volumes of data. Usually
most databases are very large and contain milli ons of
records, so the system must handle large volume of
data.

9. The system must be capable of presenting different
views of the tables to various users. The system must
also provide location transparency.

10. The system must have tools for the management and
control of the different servers. This is an important
requirement as a DDS is very complex.

11. The system must be easy to install and have good
online help. These are some of requirements that
would help the user.The data should be made

accessible from the Internet. This is a feature to access
the DDS from the Internet.The system must be
portable, i.e., we must be able to move it between
different environments.

3. DISTRIBUTED DATABASE MANAGEMENT

SYSTEMS

Some of the key terms used are briefly described below:

• DDB: is a distributed object-relational database
management system. We will use it as an example
of implementing the distributed database for
multimedia applications.

• DDB ORDB: is an object-relational database
management system running on various platforms.
Because of its object-oriented extension, it is
capable of storing various multimedia data
structures such as pictures, video, audio, etc.,
together with methods (procedures) that operate on
them. There are a number of predefined classes (for
C++ and Smalltalk) that can handle multimedia
data. This enables developers to focus on building
application rather than thinking about the internal
structure of multimedia data and converting those
data into a format suitable for database storage.

• DDB Hub: This is another component of the DDB
that enables building the distributed multidatabase
management system. Besides supporting the native
DDB ORDB, it provides drivers to access existing
database systems, including prerelational, relational
and object-oriented DBMSs.

The system is available on various platforms, giving

the user freedom to choose the appropriate platform for
each location. ANSI SQL database language is fully
supported ensuring the immediate knowledge of data
definition and manipulation. Database language has been
extended with object-oriented data definition, enabling the
database to store both the object's properties and methods'
definition [3]. Database system is accessed through a
number of interfaces ensuring the versatilit y of application
development tools used for building the multimedia
applications. The scheme of components is as shown in
Figure 4. Connecting the individual local databases into a
single distributed database becomes increasingly important
because users demand a unified view of the data. With the
advent of distributed database management systems, these
demands can now be satisfied.

One of the most important capabilit y of distributed
database systems, with the respect to multimedia
applications, is the abilit y to run the database software on
different platforms, because not all the hardware and
software platforms are suitable for multimedia applications.
We believe that the abilit y to run distributed database
system on different platforms, as well as the abilit y to
compose the distributed database with different database
systems, is of greatest interest for those already having
local multimedia databases. This enables the preservation
of previous investment in hardware, software, people and
knowledge.

Figure 4. Scheme of Components in DDB [3]

Another very important capabilit y is location

transparency that enables users to perceive the distributed
database as any local database, while holding the
multimedia data (requiring huge storage space) at the
location where it is needed most of the time and being
accessible from all other locations. At the same time,
multimedia data is no longer isolated from other data,
ensuring the data integrity between multimedia and
conventional data.

Object-oriented extension is included in some of the
distributed database management systems, which enables
simpli fied handling of the complex multimedia data while
providing the additional reason to finally integrate both
conventional and multimedia databases into one logical
database [9, 10].

4. EVALUATION OF DDS TOOLS

We have evaluated the three distributed database tools:
Codebase 6, Attunity, and Mariposa according to the
requirements that we specified in section 2.2. Table 1
presents the capabiliti es of each of these tools. Therefore,
we concluded that CodeBase6 was the tool best suited to
meet our needs.

Other methods such as formal methods have been proposed
to help evaluate software tools to develop DDS. Some of
the Formal Evaluation Techniques mentioned in [5] are as
follows.

• Performance Modeling of Distributed and
Replicated Databases

• Analytical Models
• Simulations
• Parameter Values
• Default Homogeneity Assumption
• Database Site Models

Summary of the highlighted features of each tool are briefly
mentioned in the following.
Features available in CODEBASE 6 [2]:

• Extremely fast response time
• Unlimited database size
• Low memory requirements
• Source code is available, to make changes
• Available in many international languages

• Additional tools li ke coding reporter, coding
base, service administrator and Database fix can
be incorporated

• Companies that use CODEBASE 6 include
Lockheed, BOEING, AT&T, INTEL, IBM, and
Microsoft

Features available in Attunity Connect [1]:

• Supports multi -threading
• Provides database management tools for

integration, query processing and managing
access

• Wizard to connect
• Concept of virtual database
• All user profiles and metadata are stored in

Object stores
• Provides file pool caching

Features available in MARIPOSA [4]:

• Query processing is fragmented; the data itself is
stored as fragments.

• Site manager to supervise the back end
• One or more backend servers
• A client front-end application

5. CONCLUSIONS

The recent trend in information processing on performing
tasks to create, modify, exchange and such on given sets of
data has made distributed databases very popular, because
of the service they provide to maintain these resources
across various platforms, regardless of the location they are
residing in. There are many tools to help accomplish this,
but from the user’s point of view, it is very essential to
know how to evaluate these tools in order to find the one
best meets the given requirements. The authors give a set of
requirements with different importance levels and that
evaluate three different distributed database tools in order
to show the process of choosing the right tool. It is
extremely important to know what needs to be done as well
as how to find such tool given multiple options. When
studying the different systems some of the common flaws
that we encountered were the ones due to portabilit y. We
found that most of the systems could be deployed in only
one environment and if an application was developed in
one environment it was hard to move it to another.

