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Abstract—Augmented/virtual reality (AR/VR) technologies can
be deployed in a household environment for applications such as
checking the weather or traffic reports, watching a summary of
news, or attending classes. Since AR/VR applications are highly
delay sensitive, delivering these types of reports in maximum
quality could be very challenging. In this paper, we consider
that users go through a series of AR/VR experience units that
can be delivered at different experience quality levels. In order
to maximize the quality of the experience while minimizing the
cost of delivering it, we aim to predict the users’ behavior
in the home and the experiences they are interested in at
specific moments in time. We describe a deep learning based
technique to predict the users’ requests from AR/VR devices
and optimize the local caching of experience units. We evaluate
the performance of the proposed technique on two real-world
datasets and compare our results with other baselines. Our results
show that predicting users’ requests can improve the quality of
experience and decrease the cost of delivery.

Index Terms—Intelligent Agents, Predictive Caching, Deep
Learning, Long Short Term Memory, Augmented/Virtual Reality

I. INTRODUCTION

Augmented Reality and Virtual Reality (AR/VR) technolo-
gies recently made significant progress in several application
domains where the specific combination of resources and
requirements were favorable to their deployment. For instance,
in pilot training, computational and network resources can be
brought to ensure a high quality experience. In contrast, in
casual gaming, the resources are modest, but the expectations
towards the AR/VR experience are significantly lower. AR/VR
technologies had seen much less penetration in fields where
there is a mismatch between the expectation, the quality of
the experience and the amount of resources available.

The focus of this paper is the decisions that need to be
taken by the AR/VR controller in order to deliver the best
overall experience quality to the user. Intuitively, in order to
deliver a high-quality experience, the device needs to have
sufficient computational resources, display capabilities, and
access to the necessary data. There are several ways in which
this data can be accessed: locally (having been cached on the
local device), downloaded from the network, or computed (for
instance, through local rendering).

It would appear that the ideal situation is one where every
device has a locally cached copy of the data associated with

the highest experience quality, for all possible experiences the
user might ask. However, this is a very expensive strategy in
terms of bandwidth and energy expenditure. A more intelligent
strategy would be to predict what experience will the user
request, from what device and when, and cache the data
necessary to deliver that experience on the device.

In this work, we are considering the AR/VR for daily
use within a household environment, for applications ranging
from checking news, weather or traffic reports to attending
classes. The users in an AR/VR-enabled home go through
a series of interactions split into experience units (a certain
short interaction with the AR/VR system), delivered through
AR/VR devices. Each unit can be delivered at a wide range
of experience quality levels. For instance, a weather forecast
can be delivered as a short text message, or as a dual-4K,
immersive visualization. Delivering an experience requires
both networking and computing power. The experience quality
is limited by the (1) capabilities of the devices through which
it is delivered and by the (2) signal limitations such as network
delay and bandwidth limitations.

In this paper, we propose an AR/VR controller that is
responsible for making decisions about the forms and quality
levels at which the experiences are delivered, as well as
the background actions, such as predictive caching and pre-
rendering of these experiences. The AR/VR controller learns
models of the user behavior that allows it to predict the expe-
riences the user will request and adjusts the caching strategy
accordingly. One of the major challenges for performing re-
search on AR/VR in a household environment is that relatively
few training data is available. To mitigate this problem, we
start from two real-world smart home datasets that describe
the daily activities of residents. From this data, we extrapolate
into synthetic AR/VR datasets that probabilistically associate
relevant AR/VR experiences with specific activities.

The remainder of this paper is organized as follows. Related
work is discussed in Section II. The problem of delivering
the best AR/VR experience is formulated as an optimization
problem in Section III. We consider the challenges of modeling
user behavior with regards to the AR/VR experiences in
Section IV. The suggested predictive caching methods are
described in section V. Section VI presents the results of the
experiments and section VII concludes the paper.



