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AbstractÐRequirements engineering is concerned with the elicitation of high-level goals to be achieved by the envisioned system, the

refinement of such goals and their operationalization into specifications of services and constraints and the assignment of

responsibilities for the resulting requirements to agents such as humans, devices, and software. Requirements engineering processes

often result in goals, requirements, and assumptions about agent behavior that are too ideal; some of them are likely not to be satisfied

from time to time in the running system due to unexpected agent behavior. The lack of anticipation of exceptional behaviors results in

unrealistic, unachievable, and/or incomplete requirements. As a consequence, the software developed from those requirements will

not be robust enough and will inevitably result in poor performance or failures, sometimes with critical consequences on the

environment. This paper presents formal techniques for reasoning about obstacles to the satisfaction of goals, requirements, and

assumptions elaborated in the requirements engineering process. A first set of techniques allows obstacles to be generated

systematically from goal formulations and domain properties. A second set of techniques allows resolutions to be generated once the

obstacles have been identified thereby. Our techniques are based on a temporal logic formalization of goals and domain properties;

they are integrated into an existing method for goal-oriented requirements elaboration with the aim of deriving more realistic, complete,

and robust requirements specifications. A key principle in this paper is to handle exceptions at requirements engineering time and at

the goal level, so that more freedom is left for resolving them in a satisfactory way. The various techniques proposed are illustrated and

assessed in the context of a real safety-critical system.

Index TermsÐGoal-oriented requirements engineering, high-level exception handling, obstacle-based requirements transformation,

defensive requirements specification, specification refinement, lightweight formal methods.

æ

1 INTRODUCTION

REQUIREMENTS engineering (RE) is the branch of software
engineering concerned with the real world goals for,

functions of, and constraints on software systems. It is also
concerned with the relationship of these factors to precise
specifications of software behavior and to their evolution
over time and across software families. This general
definition, borrowed from [87], stresses the leading part
played by goals during requirements elaboration. Goals
drive the elaboration of requirements to support them [78],
[15], [80]; they provide a completeness criterion for the
requirements specificationÐthe specification is complete if
all stated goals are met by the specification [86]; they
provide a rationale for requirementsÐa requirement exists
because of some underlying goal which provides a base for
it [15], [83]; goals represent the roots for detecting conflicts
among requirements and for resolving them eventually
[76], [49]; goals are generally more stable than the
requirements to achieve them [3]. In short, requirements
"implement" goals much the same way as programs
implement design specifications.

Goals are to be achieved by the various agents operating
together in the composite system; such agents include

software components that exist or are to be developed,

external devices, and humans in the environment [22], [27].

The elicitation of functional and nonfunctional goals, their

organization into a coherent structure and their operatio-

nalization into requirements to be assigned to the various

agents is, thus, a central aspect of requirements engineering

[16], [65]. Various techniques have been proposed to

support this process. Qualitative reasoning techniques may

be used to determine the degree to which high-level goals

are satisficed/denied by lower-level goals and require-

ments [64]. When goals can be formalized, formal reasoning

techniques are expected to do more. For example, the

correctness of goal refinements may be verified [17]; more

constructively, such refinements may be derived formally

[16], [24], [17]. Formal goal models may be used to detect

and resolve conflicts among goals [49]. Planning techniques

may be used to generate admissible scenarios showing that

some desirable goal is not achieved by the system specified

and propose resolution actions [4], [27]. Conversely,

declarative goal specifications may be inferred inductively

from operational specifications of scenarios [50].
One major problem requirements engineers are faced

with is that first-sketch specifications of goals, require-

ments, and assumptions tend to be too ideal; such

assertions are likely to be occasionally violated in the

running system due to unexpected behavior of agents like

humans, devices, or software components [47], [71], [26].

This general problem is not really handled by current

requirements elaboration methods.
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Consider an ambulance dispatching system, for example;
a first-sketch goal such as

Achieve[MobilizedAmbulancePromptlyAtIncident]

is overideal and likely to be violated from time to
timeÐbecause of, e.g., allocation of a vehicle not close enough
to the incident location; or too long allocation time; or
imprecise or confused location; and so forth. In an electronic
reviewing system for a scientific journal, a first-sketch goal
such as Achieve[ReviewReturnedInFourWeeks] or an as-
sumption such as ReviewerReliable are straightforward
examples of overideal statements that are likely to be violated
on occasion; the same might be true for a security goal such as
Maintain[ReviewerAnonymity]. In a resource management
system, a goal such as Achieve[RequestedResourceUsed] or
an assumption such as RequestPendingUntilUse are also
overideal as requesting agents may change their mind and no
longer wish to use the requested resource even if the latter
becomes available. In a meeting scheduler system, a goal such
as Achieve[ParticipantsTimeConstraintsProvided] is likely to
be violated, e.g., for participants that do not check their e-mail
regularly, thereby missing invitations to meetings and
requests for providing their time constraints. In a control
system, a goal such as

Maintain[AlarmIssuedWhenAbnormalCondition]

might be violated sometimes due to unavailable data,
device failure, or deactivation by malicious agents.

Overidealization of goals, requirements, and assump-
tions results in run-time inconsistencies between the
specification of the system and its actual behavior. The lack
of anticipation of exceptional circumstances may thus lead
to unrealistic, unachievable, and/or incomplete require-
ments. As a consequence, the software developed from
those requirements will inevitably result in failures, some-
times with critical consequences on the environment.

The purpose of this paper is to introduce systematic
techniques for deidealizing goals, assumptions, and re-
quirements, and to integrate such techniques in a goal-
oriented requirements elaboration method in order to
derive more complete and realistic requirements from
which more robust systems can be built.

Our approach is based on the concept of obstacle first
introduced in [71]. Obstacles are a dual notion to goals;
while goals capture desired conditions, obstacles capture
undesirable (but nevertheless possible) ones. An obstacle
obstructs some goal, that is, when the obstacle gets true the
goal may not be achieved. Thus, the term "obstacle" is
introduced here to denote a goal-oriented abstraction, at the
requirements engineering level, of various notions that have
been studied extensively in specific areasÐsuch as hazards
that may obstruct safety goals [54] or threats that may
obstruct security goals [1]; or in later phases of the software
lifecycleÐsuch as faults that may prevent a program from
achieving its specification [14], [29].

The paper presents a formalization of this notion of
obstacle; a set of techniques for systematic generation of
obstacles from goal specifications and domain properties;
and a set of alternative operators that transform goal
specifications so as to resolve the obstacles generated.

Back to the example of the ideal goal named Achieve
[ReviewReturnedInFourWeeks], our aim is to derive ob-
stacle specifications from a precise specification of this goal
and from properties of the domain; one would thereby
expect to obtain obstacles such as, e.g., WrongBeliefAbout
Deadline or ReviewRequestLost (under responsibility of
Reviewer agents), UnprocessablePostscriptFile (under re-
sponsibility of Author agents), etc. From there one would
like to resolve those obstacles, e.g., by weakening the
original goal formulation and propagating the weakened
version in the goal refinement graph; by introducing new
goals and operationalizations to overcome or mitigate the
obstacles, by changing agent assignments so that the
obstacle may no longer occur, etc.

A key principle here is to handle abnormal agent
behavior at requirements engineering time and at the goal
level. This principle is consistent with recommendations
from analysis of software requirements errors [55]. Excep-
tion handling techniques are usually introduced at later
stages of the software lifecycle, such as architectural design
or programming, where the boundary between the software
and its environment has been decided and cannot be
reconsidered and where the requirements specifications are
postulated correct and complete [2], [9], [70], [13], [79], [40],
[14], [7], [29]. In contrast, we perform systematic obstacle
analysis at the much earlier stage of requirements engineer-
ing, from goal formulations, so that more freedom is left on
adequate ways of handling obstacles to goalsÐlike, e.g.,
considering alternative requirements or alternative agent
assignments that result in different system proposals, in
which more or less functionality is automated and in which
the interaction between the software and its environment
may be fairly different.

The integration of obstacle analysis into the requirements
engineering process is detailed in the paper in the context of
the KAOS methodology for goal-oriented requirements
elaboration [16], [47], [17]. In [49], we have shown that
obstacle analysis can be seen as a degenerate case of conflict
analysis; an obstacle amounts to a condition for conflict
between N goals within the domain under consideration,
where N � 1. As a consequence, there are generic simila-
rities between the respective identification and resolution
techniques. However, handling exceptions to the achieve-
ment of a single goal and handling conflicts between
multiple stakeholders' goals correspond to different pro-
blems and foci of concern for the requirements engineer. As
will be seen in the paper, the generic identification/
resolution mechanisms yield different instantiations and
specializations for obstacle analysis and for conflict
analysis.

The rest of the paper is organized as follows: Section 2
summarizes some background material on KAOS that will
be used in the sequel. Section 3 introduces obstacles to goals
and provides a formal characterization of this concept,
including the notion of completeness of a set of obstacles.
Section 4 discusses a modified goal-oriented requirements
elaboration process that integrates obstacle analysis. Section
5 presents techniques for generating obstacles from goal
formulations. Section 6 then presents techniques for
transforming goals, requirements and/or assumptions so
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as to resolve the obstacles generated. The various techni-
ques presented in the paper are illustrated and assessed in
Section 7 by an obstacle analysis of a real safety-critical
system for which failure stories have been reported [51],
[28]. We discuss some related work in Section 8 before
concluding in Section 9.

2 GOAL-ORIENTED RE WITH KAOS

The KAOS methodology is aimed at supporting the whole
process of requirements elaborationÐfrom the high-level
goals to be achieved to the requirements, objects, and
operations to be assigned to the various agents in the
composite system. The methodology provides a specifica-
tion language, an elaboration method, and tool support. To
make the paper self-contained, we recall some of the
features that will be used later in the paper; see [16], [47],
[17], [18] for details.

2.1 Concepts and Terminology

An object is a thing of interest in the composite system
whose instances may evolve from state to state. Objects
are characterized by attributes and invariant assertions.
They may be organized in inheritance hierarchies. An
entity is an autonomous object. A relationship is an object
dependent on other objects it links. An event is an
instantaneous object.

An operation is an input-output relation over objects;
operation applications define state transitions. Opera-
tions are characterized by pre, post, and trigger condi-
tions. A distinction is made between domain pre/
postconditions, which capture the elementary state
transitions defined by operation applications in the
domain and required pre/postconditions, which capture
additional strengthenings to ensure that the require-
ments are met.

An agent is an active object that acts as processor for some
operations. An agent performs an operation if it is
allocated to it; the agent monitors/controls an object if
the states of the object are observable/controllable by it.
Agents may be humans, devices, programs, etc.

A goal is an objective the composite system should meet; it
captures a set of desired behaviors of the composite
system. AND-refinement links relate a goal to a set of
subgoals (called refinement); this means that satisfying
all subgoals in the refinement is a sufficient condition for
satisfying the goal. OR-refinement links relate a goal to an
alternative set of refinements; this means that satisfying
one of the refinements is a sufficient condition for
satisfying the goal. The goal refinement structure for a
given system can be represented by an AND/OR
directed acyclic graph [66]. Goals concern the objects to
which they refer. A goal may additionally be character-
ized by a priority attribute whose values specify the
extent to which the goal is mandatory or optional.

Goals are classified according to the category of
requirements they will drive about the agents concerned.
Functional goals result in functional requirements. For
example, SatisfactionGoals are functional goals concerned
with satisfying agent requests; InformationGoals are goals

concerned with keeping agents informed about object
states. Likewise, nonfunctional goals result in nonfunc-

tional requirements. For example, AccuracyGoals are
nonfunctional goals concerned with maintaining the

consistency between the state of objects in the environ-
ment and the state of their representation in the software;

other subcategories include SafetyGoals, SecurityGoals,
PerformanceGoals, and so on.

Goal refinement ends up when terminal goals are

reached; these are goals assignable to individual agents. A

terminal goal can thus be formulated in terms of states

controllable by some individual agent. A requirement is a

terminal goal assigned to an agent in the software-to-be. An

assumption is a terminal goal assigned to an agent in the

environment. Unlike requirements, assumptions cannot be

enforced in general. Terminal goals are in turn AND/OR

operationalized by operations and objects through strength-

enings of their domain pre/postconditions and invariants,

respectively, and through obligations expressed by trigger

conditions. Alternative ways of assigning responsible

agents to a terminal goal are captured through OR

responsibility links. The actual assignment of an agent to

the operations that operationalize the terminal goal is

captured in corresponding performs links.

A domain property is a property about objects or opera-

tions in the environment which holds independently of

the software-to-be. Domain properties include physical
laws [69], regulations, constraints imposed by environ-

mental agents [54]Ðin short, indicative statements of
domain knowledge [36], [88]. In KAOS, domain proper-

ties are captured by domain invariants attached to
objects and by domain pre/postconditions attached to

operations.

A scenario is a domain-consistent sequence of state

transitions controlled by corresponding agent instances;
domain consistency means that the operation associated

with a state transition is applied in a state satisfying its
domain precondition together with the various domain

invariants attached to the corresponding objects, with a
resulting state satisfying its domain postcondition.

