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Abstract—This paper focuses on the application of wireless
sensor networks (WSNs) with unmanned aerial vehicle (UAV)
for animal tracking problem. The goal of this application is
to monitor the target animals in large wild areas without
any attachment devices. The WSN includes clusters of sensor
nodes and a single UAV that acts as a mobile sink and visits
the clusters. We propose a model predictive control (MPC)
method that is used to guide the UAV in planning its path. We
first build a prediction model to learn the animal appearance
patterns from the sensed historical data. Then, based on the
real-time predicted animal distributions, we introduce a path
planning approach for the UAV that reduces message delay
by maximizing the collected rewards. The experimental results
show that our approach outperforms the greedy and traveling
salesmen problem-based path planning heuristics in terms of
collected value of information. We also discuss the results of other
performance metrics involving message delay and percentage of
events collected.

Index Terms—unmanned aerial vehicle; UAV; animal moni-
toring; path planning; distribution prediction.

I. INTRODUCTION

The ability to track the movement of animals in wild areas
can offer many benefits to research and conservation efforts.
By understanding the migration patterns of animals we can
identify the areas that are most critical for conservation and
we can track the effects of climate change and presence of
humans or non-native species. By simultaneously tracking
multiple species of animals we can investigate their relation-
ship and inter-dependencies such as contention for resources.

Over the years, several studies proposed the use of wireless
sensor networks (WSNs) for animal tracking. Most studies
are based on mounting the sensors to the animals on special
collars [1], [2] and require the sensors to transmit the collected
data to a sink node. The advantage of this approach is
collecting various information from the tracked animals such
as location, body temperature, and heart rate. However, this
approach is applicable to only certain species (e.g.,large and
terrestrial animals). Moreover, mounting of the sensors is a
difficult and expensive operation and the collars are intrusive
and they might change the behavior of the animals. An
alternative to this approach is to use sensors deployed in
the terrain to detect and localize the animals [3], [4]. This
can be accomplished through imaging sensors with built-
in recognition facilities [5], [6], passive infrared sensors for
night-time localization, or a combination of acoustic, seismic
and ultrasonic sensors [7], [8].

This paper focuses on the animal monitoring problem in
large wild areas. We consider large wildlife areas with sensors
distributed to detect and recognize the wildlife appearance [9].
We consider the usage of sensors that detect animals in their
vicinity and create event messages which contain information
such as the detected type and location of the animal. The
sensors are distributed and clustered based on virtual grids.
Each cluster has a cluster head which is used to collect the
events from sensors via hop-by-hop wireless communication
and transmit to a UAV. The UAV acts as a mobile sink.

The goal of the UAV is to collect the event messages as
soon as possible in order to maximize the value of information
(VoI) [10]. If the UAV prioritizes well its visits, it can gather
very valuable information. For instance, it can directly monitor
animals and even take their picture [9]. Thus, the performance
of the application highly relies on the UAV’s path planning.

Our previous works [9], [11] define a mathematical metric
for the VoI of the collected data as an exponential function
that decays as time passes, and propose a Markov Decision
Process (MDP)-based path planning for finding species such
as zebras and leopards. In this paper we propose a model
predictive control (MPC) method to help the UAV plan its
path. First, we train a neural network that learns the animal
appearance patterns from the collected historical data. Second,
we apply the trained model to predict the future probability
distribution of animal appearance. Finally, we propose a trav-
eling salesman problem (TSP)-based path planning approach
for the UAV using the real-time predicted animal distribution
(TSP-D). Even though we focus on the animal monitoring
application, the proposed MPC method is applicable to any
time-sensitive data collection applications where historical
data can be learned by our predictive model.

We evaluate the performance of the proposed predictive
model and the path planning approach using a dataset [12]
that includes traces of groups of white backed, lappet-faced
vultures in Namibia. We compare the TSP-D path planning
approach against greedy and Naive TSP heuristics and show
that it outperforms other approaches in terms of VoI, message
delay, and the percentage of events collected.

II. RELATED WORK

Many tracking technologies have been proposed and im-
plemented by engineers and wildlife researchers. One main
technology of animal monitoring is the wearable GPS-based



animal tracking devices. Juang et al. [1] present their ZebraNet
project in which a low-power wireless system is built for
position tracking of zebras. Their goal is to investigate system
design ideas, wireless communication protocols, and how
sensor specifications such as battery lifetime and weight limit
the system performance. Similar wearable GPS devices are
used to gather animal movement data in [2], [13].

Camera sensor networks emerge in recent years due to
the advancements in hardware technology [11]. They greatly
promote wild-life research by providing much more ani-
mal related information such as image, sound and video.
He et al. [6] develop integrated camera-sensor networking
systems for collaborative wildlife monitoring and tracking.
They deploy an eMammal cyber infrastructure to analyze and
manage wildlife monitoring data. Animal species recognition
is accomplished by using some well-trained machine learning
models. Similar studies based on camera sensor networks are
conducted in [14], [15].