II. RELATED WORK

The work described in this paper is related to several active
research areas in computer networking.
Content/information centric networking (CCN/ICN). The
aim is to create a better quality for Internet services in terms
of communication bandwidth and users’s expectation for a
high-speed delivery. In general, CCN allows us to optimize
bandwidth utilization and decrease delivery delay by using
a caching function inside the intermediate network nodes. A
possible approach is for the nodes to cache all content within
the network, and in case of any request, they can respond
to the user from their sources [1]. However, unnecessary
caching increases the network cost, bandwidth utilization, and
storage consumption significantly [2]. Thus, how to design an
appropriate caching strategy, reducing caching redundancy and
increasing cache hit is an active research area [3]
Content caching in AR/VR. In AR/VR applications, deciding
what to cache and where to cache are crucial problems [4] and
as Sukhmani et al. [5] argues Quality of Experience (QoE)
needs to be merged with Quality of Service (QoS).

J. Chakareski [6] designed an optimization framework to
maximize the reward that a multi-cellular system can earn
when serving AR/VR users by enabling the base stations to se-
lect cooperative caching/streaming/edge-computing strategies.
Narayanan et al. [7] proposed a seq2seq modeling approach
for cache predicting in advance of user request to increase
the number of cache hits. Deep Learning also can be useful
in content caching optimization with minimizing computation
and consequently, delay in the delivery phase [8].

Zhong et al. [9] presented a deep reinforcement learning
based algorithm upon Wolpertinger architecture that has better
long-term cache hit rates in contrast to LRU, LFU (Least
Frequently Used) and FIFO (First In First Out) caching
policies.
User modeling. Efficient delivery of experiences requires us
to model the user to predict his/her future requests. Real
data of users’ everyday lives can improve user modelings [10]
and observed sample results can be used to make predictions
about a user in the context of predictive statistical models.
However, such predictions could be very challenging due to
the time variation, inter dependency, and periodicity in human
behavior. Kurashima et al. [11] proposed a statistical model
approach that models these complexities of human behavior.

One of the biggest challenges from the signal processing
and machine-learning side remains the generalizability over
households [12]. While training for an individual household
is easily possible in a lab setup, this approach is not scal-
able to a real-world scenario with thousands of households
and more. A successful approach for generalizability has to
consider environmental/climate parameters, building layout,
sensor placement, and the behavior of the user.

III. PROBLEM STATEMENT

In this paper, we consider a household scenario where
the customers use devices to request AR/VR experiences
including (a) summary of the news, (b) weather report, (c)

TABLE I: Relative quality and caching cost levels of experience
units and data chunk size for a 15 to 20 second experience unit.

Type Size of exp.
unit

Relative
quality

Relative
cost

4K video 32.7 MB 1.00 205.66
HD video (1080p) 10.6MB 0.90 66.67

low res video MKV 483 KB 0.81 3.04
3GP low-res QCIF 159 KB 0.73 1.00

sound only - 0.66 -
text only - 0.59 -

3D model animation 2MB-20MB 1.00 125.79

parking availability report, (d) traffic report and (e) food
recipe. Statistically, a given type of experience is more likely
to be accessed at a specific time. For instance, a recipe might
be more likely to be accessed at dinner preparation time. We
will consider all experiences split into “units of experiences”
which are approximately 15 to 20 seconds long.

Every experience can be delivered at different levels of
quality. Table I (column relative quality) shows the quality
levels we are considering in this paper, and the size of the
data chunk necessary to deliver the experience unit.

We consider these items in order to define the quality
of the experience: user satisfaction (accurate and on time
response), less bandwidth utilization (caching useful and more
probable requests instead of caching the requests which are
not required). It is common to rate the user satisfaction by
objective metrics such as video definition (video quality),
fluency (interruptions), response speed (initial delay) [13].
According to this, we assess the “user satisfaction” by the
score defined as below:

score(ei) = d
d(ei)
d · df (f (ei)) ·max score (1)

in which dd is the discount factor for missing requests
(delay), d(ei) = size of the content

external bandwidth for experience ei, and
size of the content is the content size in MB. Also, df is
the discount factor of quality of each format and max score
is the value for the maximum quality.