2.2 The Specification Language

Each construct in the KAOS language has a two-level

generic structure: an outer semantic net layer [10] for

declaring a concept, its attributes and its various links to

other concepts; an inner formal assertion layer for formally

defining the concept. The declaration level is used for

conceptual modeling (through a concrete graphical syntax),

requirements traceability (through semantic net navigation)

and specification reuse (through queries) [18]. The assertion

level is optional and used for formal reasoning [16], [17],

[59], [26], [49], [50].
The generic structure of a KAOS construct is instantiated

to specific types of links and assertion languages according

to the specific type of the concept being specified. For
example, consider the following goal specification for an

ambulance dispatching system:
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Goal Achieve [AmbulanceMobilization]

Concerns Call, Ambulance, Incident

Refines AmbulanceIntervention

RefinedTo IncidentFiled, AmbulanceAllocated,

AllocatedAmbulanceMobilized

InformalDef For every responded call about an incident,

an ambulance able to arrive at the incident scene

within 11 minutes should be mobilized. The ambulance

mobilization time should be less than 3 minutes

[ORCON standard, 3005].

FormalDef 8 cl: Call, inc: Incident

Responded (cl) ^ About (cl, inc)

) }�3m 9 a: Ambulance

Mobilized (a, inc)

^ � [Available (a) ^ TimeDist (a.Loc, inc.Loc) � 11]

The declaration part of this specification introduces a
concept of type "goal," named AmbulanceMobilization,
stating a target property that should eventually hold
("Achieve" verb), referring to objects such as Call or
Ambulance, refining the parent goal AmbulanceIntervention,
refined into subgoals IncidentFiled, AmbulanceAllocated,
and AllocatedAmbulanceMobilized and defined by some
informal statement. (The semantic net layer is represented
in textual form in this paper for reasons of space limitations;
the reader may refer to [18] to see what the alternative
graphical concrete syntax looks like.)

The optional assertion part in the specification above
defines the goal Achieve[AmbulanceMobilization] in formal
terms using a real-time temporal logic inspired from [45]. In
this paper, we will use the following classical operators for
temporal referencing [57]:

� (in the next state) � (in the previous state)

} (some time in the future) ^ (some time in the past)

ut (always in the future) (always in the past)

W (always in the future U (always in the future

unless) until)

Formal assertions are interpreted over historical se-
quences of states. Each assertion is in general satisfied by
some sequences and falsified by some other sequences. The
notation

(H, i) � P

is used to express that assertion P is satisfied by history H at
time position i (i 2 T), where T denotes a linear temporal
structure assumed to be discrete for sake of simplicity. We
will also use the notation H � P for (H, 0) � P.

States are global; the state of the composite system at
some time position i is the aggregation of the local states of
all its objects at that time position. The state of an individual
object instance ob at some time position is defined as a
mapping from ob to the set of values of all ob's attributes
and links at that time position. In the context of KAOS
requirements, an historical sequence of states defines a
behavior produced by a scenario.

The semantics of the above temporal operators is then
defined as usual [57], e.g.,

(H, i) � � P iff (H, next(i)) � P

(H, i) � } P iff (H, j) � P for some j � i

(H, i) � ut P iff (H, j) � P for all j � i

(H, i) � PUQ iff there exists a j � i such that (H, j) � Q

and for every k, i � k < j, (H, k) � P

(H, i) � PWQ iff (H, i) � PUQ or (H, i) � ut P

Note that ut P amounts to PWfalse. We will also use the
standard logical connectives ^ (and), _ (or), : (not), !
(implies), $ (equivalent), ) (strongly implies), ,
(strongly equivalent), with

P ) Q iff ut (P ! Q)
P , Q iff ut (P $ Q)

Note thus that there is an implicit outer ut-operator in every
strong implication.

Besides the agent-related classification of goals intro-
duced in Section 2.1, goals in KAOS are also classified
according to the pattern of temporal behavior they capture:

Achieve: C ) } T

Cease: C ) } : T

Maintain: C ) TWN, C ) T

Avoid: C ) : TWN, C ) : T

In these patterns, C, T, and N denote some current, target,
and new condition, respectively. (We avoid the classical
safety/liveness terminology here to avoid confusions with
SafetyGoals.)

In requirements engineering we often need to introduce
real-time restrictions. Bounded versions of the above
temporal operators are therefore introduced, in the style
advocated by [45], such as

}�d (some time in the future within deadline d)

ut�d
(always in the future up to deadline d)

To define such operators, the temporal structure T is
enriched with a metric domain D and a temporal distance
function dist: TxT! D which has all desired properties of a
metrics [45]. We will take

T: the set of naturals

D: { d | there exists a natural n such that d = n�u},

where u denotes some chosen time unit

dist(i, j): | j - i | � u

Multiple units can be usedÐe.g., s (second), m (minute,
see the AmbulanceMobilization goal above), d (day), etc;
these are implicitly converted into some smallest unit. The
o-operator then yields the nearest subsequent time position
according to this smallest unit.

The semantics of the real-time operators is then defined
accordingly, e.g.,

(H, i)� }�d P iff (H, j)� P for some j � i with dist(i, j) � d

(H, i)� ut<d P iff (H, j)� P for all j� i such that dist(i, j) < d

In the above goal declaration of AmbulanceMobilization,
the conjunction of the assertions formalizing the subgoals
IncidentFiled, AmbulanceAllocated, and AllocatedAmbulan-
ceMobilized must entail the formal assertion of the parent
goal AmbulanceMobilization they refine together. Every
formal goal refinement thus generates a corresponding
proof obligation [17].
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In the formal assertion of the goal AmbulanceMobilization,
the predicate Mobilized(a,inc) means that, in the current
state, an instance of the Mobilized relationship links
variables a and inc of sort Ambulance and Incident,
respectively. The Mobilized relationship and Ambulance
entity are defined in other sections of the specification, e.g.,

Entity Ambulance

Has Loc: Location, Dest: Location,

...

Relationship Mobilized

Links Ambulance {card 0:1}, Incident {card 0:N}

InformalDef An ambulance is mobilized for some incident

iff a crew is assigned to it and its destination is the

incident's location.

DomInvar 8a: Ambulance, inc: Incident

Mobilized (a, inc), (9 cr: Crew) Assigned (cr, a)

^ a.Dest = inc.Loc

The Crew type might in turn be declared by

Agent Crew

Has Free: Boolean, Paramedics: Boolean

...

In the declarations above, Loc is declared as an attribute

of the entity Ambulance (this attribute was used in the

formal definition of the goal AmbulanceMobilization); Free

is declared as an attribute of the agent Crew.
As mentioned earlier, operations are specified formally

by pre and postconditions in the state-based style [72], e.g.,

Operation Mobilize

Input Incident {arg inc}

Output Ambulance {res amb}, Mobilized

DomPre : �9 a: Ambulance) Mobilized (a, inc)

DomPost Mobilized (amb, inc)

Note that the invariant defining the Mobilized relationship is

not a requirement, but a domain property; it specifies what

being mobilized does precisely mean in the domain. The pre-

and postcondition of the operation Mobilize above are

domain properties as well; they capture corresponding

elementary state transitions in the domain, namely, from a

state where no ambulance is mobilized to a state where some

ambulance is mobilized. The software requirements are

found in the terminal goals assigned to agents in the

software-to-be and in the additional pre-, post-, and trigger

conditions that need to strengthen the corresponding

domain conditions in order to ensure all such goals [16],

[47]. Assuming the AmbulanceMobilization goal is assigned

to the dispatching software, one would derive the following

strengthenings from the above formal assertion for that goal:

Operation Mobilize

...

RequiredPre for AmbulanceMobilization:

Available (amb) ^ TimeDist (amb.Loc, inc.Loc)� 11

RequiredTrig for AmbulanceMobilization:

�3m(9 cl: Call) Responded (cl) ^ About (cl, inc)

The trigger condition captures an obligation to trigger the
operation as soon as the condition gets true and provided

the domain precondition is true. The specification will be

consistent provided the trigger condition and required

preconditions are together true in the operation's initial

state.

2.3 The Elaboration Method

Fig. 1 outlines the major steps that may be followed to

elaborate KAOS specifications from high-level goals. (Sec-

tion 4 will discuss how obstacle analysis gets into this

process model.)

. Goal elaboration. Elaborate the goal AND/OR struc-
ture by defining goals and their refinement links
until assignable goals are reached. The process of
identifying goals, defining them precisely, and
relating them through refinement links is in general
a combination of top-down and bottom-up subpro-
cesses [47]; offspring goals are identified by asking
HOW questions about goals already identified
whereas parent goals are identified by asking
WHY questions about goals and operational require-
ments already identified.

. Object capture. Identify the objects involved in goal
formulations, define their conceptual links, and
describe their domain properties by invariants.

. Operation capture. Identify object state transitions that
are meaningful to the goals. Goal formulations refer
to desired or forbidden states that are reachable
through state transitions; the latter correspond to
applications of operations. The principle is to specify
such state transitions as domain pre- and postcondi-
tions of operations thereby identified and to identify
the agents that could perform these operations.

. Operationalization. Derive strengthened pre-, post-,
and trigger conditions on operations and strength-
ened invariants on objects, in order to ensure that all
terminal goals are met. A number of formal
derivation rules are available to support the oper-
ationalization process [16].

. Responsibility assignment. 1) Identify alternative re-
sponsibilities for terminal goals; 2) make decisions
among refinement, operationalization, and respon-
sibility alternatives, so as to reinforce nonfunctional
goals [64]Ðe.g., goals related to reliability, perfor-
mance, cost reduction, load reduction, etc; 3) assign
the operations to agents that can commit to
guarantee the terminal goals in the alternatives
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selected. The boundary between the system and its
environment is obtained as a result of this process
and the various terminal goals become requirements
or assumptions dependent on the assignment made.

The steps above are ordered by data dependencies; they
may be running concurrently, with possible backtracking at
every step.

3 GOAL OBSTRUCTION BY OBSTACLES

This section formally defines obstacles, their relationship to
goals, and their refinement links; a criterion is provided for
a set of obstacles to be complete; a general taxonomy of
obstacles is then suggested. In the sequel, the general term
"goal" will be used indifferently for a high-level goal, a
requirement assigned to an agent in the software-to-be, or
an assumption assigned to an agent in the environment.

3.1 Obstacles to Goals

Semantically speaking, a goal defines a set of desired
behaviors, where a behavior is a temporal sequence of states
(see Section 2.2). A positive scenario is a sequence of state
transitions, controlled by corresponding agent instances,
that produces such a desired behavior (see Section 2.1).
Goal refinement yields sufficient subgoals for the goal to be
achieved.

Likewise, an obstacle defines a set of undesirable
behaviors; a negative scenario produces a behavior in this
set. Goal obstruction yields sufficient obstacles for the goal
to be violated; the negation of such obstacles yields
necessary preconditions for the goal to be achieved.

Let G be a goal and Dom a set of domain properties. An
assertion O is said to be an obstacle to G in Dom iff the
following conditions hold:

1. {O, Dom} � : G (obstruction)

2. {O, Dom} 6� false (domain-consistency).

Condition 1 states that the negation of the goal is a logical
consequence of the theory comprising the obstacle specifi-
cation and the set of domain properties available;
condition 2 states that the obstacle may not be logically
inconsistent with the domain theory. Clearly, it makes no
sense to reason about obstacles that are inconsistent with
the domain. In terms of behaviors, the consistency condition
is semantically equivalent to the following condition:

20. There exists a scenario S producing a behavior H

such that
H � O �feasibility�:

This condition now states that the obstacle specification is
satisfiable through one behavior at least, produced by a
(domain-consistent) scenario of agent cooperation.

As a first simple example, consider a library system and
the following high-level goal stating that every book request
should eventually be satisfied:

Goal Achieve [BookRequestSatisfied]

RefinedTo SatisfiedWhenAvailable,

CopyEventuallyAvailable, RequestPending

FormalDef 8 bor: Borrower, b: Book

Requesting (bor, b)

) } (9 bc: BookCpy) [Copy (bc, b) ^ Gets (bor, bc)]

An obstructing obstacle to that goal might be specified by
the following assertion:

} 9 bor: Borrower, b: Book

Requesting (bor, b)

^ ut (8 bc: BookCpy) [Copy (bc, b) ) : Gets (bor, bc)]

Condition 1 trivially holds as the assertion amounts to the
negation of the goal (remember that P)Q iff (ut P!Q) and
: ut (P!Q) iff } (P^: Q)). This obstructing assertion is
satisfiable, e.g., through the classical starvation scenario [19]
in which, each time a copy of a requested book becomes
available, this copy gets borrowed in the next state by a
borrower different from the requesting agent.

To further illustrate the need for condition 2, consider the
following goal for some device control system (expressed in
propositional terms for simplicity):

Running ^ PressureTooLow ) AlarmRaised

It is easy to see that condition 1 would be satisfied by the
candidate obstacle

PressureTooLow ^ Startup ) : AlarmRaised

^ } [ Running ^ PressureTooLow ^ Startup]

which logically entails the negation of the goal above;
however, this candidate is inconsistent with the domain
property stating that the device cannot be both in startup
and running modes:

Running ) : Startup

Note that the above definition of an obstructing obstacle
allows for the same obstacle to obstruct several different
goals; examples of this will be seen later on in the paper.