Mobile sinks such as UAVs provide great advantages in
WSNs. They are flexible to move to specific areas of WSNs
for different tasks. The common goal of path planning for
mobile sinks is to maximize the information collected while
minimizing the travel time. Li et al. [16] propose a path
planning strategy for the UAV/UGV based on the genetic
algorithm. Their goal is to build a ground map and plan an
efficient path for disaster rescue. A local rolling optimization
is applied to improve the path planing results. Cheng et al. [17]
propose a TSP-based path planning approach for a mobile
sink. The mobile sink visits a set of virtual points which
are actually overlapping areas of communication ranges of
sensors. Contribution values are assigned to virtual points
for path planning of UAV. Sangare et al. [18] propose a
MDP-based path planning approach for a Mobile Energy
Station (MES) to recharge wireless-powered sensors. Sensor’s
energy is digitized into different levels such that different
permutations of energy levels can be treated as network states
in MDP. Our path planning is different from these models as
it is based on the predicted animal distribution.

III. ANIMAL MONITORING SYSTEM

A. Network model

In this application, the objective is to monitor and track
specific animals’ appearance. The sensor nodes are deployed
in the target wild area while a UAV operates as a mobile sink
node for data collection.

We divide the whole area into virtual grids. In this scenario,
the sensors that in a particular grid are considered as a cluster
and one of them acts as the cluster head. Fig. 1 shows a
snapshot of the divided virtual grids. The UAV visits cluster
heads for data collection. After visiting a virtual grid, for
instance Grid 6 in Fig. 1, the UAV can visit one of the
neighboring grids or just hover over in the same grid.

1) Sensor nodes: As specified in [9], the sensors are
responsible for animal monitoring and sending the sensed
events to the cluster head. Sensor nodes are deployed by
uniform random distribution in the large observation area. The

Fig. 1. The movement choices of the UAV when it flies over Grid 6.

sensors inside a virtual grid form a cluster and the cluster head
is selected periodically. Sensors can communicate with the
cluster head via direct or hop-by-hop wireless communication.
A sensor creates a new event message when it detects an ani-
mal. Cluster head is responsible for receiving event messages
from other sensors and then reporting all the event data to the
UAV when the UAV comes into its transmission range.

2) Unmanned Aerial Vehicle: In this network model, the
UAV is used as an autonomous mobile sink for gathering time-
sensitive information. The usage of UAV brings advantages
such as movement flexibility and high speed. Moreover, the
UAV not only overcomes the geographical challenge but also
has minimal effects on animals. Thus, our model is based on
using a single UAV to collect data from the ground sensors,
more specifically, the cluster heads of the virtual grids.

B. Animal distribution prediction

Directly detecting animals using UAV (e.g., using attached
camera) in a large wild area is a hard problem. On the other
hand, when we have sensed historical data from the target
area, we can analyze the animals’ movement patterns.

Fig. 2 shows examples of animal appearance pattern in
two different virtual grids. As we can see, animals usually
show up at specific hours in a day and a similar pattern is
repeated every day. We start to build a model with the goal
of learning the animal appearance in each virtual grid based
on the observed regularities.

First, we divide a day into time-steps {t0, t1, ...tM} such
that ti means the ith time-step of a day. Second, we count the
number of detected animals at each time-step for every virtual
grid. Fig. 3 shows the input and output that is used to train the
predictive model. For time-step ti, the input data xi consists
of two parts: di and ei. di represents potential affecting factors
such as time-step in the day, month. ei represents number of
animals detected in each virtual grid at time-step ti. Given
the input data xi, we use a fully connected feed-forward
neural network (Fig. 4) to predict the output data y′i which is
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Fig. 2. Animal appearance patterns in two virtual grids.

the number of animals in each virtual grid in the next time-
step. We define the cost as the mean squared error between
predicted y′i and the ground-truth yi and minimize it using
stochastic gradient descent.

With the trained model, we can predict the animal distribu-
tions by inputting the predicted distribution of the previous
time-step. In addition, as the UAV visits some grids, the
corresponding real number of animals in those virtual grids
can be updated, i.e., a partially observed xi+1 can be obtained
by updating some values of y′i. Then, this xi+1 is used as input
to predict the next time step distribution y′i+1. It is important
to point out that with this model, we can repeat the prediction
for an arbitrary number of time steps without accessing to real
observations. However, as the time goes, the prediction error
compounds and the accuracy may drop.

C. Path planning with predicted animal distribution

In this application, we treat animal detection as an event
and the corresponding event message should be collected
as soon as possible. To enforce this desire, we define the
metric value of information (VoI) to evaluate the importance
of the collected information by the UAV. VoI is defined as the

Fig. 3. Input and output data structure.