We calculate the cost of caching as cost = nc ·rc, where nc
is the number of cached items and rc is the relative cost of each
type of content which are available in Table I (column relative
cost). Since the size of sound-only and text-only formats are
very small, we do not consider cache cost for these type of
contents. We obtain relative cost by size

min size in which size is
the content size for a 15 to 20 second experience unit based
on type, and min size is the minimum content size which is
for 3GP low-res QCIF type and is equal to 159KB.

We define the final score as a function of user satisfaction
and caching cost:

final score = α · score − β · cost (2)

where α and β are coefficients for score and cost value,
respectively.

IV. USER MODELING

Our objective is to maximize the quality of the AR/VR
experiences for the user, by predicting the time when certain



experiences will be requested and using this information for
efficient predictive caching. The prediction of the requests is
ultimately rooted in the regularities of everyday life.

One of the challenges of such an approach is the lack of
existing datasets for AR/VR requests. As the AR/VR systems
are just starting to emerge, no extensive data is yet available.
However, the design of the system would need exactly such
data to learn the user model. To solve this chicken/egg problem
we propose to generate training data starting from real-world
user behavior datasets that had been acquired in homes without
AR/VR components and augmenting/extending these datasets
with logical assumptions about when the user’s would have
requested experiences, should they have been available.

A. Real-world datasets of user behavior in homes

In the last several years, the emergence of sensor-augmented
smart homes made it possible to acquire datasets that track cer-
tain aspects of the inhabitants’ behavior. In general, tracking
the personal life of users opens serious privacy issues. How-
ever, several projects captured and made publicly anonymized
datasets of human behavior in the home, tracking a project-
specific collection of actions. While these actions might not
directly map to AR/VR experience requests, they can anchor
the generation of training data.

In the work described in this paper, we started from two
publicly available datasets:
Dataset 1: The dataset [14] describes the activities of a 26-
year-old man in a smart home with 14 state-change sensors
installed at doors, cupboards, the refrigerator, and the toilet
flush. Sensors were left unattended, collecting data for 28 days
in the apartment. Eight annotated activities of daily living
(ADLs) were Shave, Brush teeth, Get a drink, Get dressed,
Prepare for leaving, Prepare brunch and Prepare dinner.
Dataset 2: This dataset [15] collected by CASAS research
group describes the activities of 2 residents in an apartment for
57 days. This dataset contains sensor data that was collected
in the home of a volunteer adult couple. Residents R1 and
R2 can do different tasks in the house. Annotated actions in
this dataset includes Night Wandering, Bed to toilet, R1 wake,
R2 wake, R2 take medicine, Breakfast, Leave home, Lunch,
Dinner, R1 sleep, R2 sleep, R1 work in office and Laundry.

B. Creating realistic synthetic datasets of AR/VR experience
requests

As the amount of existing datasets for human behavior is
limited, it is desirable to extend this collection of datasets
with synthetically generated datasets, that allow us to train
and validate the proposed algorithms in scenarios that are
predictive to the way they will be used in the real world.

Thus, instead of randomly generating or hand engineering
specific scenarios (both would lead to unrealistic data) we
decided to generate our scenarios by matching the statistical
properties of the real-world datasets. A further problem is
that our datasets do not have entries for the specific AR/VR
experiences we are considering (but they have entries for
experiences that correlate with them). To solve this problem,

TABLE II: Mapping approach from daily task to daily request of
the users for dataset 1 (top) and dataset 2 (bottom)

task (Dataset 1) corresponding request
Shave, Brush teeth, Get a drink Summary of news
Get dressed, Prepare for leaving (30% of the
times)

Weather report

Prepare for leaving (50% of the times) Traffic report
Prepare for leaving (20% of the times) Parking status
Prepare brunch, Prepare dinner Recipe

task (Dataset 2) corresponding request
R1 wake, R2 wake Summary of news
Breakfast (70% of the times), Leave home
(30% of the times)

Weather report

Leave home (50% of the times) Traffic report
Leave home (20% of the times) Parking status
Breakfast (30% of the times), Lunch, Dinner Recipe

we probabilistically associated certain experiences with ac-
tivities that are present in the dataset using common-sense
associations. For instance, the user is likely to ask for a recipe
while preparing dinner. These mappings are shown in the top
and bottom part of Table II. We divide the dataset to train,
validation and test sets.