It is also worth noticing that, since Achieve/Cease and
Maintain/Avoid goals all have the general form utGC, an
obstacle to such goals will always have the general form
}OC; in the sequel, GC and OC will be called goal and
obstacle condition, respectively.

3.2 Completeness of a Set of Obstacles

Given some goal formulation, defensive requirements
specification would require as many meaningful obstacles
as possible to be identified for that goal; completeness is
desirableÐat least for high-priority goals, such as Safety
goals.

A set of obstacles O1; . . . ; On to goal G in Dom is domain-
complete with respect to G iff the following condition holds:

{: O1; . . . ;: On, Dom} � G (domain-completeness)

This condition intuitively means that if none of the obstacles
in the set may occur then the goal is necessarily satisfied.

It is most important to note that completeness is a notion
relative to what is known about the domain. To make this
clear, let us consider the following example introduced in
[37] after a real plane incident. The goal

MovingOnRunway ) ReverseThrustEnabled

can be AND-refined, using the milestone refinement pattern
[17], into two subgoals:

MovingOnRunway ) WheelsTurning (Ass)

WheelsTurning ) ReverseThrustEnabled (Rq)
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The second subgoal is a requirement assigned to a software
agent; the first subgoal is an assumption assigned to an
environment agent. Assumption Ass will be violated iff

} (MovingOnRunway ^ : WheelsTurning) (N-Ass)

Assume now that the following necessary conditions for
wheels to be turning are known in the domain:

WheelsTurning ) WheelsOut (D1)

WheelsTurning ) : WheelsBlocked (D2)

WheelsTurning ) : Aquaplaning (D3)

The following obstacles can then be seen to obstruct
Assin that domain since each of them then entails N-Ass:

} (MovingOnRunway ^ : WheelsOut) (O1)

} (MovingOnRunway ^ WheelsBlocked) (O2)

} (MovingOnRunway ^ Aquaplaning) (O3)

In order to check the domain completeness of these
obstacles we take their negation:

MovingOnRunway ) WheelsOut (N-O1)

MovingOnRunway ) : WheelsBlocked (N-O2)

MovingOnRunway ) : Aquaplaning (N-O3)

Back to the definition of domain-completeness, one can
see that the set of obstacles {O1, O2, O3} will be complete or
not dependent on whether the following property is known
in the domain:

MovingOnRunway

^ WheelsOut ^ : WheelsBlocked ^ : Aquaplaning

) WheelsTurning

(D4)

Obstacle completeness thus really depends on what valid
properties are known in the domain.

3.3 Obstacle Refinement

Like goals, obstacles may be refined. AND-refinement links
may relate an obstacle to a set of subobstacles (called
refinement); this means that satisfying the subobstacles in
combination is a sufficient condition in the domain for
satisfying the obstacle. OR-refinement links may relate an
obstacle to an alternative set of refinements; this means that
satisfying one of the refinements is a sufficient condition in
the domain for satisfying the obstacle. The obstacle
refinement structure for a given goal may thus be
represented by an AND/OR directed acyclic graph.

A set of obstacles O1; . . . ; On is an AND-refinement of an
obstacle O iff the following conditions hold:

1. { O1 ^O2 ^ . . . ;^ On, Dom} � O (entailment)
2. { O1 ^O2 ^ . . . ;^ On, Dom} 6� false (consistency).

In general, one is interested in minimal AND-refinements,
in which case the following condition has to be added:

3. for all i: {^j6�i Oj, Dom} 6� O (minimality).

A set of obstacles O1; . . . ; On is an OR-refinement of an
obstacle O iff the following conditions hold:

1. for all i: {Oi, Dom} � O (entailment)
2. for all i: {Oi, Dom} 6� false (consistency).

In general, one is interested in complete OR-refinements in
which case the domain-completeness condition has to be
added:

3. {:O1 ^ . . . ^ :On, Dom} � : O (completeness).

In the plane landing example above, the set {O1, O2, O3} is
a complete OR-refinement of the higher-level obstacle
N-Ass with respect to a domain comprising all the proper-
ties listed.

One may sometimes wish to consider all disjoint
alternative subobstacles of an obstacle; the following
additional condition has to be added in such cases:

4. for all i, j: {Oi;Oj; Dom} � false (disjointness).

Section 5.3 will present a rich set of complete and disjoint
obstacle refinement patterns.

Chaining the definitions in Sections 3.1 and 3.3 leads to
the following straightforward proposition:

If O0 is a subobstacle within an OR-refinement of an obstacle O
that obstructs some goal G, then O0 obstructs G as well.

3.4 Classifying Obstacles

As mentioned in Section 2.1, goals are classified by type of
requirements they will drive about the agents concerned.
For each goal category, corresponding obstacle categories
may be defined. For example,

. Nonsatisfaction obstacles are obstacles that obstruct
the satisfaction of agent requests (that is, Satisfaction
goals);

. Noninformation obstacles are obstacles that obstruct
the generic goal of making agents informed about
object states (that is, Information goals);

. Inaccuracy obstacles are obstacles that obstruct the
consistency between the state of objects in the
environment and the state of their representation
in the software (that is, Accuracy goals);

. Hazard obstacles are obstacles that obstruct Safety
goals;

. Threat obstacles are obstacles that obstruct Security
goals.

Such obstacle categories may be further specialized into
subcategoriesÐe.g., Indiscretion and Corruption obstacles
are subcategories of Threat obstacles that obstruct goals in
the Confidentiality and Integrity subcategories of Security
goals, respectively [1], WrongBelief obstacles form a sub-
category of Inaccuracy obstacles, etc.

Knowing the (sub)category of a goal may prompt a
search for obstructing obstacles in the corresponding
category. More specific goal subcategories will of course
result in more focussed search for corresponding obstacles.
This provides the basis for heuristic identification of
obstacles, as discussed in Section 5.4.

3.5 Goal Obstruction vs. Goals Divergence

In the context of handling conflicts between multiple goals,
we have introduced in [49] the notion of divergent goals.
Goals G1, G2, ..., Gn are said to be divergent iff there exists a
boundary condition that makes them logically inconsistent
with each other in the domain considered. We have shown
that an obstacle corresponds to a boundary condition for the
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degenerate case where n=1. As a consequence, there are
generic principles common to obstacle identification/
resolution and divergence identification/resolution. How-
ever, handling exceptions to the achievement of a single
goal and handling conflicts between multiple stakeholders'
goals correspond to different problems and foci of concern
for the requirements engineer. For example, the above
notions of completeness and refinement are specifically
introduced for obstacle analysis. The classification of
obstacles and the heuristic rules for their identification is
specific to obstacle analysis as well (see Section 5.4). As will
be seen below, the common generic principles for problem
identification/resolution yield specific instantiations and
specializations for obstacle analysis. For example, the goal
regression procedure can be simplified (see Section 5.1); the
completion procedure is specific to obstacle analysis (see
Section 5.2); obstruction refinement patterns are different
from divergence patterns (see Section 5.3).

4 INTEGRATING OBSTACLES IN THE RE PROCESS

First-sketch specifications of goals, requirements, and
assumptions tend to be too ideal; they are likely to be
occasionally violated in the running system due to
unexpected agent behavior [47], [71]. The objective of
obstacle analysis is to anticipate exceptional behaviors in
order to derive more complete and realistic goals, require-
ments, and assumptions.

A defensive extension of the goal-oriented process model
outlined in Section 2.3 is depicted in Fig. 2. (As in Fig. 1, the
arrows indicate data dependencies.) The main difference is
the obstacle analysis loop introduced in the upper right part.

During elaboration of the goal graph by elicitation and
by refinement, obstacles are generated from goal specifica-
tions. Such obstacles may be recursively refinedÐsee the
right circle arrow in Fig. 2. (Section 5 will discuss techniques
for supporting the obstacle identification/refinement
process.)

The generated obstacles are resolved, which results in a
goal structure updated with new goals and/or transformed
versions of existing ones. The resolution of an obstacle may
be subdivided into two steps [21]: the generation of
alternative resolutions and the selection of one among the
alternatives considered. (Section 6 will discuss different
operators for resolution generation.)

The new goal specifications obtained by resolution may
in turn trigger a new iteration of goal elaboration and

obstacle analysis. Goals obtained from obstacle resolution
may also refer to new objects/operations and require
specific operationalizations.

A number of questions arise from this process model.

Obstacle identification. From which goals in the goal graph
should obstacles be generated? For some given goal, how
extensive should obstacle generation be?

. The more specific the goal is, the more specific its
obstructing obstacles will be. A high-level goal
will produce high-level obstacles which will need
to be refined significantly into subobstacles in
order to identify precise circumstances whose
feasibility might be assessed through negative
scenarios of agent behavior. It is much easier and
preferable to elicit/refine what is wanted than
what is not wanted. We therefore recommend that
obstacles be identified from terminal goals assign-
able to individual agents.

. The extensiveness of obstacle identification will
depend on the category and priority of the goal
being obstructed. For example, obstacle identifi-
cation should be exhaustive for Safety or Security
goals; higher priority goals deserve more exten-
sive identification than lower priority ones.
Domain-specific cost-benefit analysis needs to be
carried out to decide when the obstacle identifica-
tion process should terminate.

Obstacle resolution. For some given obstacle, how extensive
should the generation of alternative resolutions be? For some
set of alternative resolutions, how and when should a specific
resolution be selected?

As will be seen in Section 6, the generation of
alternative resolutions corresponds to the application of
different strategies for resolving obstacles. The strategies
include obstacle elimination, with substrategies such as
obstacle prevention, goal substitution, agent substitution,
goal deidealization, or object transformation; obstacle
reduction; and obstacle tolerance, with substrategies
such as obstacle mitigation or goal restoration. (Some
of these strategies have been studied in other contexts of
handling problematic situationsÐe.g., deadlocks in
parallel systems [12]; exceptions and faults in fault-
tolerant systems [2], [13], [40], [29]; feature interaction in
telecommunication systems [42]; inconsistencies in soft-
ware development [67]; or conflicts between require-
ments [77], [49]).

. The range of strategies to consider and the
selection of a specific strategy to apply will
depend on the likelihood of occurrence of the
obstacle, on the impact of such occurrence (in the
number of goals being obstructed by the ob-
stacle), and on the severity of the consequences of
such occurrence (in terms of priority of the goals
being obstructed). Risk analysis and domain-
specific cost-benefit analysis need to be deployed
in order to provide a definite answer. Such
analysis is outside the scope of this paper.

. The selection of a specific resolution should not
be done too early in the goal/obstacle analysis
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process. An obstacle identified at some point may
turn out to be more severe later on (e.g., because it
then appears to also obstruct new important goals
being elicited). Premature decisions may stifle the
consideration of alternatives that may appear to
be more appropriate later on in the process [21].

Goal-obstacle analysis iteration. When should the intertwined
processes of goal elaboration and obstacle analysis stop?

The goal-obstacle analysis loop in Fig. 2 may
terminate as soon as the obstacles that remain are
considered acceptable without any resolution. Risk
analysis needs again to be carried out together with
cost-benefit analysis in order to determine acceptability
thresholds.

Some of the issues above will be addressed in a more
specific way for the obstacle analysis of the London
Ambulance System in Section 7.

5 Generating Obstacles

According to the definition in Section 3.1, the identification
of obstacles obstructing some given goal in the considered
domain proceeds by iteration of two steps:

1. Given the goal specification, find some assertion that
may obstruct it;

2. Check that the candidate obstacle thereby obtained
is consistent with the domain theory available.

Step 2 corresponds to a classical consistency checking
problem in logic; it can be carried out using deductive
verification techniques (e.g., [58], [68]). Alternatively, one
may check the satisfiability of the candidate obstacle in the
domain by finding out some negative scenario (see the
feasibility condition in Section 3.1). This can be done
manually [71], with some formal support as shown below,
or using automated techniques based on planning [27] or
model checking [34], [60], [38]; in the latter case some
operational model of the system needs to be available.

We therefore concentrate on Step 1 and present
techniques for deriving candidate obstacles whose domain
consistency/ feasibility needs to be subsequently checked.
We successively discuss:

. a formal calculus of preconditions for obstruction,

. the use of formal obstruction patterns to shortcut
formal derivations, and

. the use of identification heuristics based on obstacle
classifications as a cheap, informal alternative to
formal techniques.

5.1 Regressing Goal Negations

The first technique is based on the obstruction condition
defining an obstacle in Section 3.1. Given the goal assertion
G, it consists of calculating preconditions for obtaining the
negation : G from the domain theory. Every precondition
obtained defines a candidate obstacle. This may be achieved
using a regression procedure which can be seen as a
counterpart of Dijkstra's precondition calculus [30] for
declarative representations. Variants of this procedure have
been used in AI planning [85], in explanation-based
learning [46], and in requirements engineering to identify
divergent goals [49]. We first explain the general procedure

before showing how it can be specialized and simplified for
obstacle generation.