Another issue that needs to be addressed was the use of
GUI and hiding the information irrelevant to the user. Most
of the systems that we looked at were missing such GUI
implementation. At last but not the least, most of the
systems nowadays need to be web enabled and access to
data from the Internet is of utmost importance. The systems
should provide tools that automatically connect to the data
sources, query them and generate results that are properly
documented and can be displayed on the web. Based on the
assessments made and rakings, we found Codebase 6 to be
the best fit to the requirements proposed and compared to
the other two systems that went under the evaluation.

REFERENCES

[1] Attunity Connect – User Manual, web page at URL:
http://www.attunity.com
[2] CodeBase6 Documents available at URL:

http://sequiter.com/products/cbase6.htm
[3] G. Mirkovia, “Benefits of Distributed Database

Technology in Multimedia Applications” , LAIR –
MIPRO 95 Proceedings of Multimedia and
HyperMedia Systems, 1995.

[4] Mariposa, UC Berkeley User document. Available at
URL:
http://epoch.cs.berkeley.edu:8000/mariposa/about.ht
ml

[5] Matthias Nicola and Matthias Jarke, “Performance
Modeling of Distributed and Replicated Databases” ,
IEEE Transactions on Knowledge and Data
Engineering, Vol. 12, No. 4, July-August 2000.

[6] Oracle Document available at
URL:http://oradoc.photo.net/ora816/server.816/a7696
0/ds_conce.htm#12207

[7] M.T. Ozsu and P. Valduriez, Principles of
Distributed Database Systems, 2nd Ed., Prentice Hall ,
1999.

[8] Project Summary. Available at URL:
http://www.uga.edu/netinfo/gigapop/vbns/

[9] J.R. Nicol, C.T. Wilkes, and F. Manola, “Object
Orientation in Heterogeneous Distributed Computing
Systems”, IEEE Computer, Vol. 26, No. 6, pp. 57-67,
June 1993.

[10] M.T. Ozsu, U. Dayal and P. Valduriez (Eds):
Distributed Object Management Papers from the
International Workshop on Distributed Object
Management (IWDOM), Edmonton, Alberta, Canada,
August 19-21, 1992,
Morgan Kauffman, 1994.

[11] A.P. Sheth and J.A. Larson, “Federated Database
Systems for Managing Distributed, Heterogeneous,
and Autonomous Databases” , ACM Computing
Surveys, Vol. 22, No. 3, pp. 183-236, 1990.

[12] H. Garcia-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinou, J. Ullman, and J. Widom,
“ Integrating and Accessing Heterogeneous
Information Sources in TSIMMIS”, NGITS-Next
Generation Information Technologies
and Systems, Naharia, Israel, June 27-29, 1995.

[13] M.L. Barja, T. Bratvold, J. Myllymaki, and G.
Sonnenberger, “ Informia: A Mediator for Integrated
Access to Heterogeneous Information Sources” ,
Conference on Information and Knowledge
Management (CIKM), Bethesda,
Maryland, pp. 234-241, 1998.

[14] A. Elmagarmid, M. Rusinkiewicz, A. Sheth (Editors):
Management of Heterogeneous and Autonomous
Database Systems Morgan, Kaufmann Publishers,
1998.

FEATURE CODEBASE 6 ATTUNITY MARIPOSA

Developer Sequiter Software COMPAQ UC Berkley

Database Type Heterogeneous Homogeneous Homogeneous

File Supported FoxPro, dBase, Clipper, Excel, Access XML, Flat files, DB2, Informix, IMS,
etc

PostGies

Database Size Up to 1 Mill ion Terabytes, can be extended Not known, supports variable length
records

Not known

Memory Memory eff icient, typically client/server
requires around 1 MB

32 MB RAM and 24 MB hard disk
space

8 MB RAM and 50 MB hard disk
space

Platforms
Supported

Windows 2000, 95, 98, NT, all versions of
UNIX, LINUX, Solaris and Mac

IBM AS/400, UNIX, Open VMS,
Windows 95, 98, 2000

DEC OSF/1 3.2 running on
Digital Equipment Alpha

Scalability Can be stand-alone or client/server,
supports up to 10 simultaneous connections

Is Scalable Can scale to a couple of sites on a
WAN

GUI Yes Yes Command Line

Querying
Speed

Very fast access up to 1 mill ion records in
0.65 secs

Not as fast as CODEBASE 6 Not known

Languages
Supported

C, C++, VB, Delphi, Java, VBScript, ASP Java based, support for multi-threading C, C++

Logging All changes get logged into the log file Not known No logging capability

Backup Incremental backups Not known Manual backups

Stability Highly stable since only server implements
changes

Not known Unstable and no mechanism to
prevent data corruption in case of
system crash

Web
Accessible

Uses JDBC, ODBC drivers to construct
from the web

Uses JDBC, ODBC drivers to construct
from the web

Not accessible from web

Security Secured via file access privileges and user
accounts

Saves user profiles as object stores on
the server

Very basic security features

Transaction
Processing

Complete rollback and commit capability Distribution transaction manager
implements 2-phase commit protocol

Not known

Reliability Reliable recovery from crashes and logging Not known Very insecure since the system
manager can corrupt the data if it
fails in the middle of a transaction

Query
Processing

Not known Query processor and optimizer are
available

Query processing involves
generating a query plan and
integrating fragmented data

Installation Simple, good documentation provided Complex even with the presence of
wizards

Very complex, manual setup

Help Files Good help provided Good help provided Adequate release notes and user
manual provided

Additional
Tools

Management tools, report generation tools,
debug tools and code controllers

Not known Not supported

Cost Approximately between $500 to $3000
(including add on tools)

Not known Free, research software

Table 1. Evaluation of Distributed Database Tools