V. A PREDICTIVE AGENT FOR AR/VR CACHING

In this section, we describe our design for a predictive
AR/VR controller which, knowing the preferences and habits
of the user, makes intelligent decisions about what to cache.
Implemented caching strategies for the proposed AR/VR con-
troller are as follows1:

A. Probability-based caching

We define 24 intervals with the length of 1-hour for each
day in the datasets. The proposed algorithm is based on
calculating the probability of a specific request in a specific
time interval by counting the occurrences of the data in the
training set. Accordingly, requests with a probability higher
than a threshold are cached for each interval in each day. We
validate this approach on the different threshold for the number
of request occurrence in a certain time interval, then the best
result on the validation dataset is applied to the test dataset.

B. LSTM-based caching

The LSTM-based caching algorithm we proposed is based
on training a Long Short Term Memory (LSTM) [16] recur-
rent neural network on the training dataset. The LSTM model
is shown in Fig. 1.

Input data is one day requests. Since we do not have many
recorded requests in a day, we divide a day to 24 intervals
and each has a fixed list of requests shown with 0s and
1s. We have N different type of requests: {r1, r2, ..., rN}.
The data for each interval is a vector x of length N and
N is five in our experiments (Summary of news, Weather
report, Parking status, Traffic report, Food recipe). The value
of element xi(i ∈ {1, 2, ..., N}) is 1 if the request ri has
occurred in the interval, otherwise its value is 0. Furthermore,

1The code is available here: https://github.com/sharare90/AR-VR-Research
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Fig. 1: The neural network used in the LSTM-based caching
algorithm.

TABLE III: Selected values for hyperparameters of majority vote-
based prediction.

Hyperparameters Values
learning rate 0.001, 0.01

number of epochs 225, 300, 500, 1000
number of dense layers 2, 3
regularization method dropout (0.0, 0.2, 0.5, 0.8), l1 and l2

the number of classes equals the number of valid requests. The
network processes each interval vector at a time and outputs
the occurrence probabilities of requests for the next interval
(Fig. 1).

C. Majority vote-based caching

Majority voting is one of the basic prediction/classification
methods in which multiple classifiers are used in order to
predict the label based on the majority vote of the classi-
fiers [17], [18]. We create 15 different LSTM models by
altering hyperparameters such as learning rate, number of
epochs, number of layers, or changing regularization method
(dropout or l1 or l2 regularization), initial weights, and etc.
See Table III for majority voting hyperparameters. After that
we predict the label value: ŷ = mode{ŷ1, ŷ2, ..., ŷ15}.

VI. EXPERIMENTS

In this series of experiments, we compared the three pre-
dictive caching algorithms that we propose to three baseline
algorithms. Thus in the remainder of this section, we refer to
the following five caching algorithms:

• Probability-based caching - as described in Section V-A.
• LSTM-based caching - as described in Section V-B.
• Majority vote-based caching - as described in Sec-

tion V-C.
• Oracle: a caching algorithm where we assume that the

algorithm can predict the requests with 100% accuracy.
• Cache everything: an algorithm that caches every possible

experience.
• Random caching: this strategy caches a randomly chosen

request from the pool of possible requests considering no
prior knowledge.

TABLE IV: F1-score of the prediction, using the LSTM model (time
interval length = 1 hour) on dataset 1 (top) and dataset 2 (bottom)

Results for dataset 1 Train Validation Test
Precision 0.69 0.62 0.52

Recall 0.54 0.52 0.31
F1-Score 0.61 0.54 0.39

Results for dataset 2 Train Validation Test
Precision 0.72 0.54 0.54

Recall 0.55 0.43 0.46
F1-Score 0.62 0.47 0.50
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Fig. 2: The F1-score of the prediction, using the LSTM model on
dataset 1 (left) and dataset 2 (right) after 225 epochs (time interval
length = 1 hour).