Consider a meeting scheduler system and the goal
stating that intended people should participate to meetings
they are aware of and which fit their constraints:

Goal Achieve [InformedParticipantsAttendance]

FormalDef 8 m: Meeting, p: Participant

Intended (p, m) ^ Informed (p, m) ^ Convenient (p, m)

) } Participates (p, m)

The initialization step of the regression procedure consists
of taking the negation of that goal which yields

(NG) } 9 m: Meeting, p: Participant

Intended (p, m) ^ Informed (p, m) ^ Convenient (p, m)

^ ut : Participates (p, m)

(Such initialization may already produce precise, feasible
obstacles in some cases, see other examples below.)

Suppose now that the domain theory contains the
following property:

8 m: Meeting, p: Participant

Participates (p, m) ) Holds (m) ^ Convenient (p, m)

This domain property states that a necessary condition for a
person to participate in a meeting is that the meeting is
being held and its date/location is convenient to her. A
logically equivalent formulation is obtained by
contraposition:

(D) 8 m: Meeting, p: Participant

: [ Holds (m) ^ Convenient (p, m) ]): Participates (p, m)

The consequent in (D) unifies with a litteral in (NG);
regressing (NG) through (D) then amounts to replacing in
(NG) the matching consequent in (D) by the corresponding
antecedent. We have thereby formally derived the following
potential obstacle:

(O1) } 9 m: Meeting, p: Participant

Intended (p, m) ^ Informed (p, m) ^ Convenient (p, m)

^ ut [: Holds (m) _ : Convenient (p, m)]

This obstacle covers two situations, namely, one where
some meeting never takes place and the other where a
participant invited to a meeting whose date/location was
first convenient to her is no longer convenient when the
meeting takes place. Using the OR-refinement techniques
decribed in Section 5.3, we will thereby obtain two
subobstacles that could be named MeetingPostponed-
Indefinitely and LastMinuteImpediment, respectively. Sce-
narios satisfying their respective assertion are straightfor-
ward in this case.

Assuming the domain theory takes the form of a set of
rules A ) C, a temporal logic variant of the regression
procedure found in [46] can be described as follows:

Initial step:

take O := : G

Inductive step:

let A ) C be the domain rule selected,

with C matching some subformula L in O whose

occurrences in O are all positive;

then � := mgu(L, C);

O := O[L / A.�]
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This procedure relies on the following definitions and

notations:

. for a formula scheme '(u) with one or more
occurrences of the sentence symbol u, an occurrence
of u is said to be positive in ' if it does not occur in a
subformula of the form p$ q and it is embedded in
an even (explicit or implicit) number of negations;

. mgu (F1,F2) denotes the most general unifier of F1
and F2;

. F.� denotes the result of applying the substitutions
from unifier � to F;

. F[F1/F2] denotes the result of replacing every
occurrence of F1 in formula F by F2.

The soundness of the regression procedure follows from

a monotonicity property of temporal logic [57, p. 203]:

If all occurrences of u in '(u) are positive, then
(p )q) ! ('(p) ) ' (q) )

is valid.

Every iteration in the regression procedure produces

potentially finer obstacles to the goal under consideration;

it is up to the specifier to decide when to stop, dependent on

whether the obstacles obtained are meaningful and precise

enough 1) to easily identify scenarios satisfying them and 2)

to see appropriate ways of resolving them through

strategies discussed in Section 6.
In the example above, only one iteration was performed.

Regressing obstacle (O1) above further through a domain

property like

Convenient (p, m) ) m.Date in p.Constraints

^ m.Location in p.Constraints

would have produced finer subobstacles to the goal Achieve

[InformedParticipantsAttendance], namely, the date being

no longer convenient or the location being no longer

convenient when the meeting takes place.
Exploring the space of potential obstacles derivable from

the domain theory is achieved by backtracking on each

domain rule applied to select another applicable one. After

having selected rule (D) in the example above, one could

select the following other domain rule stating that another

necessary condition for participation is that the meeting

date the participant has in mind corresponds to the actual

date of the meeting:

(D0) 8 m: Meeting, p: Participant

Participates (p, m) ) 9 M: Beliefp(m.Date = M) ^
m.Date = M

The deontic Beliefag construct in this formalization is

often used to capture Accuracy goals and Inaccuracy

obstacles; it is linked to the Knowsag construct by the

following property:

Knowsag�P� � Beliefag�P� ^ P

where ag denotes an agent instance, P a fact, and the KAOS

built-in predicate Knowsag (P) means that the truth value of

P in ag's local memory coincides with the actual truth value

of P.

Regressing the goal negation (NG) above through

property (D0) now yields the following new obstacle:

(O2) } 9 m: Meeting, p: Participant

Intended (p, m) ^ Informed (p, m) ^ Convenient (p, m)

^ ut 8 M: : [Beliefp (m.Date = M) ^ m.Date = M]

This obstacle, in the Inaccuracy category, could be named

ParticipantBelievesWrongDate.
Further backtracking on other applicable rules would

generate other obstacles obstructing the goal Achieve

[InformedParticipantsAttendance], such as ParticipantNot

InformedInTime, InvitationNotKnown, etc.
The examples above exhibit a simplified procedure for

generating obstacles to Achieve goals of the form C ) } T:

1. Negate the goal, which yields a pattern
} (C ^ ut : T);

2. Find necessary conditions for the target condition T in
the domain theory;

3. Replace the negated target condition in the pattern
resulting from Step 1 by the negated necessary
conditions found; each such replacement yields a
potential obstacle. If needed, apply Steps 2 and 3,
recursively.

A dual version of this simplified procedure can be used

for goals having the Maintain patterns C) T, C) ut T, or C

)TWN. For the plane landing example in Section 3.2, it

generates the obstacles O1, O2, and O3 to the assumption

Ass in a straightforward way.
In practice, the domain theory does not necessarily need

to be very rich at the beginning. Given a target condition T,

the requirements engineer may incrementally elicit necessary

conditions for T to hold by interaction with domain experts

and clients.
To give a more extensive idea of the space of obstacles

that can be generated systematically using this technique,

Fig. 3 shows a goal AND-refinement tree, derived by

instantiation of a frequent refinement pattern from [17],

together with corresponding obstacles that were generated

by regression (universal quantifiers have been left implicit).
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5.2 Completing a Set of Obstacles

The domain-completeness condition in Section 3.2 suggests
a procedure for completing a set of obstacles O1; . . . ;On

already identified for some goal G.
As noted in Section 3.1, G has the general form ut GC

whereas Oi has the general form } OCi. The completion
procedure can be described as follows:

1. Form the complementary assertion

O� � }�: GC ^ : OC1 ^ . . . ^ : OCk�;

2. Check the consistency of O* with Dom;
3. If O* is domain-consistent and too unspecific,

regress it through Dom or generate subobstacles
using refinement patterns, to yield finer obstacles
SO*;

4. If needed, apply Steps 1-3 recursively to the SO*'s.

It is easy to check that the set {O*, O1, ..., Ok} obtained by
Step 1 satisfies the domain-completeness condition in
Section 3.2 in which the domain is temporarily not
considered. Considering the domain in the next steps
allows O* to be checked for consistency and refined if
necessary. A frequent simplification arises from Step 3
when O* has the form } (P ^ P1) and a domain property is
found having the form P ) P1. A one-step regression then
yields O = } P.

Back to the plane landing example in Section 3.2, Step 1
of the completion procedure applied to the assumption

MovingOnRunway ) WheelsTurning

and the obstructing obstacles

} (MovingOnRunway ^ : WheelsOut) (O1)

} (MovingOnRunway ^ WheelsBlocked) (O2)

} (MovingOnRunway ^ Aquaplaning) (O3)

yields

O* = } (MovingOnRunway ^ : WheelsTurning

^ WheelsOut ^ : WheelsBlocked ^ : Aquaplaning)

This candidate obstacle is inconsistent with the domain if
property (D4) is found in Dom (see Section 3.2). If not,
further regression/refinement through Dom should be
undertaken to find out more specific causes/subobstacles
of O* in order to complete the set (O1)-(O3). Such
refinement may be driven by patterns as we discuss now.

5.3 Using Obstruction Refinement Patterns

As introduced in Section 3.3, obstacles may be AND/OR-
refined into subobstacles. AND-refinements yield more
"primitive" obstacles, that is, obstacles for which 1) negative
scenarios can be found more easily to show their feasibility
and 2) effective ways of resolving them can be envisioned
more easily. On the other hand, domain-complete
OR-refinements are in general desirable for critical goals;
they yield a domain-complete set of alternative subobstacles
that can be made disjoint if necessary.

Section 5.1 already contained examples of obstacle
refinements. The obstacle LastMinuteImpediment was in
fact OR-refined into two alternative subobstacles using the
domain theory, namely, the date being no longer

convenient or the location being no longer convenient. Fig.
3 also shows an example of OR-refinement of the obstacle
obstructing the goal in the middle of the goal tree; this
obstacle, not explicitly represented there, has been formally
OR-refined into the two subobstacles in the middle (which
could be named MeetingNeverNotified and MeetingNever-

Convenient, respectively). The latter subobstacles may be
refined in turn. Similarly, the obstacle ParticipantBelieves-

WrongDate that was derived in Section 5.1 could be OR-
refined into alternative subobstacles like WrongDateCom-

municated, ParticipantConfusesDates, etc.
The AND/OR refinement of obstacles may be seen as a

formal, goal-oriented form of fault-tree analysis [54] or
threat-tree analysis [1]. Such analysis is usually done in an
informal way through interaction with domain experts and
clients; our aim here is to derive complete fault/threat trees
formally.

The regression procedure in Section 5.1 is a first
technique to achieve this; alternatively, one may use
obstacle refinement patterns to shortcut the formal deriva-
tions involved in the regression procedure.

The general principle is similar to goal refinement
patterns [17] and divergence detection patterns [49]. A
library of generic refinement patterns is built; each pattern
is a refinement tree where the root is a generic assertion to
be refined and the leaves are generic refining assertions.
The correctness of each pattern is proved formally once and
for all.

The patterns for goal obstruction are specific in that the
roots of refinement trees are negated goals. The generation
of (sub)obstacles to some goal then proceeds by selecting
patterns whose root matches the negation of that goal, and
by instantiating the leaves accordingly. The requirements
engineer is thus relieved of the technical task of doing the
formal derivations required in Section 5.1. The patterns can
be seen as high-level inference rules for deriving finer
obstacles.

All obstruction patterns in this paper were proved
formally correct using the STeP verification tool [58]. As
we will see, the notion of correctness is different for AND-
and OR-refinement patterns. We discuss them successively.

5.3.1 AND-Refinement Patterns

Figs. 4, 5, and 6 show a sample of frequent AND-refinement
patterns for obstacles that obstruct Achieve and Maintain

goals, respectively.
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The root assertion in each AND-tree corresponds to the

negation of the goal being obstructed. (Remember that there

is an implicit ut-operator in every strong implication; this

causes the outer }-operator to appear there.) The left child

assertion may correspond to a domain property, to another

requirement/assumption, or to a companion subobstacle. In

the 1-step regression and starvation patterns, it will

typically correspond to a domain rule T ) P. In the

milestone pattern, it defines a necessary milstone M for

reaching the target predicate T. The left child assertion often

guides the identification of the subobstacle captured by the

right child assertion.
Obstacle refinement patterns may thus help identifying

both subobstacles and domain properties. Also note that the

1-step regression patterns in Figs. 4 and 6 correspond to the

regression procedure in Section 5.1 where only one iteration

is performed.
As an example of using the starvation pattern in Fig. 4,

consider a general resource management system and the

goal

8 u: User, r: Resource

Requesting (u, r) ) : 9 u0 6� u: Allocated (r, u0)

The domain property

Allocated (r, u) ) : 9 u0 6� u: Allocated (r, u0)

suggests reusing the starvation pattern with instantiations

C: Requesting (u, r)

T: Allocated (r, u) , P: : 9 u0 6� u: Allocated (r, u0)

The following starvation obstacle has been thereby derived:

} 9 u: User, r: Resource

Requesting (u, r)

^ ut [ : Allocated(r, u) U 9 u0 6� u: Allocated (r, u0) ]

As an example of using the 1-step regression pattern in

Fig. 6, consider the LAS ambulance dispatching system [51]

and the goal stating that an ambulance allocated to an

incident should remain allocated to that incident until it has

arrived at the incident scene. This goal may be formalized by

8 a: Ambulance, inc: Incident

Allocation (a, inc))Allocation (a, inc)WIntervention (a, inc)

We know from the domain that an ambulance can be

allocated to at most one incident at a time:

Allocation (a, inc) ) : 9 inc0 6� inc: Allocation (a, inc0)

This property suggests using the 1-step regression pattern

with the following instantiations:

C: Allocation (a, inc) T: Allocation (a, inc)

N: Intervention (a, inc) B: 9 inc0 6� inc: Allocation (a, inc0)

The following subobstacle is thereby derived:

} 9 a: Ambulance, inc: Incident

Allocation (a, inc)

^ : Intervention (a, inc) U
: Intervention (a, inc) ^ 9 inc0 6� inc: Allocation (a, inc0)

This obstacle captures a situation in which an ambulance

allocated to an incident becomes allocated to another

incident before its intervention at the first one.
A more extensive set of obstacle AND-refinement

patterns is given in Tables 1, 2, 3, and 4. Each table

corresponds to a specific kind of goal. Each row in a table

represents an AND-refinement of the negation of the goal

associated with the table. The lower a row is in a table, the

more specific the corresponding assertion and subobstacle

are. The assertions in the first column may represent a

domain property, a requirement or a companion

subobstacle. Table 4 may be seen to correspond to the

backward construction of a fault-tree from a state machine

[74]; p and q are intended to be state predicates there.
All AND-refinement patterns in Tables 1, 2, 3, and 4 were

proved correct using STeP [58]Ðby this we mean that the
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entailment and consistency conditions in Section 3.3 were

formally verified.
Section 7 will illustrate the use of various patterns from

Tables 1, 2, 3, and 4.

