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Abstract—In this paper, we focus on an application of wireless
sensor networks (WSNs) with unmanned aerial vehicle (UAV).
The aim of the application is to detect the locations of endangered
species in large-scale wildlife areas or monitor movement of
animals without any attachment devices. We first define the
mathematical model of the animal monitoring problem in terms
of the value of information (VoI) and rewards. We design a
network model including clusters of sensor nodes and a single
UAV that acts as a mobile sink and visits the clusters. We
propose a path planning approach based on a Markov decision
process (MDP) model that maximizes the VoI while reducing
message delays. We used real-world movement dataset of zebras.
Simulation results show that our approach outperforms greedy
and random heuristics as well as the path planning based on the
solution of the traveling salesman problem.

Index Terms—value of information; unmanned aerial vehicle;
UAV; animal monitoring; path planning; MDP.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been applied to

real-world habitat and environmental monitoring and created

enormous potential benefits to society [1]. Currently, wide

range of WSN applications exist for various environmental

monitoring purposes such as forest fire monitoring [2], agri-

cultural monitoring [3] and specific purposes such as volcanic

eruption monitoring [4]. In some application scenarios of

WSNs, such as forest fire monitoring or animal monitoring,

the sensed information is time-sensitive. In other words, the

earlier the information is reported to a sink or a base station,

the higher importance the information has.

In this paper, we focus on the challenge of animal mon-

itoring in wildlife using WSNs. Monitoring animals may

have various goals such as tracking their migration paths

or finding if specific endangered species exist in a region.

Wildlife monitoring can be achieved by mounting devices on

various species (e.g., cranes [5], zebras [6]). On the other

hand, mounting sensor devices may have harmful effects on

animals such as the unbalancing effect on birds [5]. Moreover,

mounting devices is not feasible if the aim is to find whether

some species exist. Our network model consists of static sensor

nodes placed in strategic places that are empirically known

as visited before by the monitored animals (e.g., places with

water supply).

The UAV systems are cost effective and attractive solutions

for surveillance applications. We consider UAVs participating

in animal monitoring operation as sinks which collect time

sensitive information from the sensor devices and also directly

observe and track the animals.

In our application scenario, we consider large wildlife areas

which we call the observation areas. An observation area is

uniformly divided into virtual grids. Each grid includes a clus-

ter of sensor nodes and a clusterhead is chosen among them.

The clusterhead is responsible for receiving data packages

from the sensor nodes via hop-by-hop wireless communication

and sending them to a UAV. The UAV acts as a mobile sink and

autonomously visits clusters of sensor nodes in distinct regions

of the observation area for gathering data from clusterheads.

By separating the WSN into clusters of sensor nodes in

distinct regions, data collection of the UAV reduces to visiting

the grids with cluster heads. In other words, for gathering data,

the UAV will move from one cluster to another during its

operation. In such a network setting, performance of the WSN

highly depends on the movement choices of the UAV. For

instance, if the UAV visits the regions with critical information

earlier than the other regions, the WSN can achieve higher

value of information (VoI) [7], [8], lower data losses, and

decreased message delays.

We define a mathematical model for calculating the value

of information in animal monitoring operation and use it for

decision making of visiting clusters by the UAV. We define

a Markov decision process (MDP) model for the UAV such

that states represent the grids and actions lead to deterministic

state transitions. We propose a Markovian decision-based path

planning approach for efficient data collection using single a

UAV. In this approach, while actions are chosen to visit states

with higher possible rewards, there is a probability of taking

a random action just to explore the area in each movement

decision of the UAV. Even though we focus on path planning

of single UAV in this papers, our mathematical model can

be used for collaborative data collection approaches using

multiple UAVs and can be extended path planning algorithms.

We evaluate the performance of the proposed network model

and the path planning approach. ZebraNet [6] dataset that

includes the GPS traces of zebras is used as a basis for the

network simulation. Markovian decision-based path planning

approach is compared against greedy and random heuristics

as well as the traveling salesman problem (TSP) solution.

We observe that the proposed approach outperforms other

approaches in terms of VoI, average message delay, and the

number of directly detected zebras.
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II. RELATED WORK

Akbas et al. [9] propose a wireless sensor and actor network

(WSAN) protocol for analyzing the social network of an ape

society through mobility. In their experiments, each gorilla

is equipped with a wireless sensor node while the silverbacks

are equipped with actors. Tuna et al. [10] propose using UAVs

for deployment of sensor nodes for post-disaster monitoring.