We are interested in two performance metrics:
• Prediction accuracy as measured by the F1-score for

training phase on different datasets.
• The final score, that combines the cost and user’s sat-

isfaction (Equation 2). The less latency that the agent
has, the more satisfied the user would be. Also, the more
optimized caching, the less cost the predictive model has.

A. Experimental results for training the predictive caching
agent

The experimental results for trained LSTM based predictive
agent are shown in Table IV for dataset 1 and 2. To prevent
overfitting, the training was stopped after 225 epochs. Since
the number of 0s is much more than the number of 1s in
the LSTM input matrix, accuracy could be very high even if
the network predict all of the 1s as 0s. Therefore, we report
our results by F1-score alongside with precision and recall to
handle datasets unbalances in terms of requests.

Fig. 2 shows the F1-score on the training and validation
data for dataset 1 (left) and dataset 2 (right). Fig. 3 shows
that by increasing the number of days of data collection in a
real situation, the F1-score on validation is approaching the
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Fig. 3: Train and validation F1-score by increasing the size of data.



TABLE V: Caching approaches final scaled score (Eq 2) results for
different delivery formats and with α = β = 1.

Caching
Algorithm

4K
video

HD video
(1080p)

low-res
video MKV

3D model
animation

Dataset 1
Oracle 0.89 0.60 0.30 0.93

Cache everything 0.0 0.31 0.28 0.39
Random 0.06 0.32 0.29 0.39

Probability based 0.40 0.44 0.29 0.62
LSTM based 0.43 0.45 0.29 0.64

Majority Voting 0.37 0.45 0.29 0.63
Dataset 2

Oracle 0.97 0.62 0.30 0.98
Cache everything 0.0 0.31 0.28 0.39

Random 0.04 0.30 0.29 0.40
Probability based 0.62 0.51 0.29 0.76

LSTM based 0.60 0.50 0.29 0.75
Majority Voting 0.71 0.54 0.29 0.80

train F1-score. Therefore, the current gap between train F1-
score and validation F1-score is a variance error which can
get decreased by training over a bigger dataset. This could be
a good direction for future work.

B. Experimental results for the overall agent

If the user sends a request and we have the requested
content cached in the system, we increment the score by using
Equation 1 and the d(ei) = 0 since there is no delay in this
case. However, if the user has a request and the content has not
been cached in the system, we need to load it with a delay.
The delay depends on the size of the content and external
bandwidth. We consider external bandwidth = 100Mbps
and max score = 1 for the experiments in this paper. Caching
cost is another item which we need to evaluate as the storage
could be limited. In order to facilitate the interpretation of
the results for each algorithm, we scaled the satisfaction score
and caching cost to a number between zero and one. Then we
calculate final score (Table V). The final score for 3GP low-
res QCIF is zero, since it is the minimum quality for delivery.

It can be inferred from the results in this table that LSTM-
based and majority vote-based approaches outperform other
approaches in order to optimize caching and have the max-
imum quality of delivery. This improvement is increasingly
significant for higher quality of delivery format.

VII. CONCLUSIONS

In this paper, we proposed an approach to perform a local
caching of AR/VR experiences for a household scenario.
We investigated an approach based on the probability of the
individual accesses in specific time slots and an approach
that predicts based on the time series of accesses using an
LSTM recurrent deep neural network. We also investigated an
approach that performs majority voting over multiple LSTM
networks with a range of hyperparameters.

To verify the performance of these algorithms, we compared
them against several baselines. We found that the majority
voting over LSTMs approach yielded the performance that
best balances the cost of caching with the perceived experience

value. However, we also found that this performance could be
significantly improved if more real-world data is available.
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