5.3.2 Complete OR-Refinement Patterns

Fig. 7 shows a pattern for refining the obstruction of an

Achieve goal R ) } S into a complete set of disjoint

alternative subobstacles (see Section 3.3 for the definition of

completeness and disjointness). The goal negation } (R ^ ut
: S) is AND-refined into two child nodes; the left child

assertion may be a domain property, an assumption or a

requirement (in this case it defines what a milestone is); the

right child node is an OR-node refined into two alternative

subobstacles.
As an example of using this pattern, consider the

meeting scheduler system again and the goal stating that

participants' time/location constraints should be provided

if requested [47]:

8 m: Meeting, p: Participant

ConstraintsRequested (p, m) ) }ConstraintsProvided (p,

m)

An obvious milestone condition for a participant to provide

her constraints is that a request for constraints is reaching

her. This suggests using the milestone pattern in Fig. 7 with

the following instantiations:

C: ConstraintsRequested(p,m) T: ConstraintsProvided(p,m)

M: RequestReaches(p,m)

The milestone pattern then generates the following domain

property:

8 m: Meeting, p: Participant

ConstraintsRequested(p,m) ^ } ConstraintsProvided (p,m)

) [ : ConstraintsProvided(p,m) WRequestReaches(p,m)]

together with a complete set of alternative subobstacles to

the goal above:

} 9 m: Meeting, p: Participant

ConstraintsRequested (p,m) ^ ut : RequestReaches (p,m)

or

} 9 m: Meeting, p: Participant

ConstraintsRequested (p,m) ^
: RequestReaches (p,m) U

RequestReaches (p,m) ^ ut : ConstraintsProvided (p,m)

The refinement may then proceed further to find out finer

subobstacles in each alternative; this will yield causes for a

request not reaching an invited participant and causes for a

participant not providing her constraints in spite of the

request having reached her, respectively.
These examples suggest that the more an obstacle is refined

the closer one gets to an explicit scenario. Obstacle refinement

patterns may thus be used for suggesting feasible scenarios

as well.
A more extensive set of complete and disjoint OR-

refinement patterns is given in Tables 5 and 6. Each table

corresponds to a specific kind of goal. Each row in a table

represents a refinement of the negation of the goal

associated with the table; the thick vertical line separator

represents an AND whereas the double line separators

represent an OR. Some of the patterns in these tables will be

used in the obstacle analysis for the London Ambulance

System in Section 7.
All OR-refinement patterns in Tables 5 and 6 were

proved correct using STeP [58]Ðby this we mean that the

entailment, consistency, disjointness, and domain-

completeness conditions in Section 3.3 were formally

verified. In the latter case, the formulas in the assertion

column were taken as generic domain property forming

Dom.
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TABLE 3
Patterns of Obstacles to Goals ut (P ! Q)

TABLE 4
Patterns of Obstacles to Goals ut q

Fig. 7. OR-refinement pattern for obstacles to goals C ) } T.

TABLE 2
Patterns of Obstacles to Goals P ) . Q



5.4 Informal Obstacle Identification

Informal heuristics may be used to help identify obstacles

without necessarily having to go through formal techniques

every time. Although they are easier to deploy, the result

will be much less accurate and not guaranteed to be

formally correct and complete.
Such heuristics are rules of thumb taking the form:

ªif the specification has such or such characteristics then

consider such or such type of obstacle to it.º The general

principle is somewhat similar in spirit to the use of

HAZOP-like guidewords for eliciting hazards [54] or, more

generally, to the use of safety checklists [39], [83].
Our heuristics are based on goal/obstacle classifications

(see Section 3.4), on formal obstruction patterns we have

identified and on past experience in identifying obstacles.

General heuristics are independent of any particular class of

goals; more specific heuristics are associated with some

specific class.
General heuristics refer to the KAOS meta-model only (see

the concepts defined in Section 2.1). Here are a few

examples to illustrate the approach.

If an agent has to monitor/control some object in order to

guarantee the goal it is assigned to then consider the

following types of obstacles:

. InfoUnavailable. The necessary information about
the object state is not available to the agent.

. InfoNotInTime. The necessary information about
the object state is available too late.

. WrongBelief. The necessary information about the
object state as recorded in the agent's memory is
different from the actual state of this object. (In the
meeting scheduler example, this heuristics might
have helped identifying obstacles like Participant-
BelievesWrongDateÐsee Section 5.1; for an elec-
tronic reviewing process an obstacle like
ReviewerBelievesWrongDeadline could be identi-
fied in a similar way.)

The WrongBelief obstacle class can be further refined
into subclasses such as:

. WrongInfoProvided. The necessary information
provided by another agent about the object state
is incorrect (possible refinements for this obstacle
are, e.g., too high or too low values for an object
attribute).

. InfoCorrupted. The information from the provider
has been corrupted by another agent.

. InfoOutDated. The information provided to the
agent is no longer correct at the time of use.

. InfoForgotten. The information provided to the
agent is no longer available at the time of use.

. WrongInference.The agent has made a wrong
inference from the information available.

. InfoConfusion. The agent confuses the necessary
information about the object state with some
other information.

InfoConfusion obstacles can be refined in turn, e.g.,

. InstanceConfusion. The agent confuses the neces-
sary information about the object state with
information about another instance of object with-
in the same class [71].

. ValueConfusion. The agent confuses different
values for an attribute of the same object.

. UnitConfusion. The agent confuses different units
in terms of which values of an object attribute are
expressed.

In the meeting scheduler example, these heuristics
might have helped identify several obstacles among
those derived formally, e.g., participants confusing
meetings or dates, meeting initiators confusing partici-
pants which results in wrong people being invited,
confusion in constraints, etc. In an ambulance dispatch-
ing system, an obstacle like an ambulance going to a
wrong place could be identified thereby.

An important specialization of InfoConfusion obsta-
cles in the aviation domain is the ModeConfusion
obstacle subcategory in which pilot agents become
confused about what the cockpit software agent is doing;
obstacles in this category receive increasing attention as
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Obstacle OR-Refinement for Goals ut (P ! Q)



they have been recognized to be responsible for a
significant number of critical incidents [11].

If an agent requires some resource in order to guarantee the goal
it is assigned to then consider obstacles in the following
categories:

ResourceUnavailable,

ResourceTooLate,

ResourceOutOfOrder,

WrongResource,

ResourceConfusion,

and so on.

If a persistent condition is necessary to reach the target condition
from the source condition in an Achieve goal, then consider an
obstacle in which the persistent condition becomes false before
reaching the target condition.

The latter heuristic rule corresponds to a natural
language rephrasing of the missing persistence pattern in
Table 1; it suggests how similar heuristics can be formulated
from the other patterns.

More specific heuristics refer to goal classifications. Here
are a few examples:

If a MessageDelivered goal in the InformationGoal category is
considered, then consider obstacles like

MessageUndelivered,

MessageDeliveredAtWrongPlace,

MessageDeliveredAtWrongTime,

MessageCorrupted,

and so on.

If a goal being considered is in the StimulusResponse category,
then consider the following types of obstacles:

. StimulusIgnored, TooLatePickUp, IncorrectValue,
or StimuliConfused obstacles to the abstract goal
StimulusPickedUp;

. NoResponse, ResponseTooLate, ResponseIg-
nored, or WrongResponse obstacles to the ab-
stract companion goal ResponseProvided.

Obstacles can also be identified by analogy with
obstacles in similar systems, using analogical reuse
techniques [59].

6 RESOLVING OBSTACLES

The generated obstacles need to be resolved in some way or
another. As discussed in Section 4, the resolution process
covers two aspects: the generation of alternative resolutions
and the selection of one resolution among those identified.
Which resolution to apply and when to apply it will depend
on risk/cost-benefit analysis based on the likelihood of
occurrence of the obstacle and on the severity of its
consequences. We will not discuss selection tactics here;
we concentrate on the generation of alternative resolutions.

Such resolutions correspond to different strategies that
may be applied. They can be classified into three broad
classes dependent on whether the obstacle is eliminated
(Section 6.1), reduced (Section 6.2), or tolerated (Section 6.3).

Some of these strategies have been studied in other contexts

of handling problematic situationsÐe.g., deadlocks in

parallel systems [12]; exceptions and faults in fault-tolerant

systems [2], [13], [40], [29]; feature interaction in telecom-

munication systems [42]; inconsistencies in software devel-

opment [67]; or conflicts between requirements [77], [49].

The objective here is to specialize such strategies to the

resolution of obstacles to goals during requirements

engineering and to make them explicit in terms of

specification transformation rules in the formal framework

of temporal logic.
The obstacle resolution process will result in a trans-

formed goal structure, transformed requirements specifica-

tions, and transformed domain properties in some cases.

6.1 Obstacle Elimination

Eliminating an obstacle requires one of the conditions

defining an obstacle in Section 3.1 to be inhibited; the

obstruction should be avoided or the obstacle should be

made inconsistent/unfeasible within the domain. The

strategies below address one of the conditions or the other.

6.1.1 Goal Substitution

A most effective way of resolving an obstacle is to identify

an alternative goal refinement for some higher-level goal, in

which the obstructed goal and the obstructing obstacle are

no longer present. In the meeting scheduler example, one

may eliminate the obstacle ElectronicAgendaNotMaintained

that obstructs the goal ElectronicAgendaUpToDate by

choosing an alternative refinement for the father goal

ParticipantsConstraintsKnown (see Fig. 8); the alternative

goal refinement consists in introducing the two companion

goals ConstraintsRequested (under responsibility of the

meeting scheduling software) and ConstraintsProvided (still

under joint responsibility of the participants and the email

system).
Choosing an alternative goal refinement will in general

result in a different design for the composite system.

6.1.2 Agent Substitution

Another way of overcoming the obstacle is to consider

alternative agent assignments so that the obstacle scenario

may no longer occur. This will in general result in different

system proposals, in which more or less functionality is

automated and in which the interaction between the

software and its environment may be fairly different.
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Back to our meeting scheduler example, one might
overcome the obstacle ParticipantNotResponsive to the goal
ConstraintsProvided by assigning the responsibility for that
goal to the participant's Secretary instead (to overcome
subobstacles, such as EmailNotCheckedRegularly or Partici-
pantTooBusy), or by assigning the responsibility for the
goal ParticipantsConstraintsRequested to the meeting in-
itiator (rather than the meeting scheduling software)Ð-
through e-mail, phone calls, etc.

In the electronic reviewing example, one could introduce
a software agent for checking that no occurrence of the
reviewer's name is found in the review (to overcome the
obstacle NonAnonymousReview), a software agent for
checking destination tables (to overcome the obstacle
MessageSentToWrongPerson), etc.

Agent substitution may entail goal substitution and vice
versa.

6.1.3 Obstacle Prevention

This strategy resolves the obstruction by adding a new goal
requiring that the obstacle be avoided.

Remember that a goal G has the general form ut GC
whereas an obstacle O to G has the general form }OC. To
prevent O from being ever satisfied, the following Avoid
goal is thus introduced:

G* : ut : OC

AND/OR refinement and obstacle analysis may then be
applied to the new goal in turn.

Back to our meeting scheduler example, consider the
obstacle MeetingForgotten that obstructs the goal Achieve
[InformedParticipantsAttendance] in Fig. 3. The prevention
strategy yields the new goal Avoid [MeetingForgotten]. The
latter may then be refined into a requirement Achieve
[MeetingReminded] under responsibility of the meeting
scheduling software. Another example of obstacle
prevention in a train control system is the introduction of
an automatic brake facility (with corresponding goals and
agents) to prevent trains from exceeding their speed limit.

It may turn out, after checking with domain experts, that
the assertion ut : OC introduced for obstacle prevention is
not a goal/requirement but a domain property that was
missing from the domain theory Dom, making it possible to
infer the obstacle O by regression. In such cases, the domain
theory will be updated instead of the goal structure.

Obstacle anticipation is a substrategy for refining obstacle
prevention goals. It is applicable when some persistent
condition P can be found such that P must persist during
some time interval for the obstacle condition OC to become
true:

OC ) �d
P

In such a case, the obstacle prevention goal may be refined
by introducing the subgoal

G* : P ) }�d
: P

For obstacles to Security goals, for example, one might have
the following instantiations:

OC: InformationCorruptedByAgent

P: IntrusionUndetected

Obstacle anticipation patterns may be used when an event
can be identified that necessarily precedes the truth of the
obstacle condition.