Fig. 4. Learning model structure.

exponential decay function

FV oI(t) = A× exp{−B ∗ (tcollect − tinitial)}, (1)

where A is the initial value of the event while B is the
decay factor. Under this formulation, the objective of the path
planning is to maximize the discounted values collected.

Given such a scenario, we propose a path planning approach
based on the predicted animal distributions for each grid.
Given a time period [t, t+T ] (where T is a hyper-parameter),
finding the optimal path is similar to solving a traveling
salesman problem (TSP) while the goal is to maximize the
estimated rewards. We name our proposed path planning
approach as TSP-D where “D” represents the continuously
predicted animal distribution.

We implement a tree structure path exploration search to
find the optimal path. As shown in Fig. 5, the numbers inside
the tree nodes represent the indices of the virtual grids while
the edges between them represent the travelling time for the
UAV to a neighboring grid. This traveling time information
depends on the area of sensor deployment.

Note that TSP is an NP-hard problem. But with the tree
structure search, we can apply branch-and-cut strategy to
reduce its complexity. In Fig. 5, grids are not connected to
all other grids. Instead, they are only connected to a subset
of them where the nodes are neighbors and it is possible for
the UAV to fly to that neighbor (at most 9, including self). In
addition, due to specific characteristics of animal movements,
the distribution matrix is sparse. This allows us to further

Fig. 5. Tree structure of path exploration.



prune the tree. More specifically, for each layer in the tree,
candidate paths that end in the same virtual grid and contain
the same event IDs collected, are merged into one path with
the maximum values. Finally, the candidate path with the
maximum value is chosen by the UAV. The pseudo code for
the path planning approach is given in Algorithm 1.

Algorithm 1: Path planning of UAV

1 Travel time look up table:
2 t table = d table/speedUAV

3 Pre-trained distribution prediction model Model
4 Current time-step t
5 Current animal distribution distcur
6 Path planning lookahead time T
7 Event creation period ∆t
8 Function CutBranch(CandidatePaths, t):
9 for PN in CandidatePaths do

10 if t - PN.time > maxtime then
11 /* max time to neighbors from t table */
12 remove(PN)
13 end
14 if Duplicate(PNs.id and PNs.events) then
15 KeepMaxOne(PNs)
16 end
17 end
18 end
19 CandidatePaths = []
20 while t < t + T do
21 if t%∆t == 0 then
22 distcur = Model.predict(distcur, t)
23 CreateEvents(distcur, t)
24 end
25 List = []
26 for PN in CandidatePaths do
27 /* PN: PathNode, last grid id of a path */
28 Candidate =

IsArrivalNeighbor(PN, t table)
29 List.add(Candidate)
30 end
31 UpdateDist(distcur) ← List
32 UpdatePath(CandidatePaths)← List
33 CutBranch(CandidatePaths, t)
34 t = t + 1
35 end
36 Path = MaxRewardPath(CandidatePaths)
37 return NextGrid(Path)

After visiting a grid, the UAV repeats the path planning
algorithm to decide the next visiting grid. With the updated
x (by the observation from current grid) and the lookahead
parameter T , algorithm 1 returns the next visiting grid.

IV. EXPERIMENTAL STUDY

A. Simulation environment

The proposed network model and the UAV path planning
approach are evaluated in this section.

1) Dataset and UAV: We test our models with a real-world
vultures dataset [12] which contains the movement traces of
several groups of white backed & lappet-faced vultures in
Namibia. The GPS traces are recorded with a sampling time
interval of 10 minutes everyday from 6am to 6pm in years
2008 to 2010. A single UAV with a fixed speed of 50km/h
is simulated for event data collection from cluster heads. In
the case of battery exhaustion, we assume that the UAV can
be recharged so that it can continue to work.

2) Performance metrics and baselines: To quantitatively
evaluate the performance of a path planning strategy, we
report the results according to three performance metrics in
our simulation study.

- Value of information (VoI). VoI is the main metric in this
animal monitoring application and maximizing it is the
primary goal in designing the path planning approaches.

- Message delay. Since event messages need to be kept in
the sensor buffer until being sent to the UAV, message
delay is an important metric. Long message delay may
cause the loss of event messages.

- Percentage of events collected. Whenever an event is
created by the sensor, we add a valid time period isvalid
for each event. In other words, this event expires and
can not be collected anymore by the UAV after isvalid
amount of time.

TABLE I
EXPERIMENTAL PARAMETERS

Network size 100km× 100km
Time unit 1 min

UAV speed 50 km/h
VoI parameters (A, B) (10.0, 0.02)

Time step length 30 mins
Events generation period ∆t 30 mins

Events expiration isvalid 300 mins

Table I includes the parameter values used in our experi-
ments. For the performance evaluation of the proposed path
planning approach TSP-D, we compare its outcome with the
theoretical optimal approach, greedy approach with predicted
distribution, and naive TSP-based approach.