6.1.4 Goal Deidealization

It is often the case that obstacles are found to obstruct first-
sketch goal formulations because the latter are too ideal.
Such goal formulations should then be deidealized so that
they cover the behaviors captured by the obstacle. The
principle is to transform the goal being obstructed in order to
make the obstruction disappear.

Let us suggest the technique on an example first.
Consider the obstacle ParticipantNotInformedInTime in

Fig. 3 which obstructs the goal

Intended (p, m) ^ Informed (p, m) ^ Convenient (p, m)

) } Participates (p, m)

The idea is to make the obstructed goal more liberal, that is,
to weaken it so that it covers the obstacle. In this case, the
goal weakening is achieved by strengthening its antecedent:

Intended(p,m) ^ InformedInTime(p,m) ^ Convenient(p,m)

) } Participates (p, m)

The predicate InformedInTime(p, m) is derived from the
corresponding obstacle; it requires participants to be kept
informed during a time period starting at least N days
before the meeting date:

InformedInTime(p, m) � ��m:DateÿNd� Informed (p, m)

Once this more liberal goal is obtained, the predicates
that were transformed to weaken the goal are to be
propagated in the goal tree to replace their older version
everywhere; this generally results in strengthened brother
goals and weakened higher-level goals. The result of the
change propagation in the tree shown in Fig. 3 will produce
a strengthened goal in the middle of the tree, namely,

Intended(p,m))}[InformedInTime(p,m) ^ Convenient(p,m)]

The deidealization procedure is similar to the one used
for weakening divergent goals [49]. It is simpler here as
only one goal assertion has to be considered in the
weakening process. The procedure has two steps:

1. Weaken the goal specification to obtain a more liberal
version that covers the obstacle. Syntactic general-
ization operators can be used here such as adding a
disjunct, removing a conjunct, or adding a conjunct
in the antecedent of an implication.

2. Propagate the predicate changes in the goal
AND-tree in which the weakened goal is involved,
by replacing every occurrence of the old predicates
by the new ones.

The cardinality transformations in [23] may be seen as a
particular form of syntactic generalization in Step 1 of this
simplified procedure. Step 2 can be done simply by
updating the instantiations of the goal refinement patterns
used to build the goal graph, when such patterns have been
used [17].

Goal deidealization patterns may also be used as formal
support to the deidealization process. Given the obstructed
goal and the obstructing obstacle, they yield deidealized
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versions of the goal. To illustrate the approach, Table 7
gives some patterns for some of the obstacles from Table 1.

At the end of Section 5.3.1, we considered the resource
management Achieve goal

} u: User, r: Resource

Requesting (u, r) ) } Allocated (r, u),

and we generated the starvation obstacle

} 9 u: User, r: Resource

Requesting (u, r)

^ ut [ : Allocated (r, u) U 9u0 6�u: Allocated (r, u0) ]

The goal and the starvation obstacle match the last row of
Table 7; we thereby generate the deidealized goal
specification

8 u: User, r: Resource

Requesting (u,r) ^ } [: 9u0 6�u:Allocated (r,u0)]
W Allocated (r,u)

) } Allocated (r, u)

The new goal version states that if the user requests the
resource and the resource is subsequently kept unallocated
unless allocated to her/it, then the resource is eventually
allocated to her/it. The new condition PWS that strength-
ens the antecedent has to be propagated into the goal AND-
tree. The goals that refer to this new predicate as target
condition might be operationalized through a reservation
procedure.

6.1.5 Domain Transformation

This strategy consists in transforming the domain within
which the software-to-be operates so as to make the
obstruction disappear. The set of domain properties is
modified so as to make the obstacle either inconsistent with
the domain (see the domain-consistency condition in
Section 3.1) or no longer obstructing the goal (see the
obstruction condition in Section 3.1).

As an illustration of the first case, consider the goal
Achieve[AllocatedAmbulanceMobilized] in an ambulance
dispatching system. One obstacle to this goal corresponds
to the situation where an ambulance crew decides to
mobilize another ambulance than the one allocated by the
system. The domain property making this possible is that
mobilization orders received by crews at ambulance
stations mention the incident location. The obstacle can
then be eliminated by transforming the mobilization order
so that it does no longer mention the incident location; the

latter information would then be provided by a mobile data
terminal inside the ambulance.

As an illustration of the second case, we can prevent the
obstacle InconvenientLocation from obstructing the goal
InformedParticipantsAttendance in the meeting scheduler
system by transforming the domain so that videoconferen-
cing is made possible; the conjunct m.Locationinp.Con-
straints would then be dropped from the domain property
stating necessary conditions for meetings to be convenient
(see Section 5.1).

6.2 Obstacle Reduction

The difference between this class of strategies and the
previous one is that here one tries to reduce the occurrences of
the obstacle instead of eliminating them completely.

Strategies that act on the motivation of human agents are
instances of this class. The principle is to reduce the
situations in which an agent acts abnormally or irrespon-
sibly either by dissuasion or by providing rewards. For
instance, many library systems issue fines to dissuade
borrowers from late returns, insurance systems provide
premium reduction for good customers, some transporta-
tion companies issue rewards for crews arriving on time,
etc.

6.3 Obstacle Tolerance

In cases where the obstacle cannot be thoroughly avoided or
where avoiding it is simply too costly or not worthy, one
may specify which behaviors will be admissible or tolerated
in the presence of the obstacle.

6.3.1 Goal Restoration

A first strategy consists of adding a new goal stating that if
the obstacle condition OC becomes true then the obstructed
goal assertion G should be satisfied again in some reason-
ably near future. Thus, this new goal takes the Achieve form

G* : OC ) } G

This strategy could be followed for the obstacle PaperLost
that obstructs the goal Achieve[ReviewReturned]. A sub-
goal refining the restoration goal will be Achieve
[LostPaperResent].

6.3.2 Obstacle Mitigation

Another alternative strategy to obstacle elimination is to
seek effective ways of mitigating the consequences of the
obstacle. The principle is to add a new goal to attenuate the
effects of obstacle occurrences. Two forms of mitigation can
be distinguished.

Weak mitigation consists in ensuring some weakened
version G0 of the obstructed goal G whenever the obstacle
condition OC becomes true. Thus, a weak mitigation goal
has the form

G* : OC ) G0

where G0 is a deidealized version of G obtained using the
specification transformations described in Section 6.1.4.

To illustrate this, consider the obstacle LastMinute
Impediment generated in Section 5.1. The introduction of
the weak mitigation goal

Achieve [ImpedimentNotified]
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will ensure a weaker version of the goal InformedPartici-
pantsAttendance in Section 5.1, namely,

Intended (p, m) ^ Informed (p, m) ^ Convenient (p, m)

) } [ Participates (p, m) _ Excused (p, m) ]

(Note that in this case an obstacle prevention alternative to

such weak mitigation would yield a goal like Achieve

[MeetingReplanned].)

Strong mitigation consists in ensuring some parent goal G0

of G whenever the obstacle condition OC becomes true, in

spite of G being obstructed. Thus a strong mitigation goal

has the form

G* : OC ) G0

where the obstructed goal G is a subgoal of G0.
Fig. 9 illustrates this on a mine pump system example

[41]. The goal Avoid[MinerInOverfloodedMine] strongly

mitigates the obstacle ExcessiveWaterFlow that obstructs

the goal WaterFlowLimited by guaranteeing that the parent

goal Avoid[MinerDrowning] will be satisfied.
The distinction between strong and weak mitigation

somewhat corresponds, at the requirements engineering
level, to two different, sometimes confused notions of fault
tolerance [13]: one where the program meets its specifica-
tion in spite of faults, and the other where the program
meets a weaker version of the specification.

6.3.3 Do-Nothing

For noncritical obstacles whose consequences have no
significant impact on the performance of the system a last
strategy is of course to tolerate its occurrences without any
resolution action.

7 OBSTACLE ANALYSIS FOR A REAL SAFETY-
CRITICAL SYSTEM

The purpose of this section is to illustrate and assess the
various techniques presented in this paper through obstacle
analysis of a real safety-critical system for which failure
stories have been reported [51], [28].

From the documentation available in the Inquiry Report
on the London Ambulance System [51], we reverse en-
gineered the goal graph for this system. We started from the
commonsense, high-level goal IncidentResolved and refined
it progressively. In addition, a number of goals were elicited
from explicit or implicit formulations in the Inquiry Report.
Formalizing goal specifications and domain properties and

applying formal refinement patterns [17] led us to find out
missing goals. Objects and their relationships, operations,
and domain properties emerged gradually as goals were
refined. Agents were identified as active objects among
themÐthe Computer-Aided Despatch software (CAD), the
Automatic Vehicle Location System (AVLS), the resource
allocator (RA), the control assistant who handles emergency
calls (CA), the radio operator, the communication infra-
structure, the station printer, the mobile data terminal
(MDT), and the ambulance crew. Goal refinement termi-
nated when requirements assigned to the CAD and assump-
tions assigned to the agents in the environment were
obtained as terminal goals. Figs. 10, 11, and 12 provide
excerpts from the goal structure. Note the importance of
Accuracy goals (bottom of Fig. 10 and Fig. 12).

Obstacles were then derived systematically for each
terminal goal. Many of them were formalized; a mix of
regression, obstruction patterns and informal heuristics
from Section 5 were used. We then compared the list of
potential obstacles thereby obtained with the scenarios that
actually occurred during the two system failures in
October-November 1992. While our obstacles cover the
various problems that occured during those failures
(notably, Inaccuracy problems), they also cover many other
problems that could (but did not) occurÐsee the compar-
ison tables below. Finally, we explored the space of possible
resolutions by application of the strategies discussed in
Section 6.

7.1 Obstacle Generation

Let us illustrate some of the formal derivations first.
Consider the terminal goal IncidentResolvedByIntervention
appearing at level 2 of the goal tree in Fig. 9:

Goal Achieve [IncidentResolvedByIntervention]

UnderResponsibility AmbulanceCrew

Refines IncidentResolved

FormalDef 8 a: Ambulance, inc: Incident

Intervention (a, inc) ) } Resolved (inc)

Applying the regression procedure, we negate this goal to
produce the high-level obstacle IncidentNotResolved-
ByIntervention:

} a: Ambulance, inc: Incident

Intervention (a, inc) ^ ut : Resolved (inc)

We regress this obstacle through domain properties that
provide necessary conditions for incident resolution:

Resolved (inc) )
(8 p: Patient) Injured (p, inc) !

(8 r: Resource) CriticallyNeeds (p, r) !
(9 ru: ResourceUnit) Unit (ru, r) ^ UsedOn (ru, p)

and

Resolved (inc) )
(8 p: Patient) Injured (p, inc) !

(9 h: Hospital) AdmittedAt (p, h)

Regressing the high-level obstacle above through these

two domain properties yields the following two

subobstacles:
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Obstacle CriticalCareNotGivenToPatient

FormalDef } 9 a: Ambulance, inc: Incident

Intervention (a, inc)

^ ut (9p: Patient, r: Resource)

Injured (p, inc) ^ CriticallyNeeds (p, r)

^ : (ru: ResourceUnit) Unit (ru, r) ^ UsedOn (ru, p)

and

Obstacle PatientNotAdmittedToHospital

FormalDef } 9 a: Ambulance, inc: Incident

Intervention (a, inc)

^ ut 9 p: Patient

Injured (p, inc) ^ ( : 9 h: Hospital) AdmittedAt (p, h)
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Regressing the first subobstacle CriticalCareNotGiven-

ToPatient through the domain property

Intervention (a, inc)

^ Injured (p, inc) ^ UsedOn (ru, p)

) InAmbulance (ru, a)

^ : ( 9 p0: Patient) p0 6� p ^ UsedOn (ru, p0)

yields the new subobstacle:

Obstacle InsufficientResourceInAmbulance

FormalDef } 9 a: Ambulance, inc: Incident

Intervention (a, inc)

^ ut 9 p: Patient, r: Resource

Injured (p, inc) ^ CriticallyNeeds (p, r)

^ Intervention (a, inc)

^ ( 8 ru: ResourceUnit) Unit (ru, r) !
InAmbulance (ru, a) !

(9 p0: Patient) p0 6� p ^ UsedOn (ru, p0)

By completing this refinement we obtain a new subobstacle

to produce a domain-complete set of subobstacles to

CriticalCareNotGivenToPatient:

Obstacle AvailableResourceNotUsedOnPatient

FormalDef } 9 a: Ambulance, inc: Incident

Intervention (a, inc)

^ ut 9 p: Patient, r: Resource

Injured (p, inc) ^ CriticallyNeeds (p, r)

^ Intervention (a, inc)

^ ( 9 ru: ResourceUnit) Unit (ru, r) ^ InAmbulance (ru,a)

^ : ( 9 p0: Patient) p0 6� p ^ UsedOn (ru, p0)

Further refinement of the latter subobstacle by, e.g., use of

the heuristics in Section 5.3, yields new subobstacles such as

WrongInfoAboutPatient and ResourceOutOfOrder. In the

former case, one might find out that the incident form

produced by the CAD has inaccurate or missing

information.
The complete obstacle refinement tree derived is as

follows:

IncidentNotResolvedByIntervention

 CriticalCareNotGivenToPatient

 InsufficientResourceInAmbulance

 WrongInfoAboutIncident

 ResourceUnavailable

 ResourceConfusion

 AvailableResourceNotUsedOnPatient

 WrongInfoAboutPatient

 ResourceOutOfOrder

 PatientNotAdmittedToHospital

 PatientNotTransportedToHospital

 PatientNotPutInAmbulance

 InsufficientAmbulanceCapacity

 PatientNotInAvailableAmbulance

 ...

 PatientInAmbulanceNotPortedToHospital

 PatientAtHospitalNotAdmitted

 NoBedAvailableAtHospital

 AvailableBedNotAssigned

This tree amounts to a goal-based fault tree.

Consider now the terminal goal MobilizedAmbulance-

Intervention appearing at level 3 of the goal tree in Fig. 9:

GoalAchieve [MobilizedAmbulanceIntervention]

UnderResponsibility AmbulanceCrew

Refines AmbulanceIntervention

FormalDef 8 a: Ambulance, inc: Incident

Mobilized (a, inc) ^ TimeDist (a.Loc, inc.Loc) � 11

) }�11m Intervention (a, inc)

This Achieve goal suggests instantiations

R: Mobilized (a, inc)

S: Intervention (a, inc)

Negating the goal yields a high-level obstacle:

Obstacle MobilizedAmbulanceNotInTimeAtDestination

FormalDef } 9 a: Ambulance, inc: Incident

Mobilized (a, inc) ^ TimeDist (a.Loc, inc.Loc) � 11

^ ut�11m : Intervention (a, inc)

The nonpersistence obstruction patterns in Table 1
suggest looking for domain properties taking the form

R ^ } S ) PW (P ^ S)

The latter involve a persistent condition P that must
continuously hold, from the time of R to the time of S, for
R to lead to S. Given the instantiations for R and S, two
candidates P are suggested from R to satisfy the above
persistence condition:

P1: Mobilized (a, inc)

P2: TimeDist (a.Loc, inc.Loc) < TimeDist (a.Loc, inc.Loc)

(The underline notation is used to denote the previous
state.) These candidates produce two persistence conditions
that are domain properties indeed: The former says that if a
sufficiently close ambulance is mobilized and intervenes at
the location within 11 minutes, then it remains mobilized
for that location unless it intervenes at the location; the
latter says that the time distance between the mobilized
ambulance and the destination keeps decreasing unless the
ambulance intervenes at the location. We may therefore
apply the second nonpersistence pattern in Table 1 to
generate the two following obstacles (one for each persis-
tent condition):

Obstacle AmbulanceMobilizationRetracted

FormalDef } 9a: Ambulance, inc: Incident

Mobilized (a, inc) ^ TimeDist (a.Loc, inc.Loc) � 11

^ ( : Intervention (a, inc) U�11m : Mobilized (a, inc))

and

Obstacle

MobilizedAmbulanceStoppedOrInWrongDirection

FormalDef } 9 a: Ambulance, inc: Incident

Mobilized (a, inc) ^ TimeDist (a.Loc, inc.loc) � 11

^ ( : Intervention(a, inc) U�11m

TimeDist (a.Loc, inc.Loc) � TimeDist (a.Loc, inc.Loc))

(In the above assertions, PU�dQ stands for PUQ ^ }�dQ.)
Further refinement of these formal obstacles based on

regression, patterns, and heuristics from Section 5 yield the
following obstacle OR-refinement tree:
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MobilizedAmbulanceNotInTimeAtDestination

 AmbulanceMobilization Retracted

 MobilizedAmbulanceDestinationChanged

 LocationConfusedByCrew

 MobilizedAmbulanceDestinationForgotten

 AmbulanceMobilizationCancelled

 MobilizedAmbulanceStoppedOrInWrongDirection

 AmbulanceStopped

 AmbulanceBreakdownOrAccident

 AmbulanceStoppedInTraffic

 AmbulanceInWrongDirection

 AmbulanceLost

 CrewInUnfamiliarTerritorry

 TrafficDeviation

For the terminal goal AmbulanceMobilizedFromPrintedMob
Order appearing as subgoal of the root goal AmbulanceMo-
bilized in Fig. 10, the obstacle OR-refinement tree generated
using our techniques is

MobOrderNotTakenByAmbulance

 MobOrderIntendedForUnavailableAmbulance

 MobOrderIgnored

 MobOrderTakenByOtherAmbulance

Many reported failures were in fact caused by inappropri-
ate resolution of the latter subobstacle [51].

We have compared the set of obstacles generated

systematically using our techniques, for the goal structure

in Figs. 10, 11, and 12, with the scenarios that actually

occurred during the two major system failures in October-

November 1992, as reported in [51]. While our obstacles

cover the various problems that occured during those

failures, they also cover many other potential problems that

could (but did not) occur. Tables 8 and 9 summarize the

obstacles generated for the various terminal goals in Fig. 10.

The tables provide, for each requirement/assumption, the

responsible agent assigned to it, the (sub)obstacles derived,

and features of the satisfying scenarios that occurred during

the reported system failures. Handling those obstacles

during goal-oriented requirements elaboration would have

forced requirements engineers to raise issues whose

resolution hopefully would have resulted in making such

scenarios (and others) unfeasible.

7.2 Obstacle Resolution

We now discuss various resolution strategies from Section 6
for some of the obstacles generated.

Let us first consider the obstacle MobOrderTaken-
ByOtherAmbulance seen at the end of Section 7.1 to obstruct
the goal AmbulanceMobilizedFromPrintedMobOrder.

The obstacle mitigation strategy would result in letting the
system know that the mobilization order has been taken by
the other ambulance. A mitigation goal is thus introduced
to resolve this obstacle, say,

MobilizationByOtherAmbulanceKnown.

This new goal may be refined into two subgoals, namely,

MobilizationByOtherAmbulanceSignaledToRadioOperator,

assigned to AmbulanceCrew, and

MobilizationStatusUpdated,

assigned to RadioOperator. (An alternative refinement and
assignment would consist in letting the change be signalled
to the MDT instead).

The obstacle prevention strategy would result here in the
introduction of the new goal

Avoid [AmbulanceMobilizedWithoutOrder]

A benefit of applying this strategy here is that the latter
subgoal would also contribute to the other goal

Avoid [DuplicateAmbulanceMobilization]

The new prevention goal might be under responsibility of a
human agent at the station or might be operationalized
through an automatic system preventing ambulance depar-
ture from station if the MDT is not mobilized. Such
alternatives have of course to be evaluated by the
stakeholders involved.

As suggested in Section 6.1.5, the domain transformation
strategy to resolve the same obstacle would result here in
transforming the MobOrder object so that it does not
mention the incident location anymore; the latter informa-
tion would only be given by the MDT inside the ambulance.
(Such resolution would however be fairly risky if MDT`s are
likely to break down.)

The goal substitution strategy would result in an alter-
native operationalization in which mobilization orders sent
to stations do not prescribe which particular ambulance to
mobilize but instead leave that decision to ambulance
crews. In this case, this goes together with an agent
substitution and a domain transformation (as MobOrder
objects no longer have an attribute indicating the target
ambulance).

Finally, the obstacle reduction strategy might consist here
in trying to change ambulance crew practice by a reward/
dissuasion system.

Another interesting example of obstacle reduction con-
cerns the obstacle CrewInUnfamiliarTerritorry refining
AmbulanceLost (see Section 7.1). The obstacle reduction
consists in dividing the city into geographic divisions and
allocating ambulances to incidents within the same division.
This policy was found in the original system, abandoned in
the "Pan London" system that failed and restored in the newly
designed system. This corresponds to goal substitution as
well; the goal DivisionalAmbulanceAllocated is chosen as an
alternative to the goal (PanLondon)AmbulanceAllocated
in Fig. 9.

We now illustrate the goal restoration strategy. Consider
the obstacle

MDTMobOrderIgnored

that appears at the bottom of Table 8 in Appendix 2. A low-
level restoration goal would be to generate an audible signal
to make crews aware of the mobilization order. An
alternative, higher-level resolution would consist in intro-
ducing a higher-level restoration goal

FailedMobilizationRecovered

to resolve the higher-level obstacle

AllocatedAmbulanceNotMobilized
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This goal would restore the higher-level goal Allocated

AmbulanceMobilized through the following goal refinement

tree:

FailedMobilizationRecovered

 AmbulanceMobilizationKnown

 ...

 UnrespondedAllocationRestored

 UnrespondedAllocationSignaled

 SignaledUnrespondedAllocReallocated

For the CrewPushWrongButton subobstacle in Table 9, a

restoration goal under responsibility of MDT might be to

signal an error if the pushed button is not the one expected.
Finally, we illustrate the goal deidealization strategy on the

overideal goal

8 a: Ambulance, inc: Incident

Mobilized (a, inc) ) } Intervention (a, inc)

The following obstacle was generated by a nonpersistence

pattern from Table 1:

} 9 a: Ambulance, inc: Incident

Mobilized (a, inc)

^ ( : Intervention (a, inc) U Breakdown (a) )

Using the third deidealization pattern in Table 7, we obtain

the weakened version for that goal:

8 a: Ambulance, inc: Incident

Mobilized (a, inc)

^ ( : Breakdown(a) WIntervention (a, inc) )

) } Intervention (a, inc)

The propagation will result in strengthened companion

goals like

8 inc: Incident, p: Person

Reported (inc, p) )
} 9 a: Ambulance,

Mobilized (a, inc)

^ [: Breakdown(a) WIntervention (a, inc) ]

to be refined and deidealized in turn.

7.3 Discussion

Many of the technical problems with the LAS were caused
by incomplete identification and resolution of obstacles.
These problems have to be identified and resolved at
requirements engineering time, not at programming time,
when it is too late. The techniques presented in this paper
provide formal and heuristic support for generating
high-level exceptions and their resolutions in a systematic
way. Requirements engineers can then concentrate their
efforts on assessing with stakeholders which resolution is
the most appropriate for their domain.

Regression and formal patterns were seen to help
identifying not only obstacles, but also the companion
domain properties that are necessary to derive them.

Our experience in using these techniques for the LAS
and other systems revealed a number of issues that are
worth pointing out.

. For a number of goals, obstacle identification only
involved a small number of regression stepsÐsome-
times it did not go further than just negating the
goal. For example, the obstacle to the goal
AccurateAmbulanceLocationInfo under responsibil-
ity of the AVLS agent was obtained just by negation;
regressing this negation further would have re-
quired detailed knowledge about properties of this
agent which were unavailable to us. In this case,
further regression was anyway not necessary for
obstacle resolution since it is not necessary to know
why the AVLS might fail to locate ambulances
accurately.

. Finer agent granularity requires goals to be refined
further and, thus, allows more detailed obstacles to
be derived. There is a trade-off here between the
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level of abstraction of the specification and the level
of detail of obstacle analysis; the finer-grained the
agents are, the more RE work is required, but the
more detailed obstacle analysis will be.

. Deciding when to stop obstacle refinement is not
always easy. The refinement process may be stopped
when an adequate resolution can be selected among
those generated; the risk and impact of the obstacle
should become acceptable with respect to the cost
for resolving it. More knowledge about the causes of
the obstacle, that is, its subobstacles, may result in
the generation of better resolutions.

. Domain-complete OR-refinement of obstacles as
discussed in this paper allows one to stop looking
for alternative obstacles.

. It is often the case that a new goal is introduced to
resolve several obstacles simultaneously; the new
goal actually resolves an obstacle to some higher-
level goal which might be obstructed by the many
obstacles to its subgoals. For example, the new goal
Avoid [InaccurateAmbAvailabilityInfo] may resolve
both obstacles InaccurateAmbAvailabilityOnMDT
and EncodedMDTAvailability-NotTransmitted.

This suggests an heuristics for resolution selec-
tion: favor resolution R1 over R2 if at similar cost R1
resolves more obstacles than R2.

. It is often the case that an obstacle is resolved by the
introduction of several new goalsÐe.g., a combina-
tion of reduction, mitigation, and restoration goals.

. Identifying all the goals obstructed by the same
obstacle is necessary for assessing the impact of this
obstacle and thereby for deciding on an appropriate
resolution. To support this, a cause-effect graph
could be built from the goal refinement graph, the
obstacle refinement graph, and the obstruction
relation.

. A specific combination of multiple obstacles may
sometimes increase their individual effects. This was
clearly the case during the two LAS failures. In such
cases, one should clearly favor resolutions that
address such combinations.

. Identifying the implications of an obstacle resolution
is a serious issue. A new goal introduced for
resolution may resolve critical obstacle combina-
tions; but it may also interfere with other goals in the
goal graph. A new cycle of conflict analysis [64], [49]
may therefore be required.