B. Compared approaches

1) The optimal approach (TSP-D-Optimal): In this ap-
proach, we feed the UAV with the real animal distribution
which we extract from the dataset. Note that this approach
is only for comparison purposes and in practice cannot be
realized since we cannot predict the future movements of
animals with 100% accuracy.

2) Greedy with predicted distribution (Greedy-D): This
approach also takes our predicted distribution into account,
however, the UAV always purses the highest reward among
the neighboring virtual grids instead of expanding different
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possible paths. If all neighboring grids have the same reward,
a random selection will be considered.

3) Naive TSP without predicted distribution (Naive-TSP):
In this approach, we do not provide any prediction information
to the UAV. The UAV visits each cluster head in a fixed order.

C. Performance results

We report the performance of each path planning approach
in terms of the three metrics: VoI, message delay and percent-
age of events collected. For our proposed TSP-D approach,
we also show the results with different time-step look-aheads.

Fig. 6 shows the VoI performance collected by different
path planning approaches. As we can see the Naive TSP is
the worst approach here because it does not consider any
animal distribution information. The Greedy-D approach is
much better than the Naive TSP since it takes the predicted
animal distribution as input into path planning. But it always
pursues the highest neighboring reward which limits its overall
performance. With the same predicted animal distribution
as input, our proposed TSP-D outperforms the Greedy-D
approach because our solution decides next visiting grid based
on an estimated rewards in next lookahead time (240 mins
in Fig. 6). However, compared with the optimal solution, TSP-
D’s performance is a bit worse. The reason is we are using our
predicted animal distribution to do path planning. Note that
although the optimal approach achieves better results, it is not
practical as we explained before, therefore, the real winner is
TSP-D approach.

Fig. 7 shows the VoI performance with different prediction
durations. It can be seen that in TSP-D approaches, the
performance with lookahead time 60 mins is lower than
others. The reason would be the same with the Greedy-D
approach that the local maximum reward limits the overall
performance. As the lookahead time increases, the perfor-
mances of different approaches are very close to each other. It
might be due to the effect of compounding error in predicting
long-term future that misleads the UAV to explore areas where
there expectation will not be met.
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Fig. 8 shows the box plot of message delay of each path
planning approach. Naive TSP approach shows the worst
performance due to not taking into account any animal
information. It is interesting that the Greedy-D approach
outperforms other approaches in this metric. The reason is
that, in Greedy-D, the UAV always goes to the neighboring
grid with highest probability of existing animals. It collects
event data in a timely way but with the sacrifice of number
of events collected, which can be seen in Fig. 9.

Fig. 9 shows the percentage of events collected by each path
planning approach. Remember that an event validation time
isvalid is added to each event, so, if the event is not collected
after isvalid time, it expires. It can be seen that the Naive TSP
achieves the best performance in this metric because the UAV
goes in a fixed path which guarantees that most events can
be collected finally. Greedy-D shows the worst performance.
As we explained in Fig. 8, it collects events in a timely way
with the sacrifice of total number of events collected.

Overall, it can be seen in the experimental results that TSP-
D highly outperforms the other path planning approaches.
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Compared to the greedy approach, TSP-D produces (4855−
3463)/3463 = 40% increase in VoI and (159 − 113)/113 =
41% increase in number of events collected. Compared to the
Naive TSP approach, TSP-D produces (4855−1628)/1628 =
198% increase in VoI and (142 − 68)/142 = 52% decrease
in median message delay.

Although the greedy path planning approach also relies on
the predicted distribution, it always goes to the neighboring
grid with highest potential rewards. As we can see in Fig. 8
and Fig. 9, greedy mostly tries to minimize the message delay
while Naive TSP tries to maximizes percentage of collected
events. But both of them sacrifice a lot performance on other
metrics. On the other hand, in TSP-D the UAV considers the
overall rewards in the next lookahead amount of time. Note
that as the UAV collects data from grids, the predicted animal
distribution can be partially updated with the observed values.
In such a way, a higher performance path planning for the
UAV can be obtained after every grid visit.

V. CONCLUSION

In this paper, we consider using UAV-aided WSNs for
animal monitoring in wildlife areas. Motivated by the move-
ment patterns of animals, first we build a model to learn
the time-dependent animal distributions from historical data,
and second, we use the real-time predictions of the trained
model as the UAV plans its path to collect messages. We
find the optimal path with a tree structure exploration strategy
that performs multiple time-step look-aheads. The proposed
path planning approach is evaluated using real-world mobility
traces of vultures in Namibia. Simulation results show that
the performance of the proposed approach results in an
approximately 40% increase in both VoI and percentage of
events collected compared to greedy approach, and a 198%
increase in VoI and 52% decrease in median message delay
compared to Naive TSP approach.
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