8 RELATED WORK

In order to get high-quality software, it is of utmost
importance to reason about exceptions and faults during
software development. There has been a lot of software
engineering research to address this for the later stages of
architectural design or implementation.

Rigorous definitions of various concepts underlying
exception handling can be found in [14], [29]Ðsuch as
specification, program correctness, exception, robustness,
failure, error, fault, fault tolerance, and redundancy.
Exception handling for modular programs structured as
hierarchies of data abstractions is also discussed in [14],

including the issues of exception detection and propaga-
tion, consistent state recovery, and masking. A failure is
defined as a deviation between the actual behavior of the
system and the one required by its specification [2], [29]. An
error is a part of the system state which leads to failure. The
cause of an error is a fault. The objective of fault-tolerance is
to avoid system failures, even in the presence of faults [40],
or to precisely define the acceptable level of system
behavior degradation when faults occur, if the former
objective is not realizable [13].

The notion of ideal fault-tolerant component provides a
basis for structuring software systems [2], [73]. A system is
viewed as a set of interacting components that receive
requests for services and produce responses. An idealized
fault-tolerant component should in general provide both
normal and exceptional responses. Three classes of excep-
tional situations are identified: interface exception, local
exception, and failure exception. Different parts of the
system are responsible for handling each class of exception.

The concepts involved in fault tolerance are put on more
formal grounds in [6], [29]. What is meant for a program to
tolerate a certain class of fault is formally defined in [6].
This paper also illustrates how fault-tolerant programs can
be systematically verified and designed. A compositional
method for designing programs that tolerate multiple fault
classes is described in [7]. The method is based on the
principle of adding detector and corrector components to
intolerant programs in a stepwise and noninterfering
manner. Various forms of fault-tolerance are discussed in
[29]; they are based on whether a program still satisfies its
safety properties, liveness properties, or both. Detection and
correction are also discussed there as the two main phases
in achieving fault tolerance.

In the database area, [9] describes language mechanisms
for handling violations of assumptions in a database. Using
such mechanisms, programs can be designed to detect and
handle exeptional facts, or the database can adjust its
constraints to tolerate the violation.

All the work reviewed above addresses the later phases of
architectural design or programming. At those stages, the
boundary between the software and its environment has
been decided and cannot be reconsidered; the requirements
specifications are postulated realistic, correct, and complete,
which is rarely the case in practice. Empirical studies have
suggested that the problem should be tackled much earlier
in the software lifecycle [55]. Our work follows that
recommendation by addressing the problem of handling
abnormal behaviors at requirements engineering time. Reason-
ing at this stage, in a goal-oriented way, provides much
more freedom on adequate ways of handling abnormal
behaviorsÐlike, e.g., producing more realistic and more
complete requirements, and/or considering alternative
requirements or alternative agent assignments that achieve
the same goals but result in different system proposals.

There are, however, clear analogies between exception
handling at program level and obstacle analysis at require-
ments level. The objective of fault-tolerance is to satisfy the
program specification despite the presence of faults,
whereas the objective of obstacle analysis is to satisfy goals
despite agent failures. Some of the obstacle resolution
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strategies are conceptually close to fault-tolerant techniques
lifted and adapted to the earlier phase of requirements
engineering. The obstacle prevention strategy introduces a
form of redundancy where a new goal is introduced to
prevent an obstacle from occurring. The obstacle anticipa-
tion substrategy is reminiscent of the fault detection and
resolution phases for fault-tolerance. (Note, however, that
one should not confuse obstacle identification, which is
performed at specification time and takes an "external" view
on the system, with obstacle detection, which is performed
at run-time by agents "inside" the system [26].) The goal
restoration and obstacle mitigation strategies also introduce
new redundant goals to ensure higher-level goals in spite of
the occurrence of obstacles. On the other hand, there are
important obstacle resolution strategies, such as goal
substitution and agent substitution, that are specific to
requirements engineering because of the freedom still left.

In their work, de Lemos et al. have also recognized the
need for moving towards the requirement analysis phase
many of the concerns that may arise during later phases of
software developmentÐparticularly, the possibility of
system faults and human errors [52], [5]. They propose an
approach based on an incremental and iterative analysis of
requirements for safety-critical systems in the context of
system faults and human errors. Their scheme is similar to
ours in that it consists of incrementally and iteratively
identifying the defects of a requirement specification being
elaborated; they use the identified defects to guide the
modification of the specification. However, no systematic
techniques are provided there for generating the possible
faults from the elaborated requirement specification and for
transforming the requirement specification so as to resolve
the identified faults. Another difference is that their scheme
is based on the progressive decomposition of system
entities while we favor goal refinement. (See also [8] for a
comparison of this work with ours.)

Some work has also been done at specification level. The
JSD method [35] alreadyrecognized theneed toanticipate and
handle errors at that level. JSD provides techniques for
handling inputs which are not valid for a given specification
(such as meaningless inputs or inputs arriving in an
unexpected order). Jackson also recognized that mistaken
valid inputs cannotbehandledbytheproposed techniques,as
they may require transformation of the whole specification,
and that such errors should be taken into account in the earlier
steps of the specification elaboration process. However, no
techniques are provided there to anticipate and resolve such
errors. Our techniques for generating and resolving obstacles
at the goal level are intended to fill that void.

Many specification languages provide constructs for
specifying software functionalities separately for normal
and abnormal cases, and then in combination. The Z logical
schema combination constructs are typical examples of
this [72].

Throughout this paper, we have tried to convince the
reader about the importance of exception handling at the
requirements engineering level and, more specifically, at
the goal level. Although there are no other formal
techniques at the goal level that we are aware of, there
has been a lot of work addressing the later stages of RE

where a detailed operational model of the software is
already available (typically under the form of state machine
specifications).

For example, the completeness techniques in [32], [33] are
aimed at checking whether the set of conditions guarding
transitions in a state machine covers all possible cases.

Model checking techniques generate counterexamples
showing that a temporal logic specification is violated by a
finite state machine specification [34], [60]. In the same vein,
planning techniques can be used to exhibit scenarios
showing the inconsistency between an abstract property
and an operational model [4], [27], [31]. One might expect
such techniques to be able to generate the scenarios
satisfying our obstacles as traces that refute a goal assertion
conjoined with the domain theory. However, we currently
envision two problems in applying these techniques
directly for our purpose. On the one hand, we want to
conduct the analysis at the goal level for reasons explained
throughout the paper; model checking requires the avail-
ability of an operational description of the target system, or
of relational specifications [38] that do not fit our higher-
level formulation of goals in terms of temporal patterns of
behaviour. On the other hand, for the purpose of resolution
we need to obtain a formal specification of the obstacle
rather than an instance-level scenario satisfying it. A
derivation calculus on more abstract specifications seems
therefore more appropriate, even though instance scenarios
generated by a tool like Nitpick [38] could provide concrete
insights for identifying obstacles to relational specifications.

Another important stream of work at the operational
specification level concerns the generation of fault trees
from a detailed operational model of the system. The
technique in [53] generates fault trees from a Petri-net
model. This technique has been adapted to generate fault
trees from a state machine model expressed in RSML [74],
[63]. Several other techniques have also been proposed to
generate other standard hazard analysis models from RSML
specifications [74], [63]. Those techniques can however be
applied only once a complete operational specification of
the system has been obtained. Furthermore, a very detailed
operational specification of the environment of the system
would be needed to identify faults caused in the environ-
ment (e.g., a detailed model of the behavior of human
operators). In contrast, our more abstract techniques are
intended to be used earlier in the requirements engineering
process when a complete specification of the system is not
yet available and alternative system boundaries are still
being explored. They allow obstacles to be generated from
partial declarative specifications that may be gradually
elicited during the obstacle identification process. (Note
that the generation of fault trees from a state machine model
is similar to a recursive application of our 1-state-back
obstacle refinement pattern.) Furthermore, goals provide a
precise entry point for starting hazard analysis.

The heuristics proposed in this paper for identifying
obstacles are somewhat related in spirit to safety require-
ments checklists [54], in that they embed experience about
known forms of obstruction. General criteria correponding
to such checklists have been identified in [39]. These criteria
cover exceptional circumstances such as unexpected inputs,
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computer errors, environmental disturbances, etc. Good RE
practices also consider checklists that cover unexpected
inputs, operator errors, and other faults or exceptional
circunstances [83]. Our heuristics are in fact closer to
HAZOP-like guidewords that can be used to elicit hazards
[54]; such guidewords are made more specific here thanks
to our requirements meta-model and specific goal classifi-
cations. More formal HAZOP-based techniques have been
proposed for forward propagation of perturbations from
input variables to output variables in operational
specifications [75].

Our work builds on Potts' paper which was the first to
introduce the notion of obstacle as a dual notion to goals
[71]. Obstacles are identified there by exploration of
scenarios of interaction between software and human
agents. This exploration is informal and based on heuristics
(some of these have been transposed to this paper, see
Section 5.4). Obstacle resolution is not studied there.

Sutcliffe et al. also build on Potts' work by proposing
additional heuristics for identifying possible exceptions and
errors in such interaction scenariosÐe.g., scenarios in
which events occur in the wrong order, or in which
incorrect information is transmitted [84]. Influencing factors
such as agent motivation and workload are also used there
to help anticipate when exceptions may occur and assign
probabilities to abnormal events. Generic requirements are
attached to exceptions to suggest possible ways of dealing
with the problem encountered. The heuristics proposed in
[84] are close in spirit to ours; their generic exception
handling requirements share the same general objective as
our obstacle resolution strategies. Their work is largely
informal and centered around the concept of scenario. It
provides no formal guidance compared with the range of
obstacle generation/resolution techniques that can be
precisely defined through rigorous reasoning on declarative
specifications of goals.

Deontic logics are formalisms that allow one to specify
and reason about normal and abnormal situations by means
of modal operators such as permission and obligation [62].
Such logics have been proposed for system specification,
allowing one to specify what should happen if an abnormal
situation occurs [56], [44]. However, such approaches do
not provide any guidance for elaborating the requirements,
in particular the requirements dealing with the abnormal
situations. In contrast, our approach for resolving obstacles
is based on goals which serve as a rationale for introducing
new requirements to deal with the abnormal situations.

The principle of pattern-directed specification and
reasoning, as we applied it in [17] for formal goal
refinement and in this paper for obstacle refinement, has
gained recent interest in the formal analysis community. For
example, Dwyer et al. discuss their experience in building
and reusing a rich library of temporal patterns that codify in
high-level terms property specifications to be input to
analysis tools such as model checkers [20].

Our initial ideas were presented in [48] which this
paper significantly expands onÐnotably, by a full treat-
ment of obstacle completeness and AND/OR refinement, a
much more extensive set of patterns, many more heur-
istics, more resolution strategies, and the application to a

real safety-critical system. We are also investigating an
alternative, dynamic approach in which system deviations
from requirements/assumptions are monitored and re-
conciled at runtime [26].

9 CONCLUSION

In order to get high-quality software, it is of utmost
importance to reason about agent behavior during require-
ments elaborationÐnot only software agents, but also the
agents in the environment like devices, operators, users, etc.
This point has been recently reempahsized in the context of
requirements engineering [81].

The key principle underlying this paper is that obstacle
analysis needs to be done as early as possible in the
requirements engineering process, that is, at the goal level.
The earlier such analysis is started, the more freedom is left
for resolving the obstacles. Moreover, goals provide a
precise entry point for starting analysis in a more focussed
way like, e.g., the construction of fault-trees or threat-trees
from negated goals.

Another important message is our preference for a
constructive approach to requirements elaboration, over a
posteriori analysis of possibly poor requirements. It is better
to construct hopefully complete, realistic, and achievable
requirements than to correct poor ones. In the process
discussed in this paper, goal-oriented elaboration of
requirements and systematic obstacle analysis proceed
hand-in-hand.

Various formal and heuristic techniques were presented
for obstacle generation and refinement from goal
specifications and domain properties; the generation of
obstacle resolutions is achieved through various strategies
to eliminate, reduce, or tolerate the obstacle. Domain
knowledge was seen to play an important role in some of
these techniques; however, as we pointed out, such knowl-
edge may be elicited gradually during obstacle analysis.

The techniques were applied to a significant safety-
critical system for which failures have been reported; this
provided some basis for assessing them and raising
important questions and open issues. Our techniques also
allowed us to formally generate the 17 obstacles informally
identified in [71] for the meeting scheduler benchmark [25],
plus a dozen more. The space of resolutions was even
broader. Within a potentially large space of obstacles and
resolutions, the requirements engineer has to decide which
ones are meaningful to the system considered and need to
receive careful attention.

When to apply such or such identification/resolution
technique may depend on the domain, on the application in
this domain, on the kind of obstacle, on the severity of its
consequences, on the likelihood of its occurrence, and on
the cost of its resolution. Much exciting work remains to be
done with those respects.

We hope to have convinced the reader through the
variety of examples given that the techniques proposed are
general, systematic, and effective in generating and resol-
ving subtle obstacles. Our plan is to integrate these
techniques in the KAOS/GRAIL environment [18] in the
near future so that large-scale experimentation on industrial
projects from our tech transfer institute can take place.
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