Our study differs from the aforementioned ones as we propose

using UAV as a major element of the WSNs for monitoring

purpose.

UAVs are used as sensor nodes for monitoring various

species in nature. Hodgson et al. [11] use ScanEagle UAV

to survey marine mammals. Their results indicate that UAVs

are not limited by sea state conditions as sightings from

manned surveys. Chamoso et al. [12] propose using UAVs

for scanning large areas of livestock systems. Using visual

recognition techniques, the recorded images are used to count

and monitor animal species. Brust et al. [13] propose a swarm

model for multiple UAVs on reliable forest mapping. Swarm

connectivity and communication are maintained under their

network structure. In our model, we propose using UAV as a

mobile sink for data collection.

Efficient use of mobile sinks in WSNs is a well-investigated

problem. Mobile sinks provide some advantages such as

distributing the energy consumption throughout the network

and increase network lifetimes. Rahmatizadeh et al. [14] study

sink mobility in virtual coordinates domain. Solmaz et al.

[15], [16] propose positioning approaches for multiple mobile

sinks to optimize event coverage in WSNs. Basagni et al. [17]

investigate the problem of maximizing value of information

in underwater sensor networks. They formulate the problem

using an Integer Linear Programming (ILP) model for path

planning of underwater vehicles. Their method achieves better

results in terms of VoI compared to a greedy heuristic. Our

sink mobility approach is different from these models as the

main objective of our path planning approach is to maximize

VoI using an unmanned aerial vehicle.

III. MATHEMATICAL MODEL

In this section, we describe the mathematical model of the

value of information for animal monitoring and our definition

of the sensors’ credibility and initial rewards.

A. Value of information

The value of information (VoI) is a metric initially proposed

in game theory as the price an optimal player would pay for

a piece of information. This metric has been redefined for

sensor networks by Turgut and Bölöni [7], [8] by assigning

to the data the value of the optimal action enabled by it. As

late actions are usually less valuable, the VoI of an event

is normally highest at the moment the event is created and

decreases as time passes.

Let us describe an example environmental mission where

VoI has critical importance. In the times of marine oil spills,

where crude oil is released into ocean or coastal waters from

offshore platforms or tankers, actions must be taken to stop

leakage and repair the damages at the earliest time. After the

oil leakage information is sensed by a set of underwater sensor

nodes, early arrival of the information to the base station will

give the operators ability to make more timely decisions for

repairing and patching up the leaks.

To the best of our knowledge, the concept of VoI is not

considered for the animal monitoring problem in the literature.

However, maximizing VoI may be very useful for monitoring

wild animals such as finding the current locations of endan-

gered species. For instance, earlier arrival of the information

to a UAV that collects data may be helpful for finding the

exact location of an animal in need of rescue. Moreover,

earlier information retrieval by the UAV may result in direct

observation of the animal.

The idea behind VoI can be described by a scenario where

an actuation action must be taken on the basis of sensed

data. The sensed information is of more value at present as

compared to being processed for actuation at a later time. For

many scenarios, we define the value of information in terms

of an exponential decay (although other forms are possible):

FV oI(t) = Ae−Bt (1)

In Equation 1, the constant value A represents the initial

value of the information while B represents the decay speed

of the VoI. A higher value of A defines the information with a

higher initial value while a higher value of B defines a faster

decay of the VoI. Figure 1 shows three different examples of

A and B values and their outcomes as the function of VoI.

It may be considered as representations of three urgent levels

of data in a sensor network. As it can be seen in the figure,

higher values such as A = 10 and B = 0.1 produce the

VoI with sharper decays, meaning urgent events that lose their

importance earlier. If we define a threshold value of events as

FV oI = 1, the events with higher values of A and B expire

before 60 minutes while the events with lower values (A = 5,

B = 0.02) expire around 90 minutes.
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Fig. 1. VoI for different A and B values.
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B. Initial rewards

We define each sensed information as an event in the system.

Each event has an initial reward (IR) that is the value of

information at the time of the event occurs (t = 0). In other

words, IR is the maximum value of information that can be

gathered for each detected event. In our problem, IR is affected

by several factors: credibility of sensors, distance to the animal

and the duration.

Credibility (C) is a parameter that represents the reliability

of the sensed information. We define credibility based on the

heterogeneous sensor nodes with different abilities and quality

of services. For instance, an acoustic sensor node detects the

sounds coming from an animal while another sensor node can

take visual images. Moreover, a sensor node may have less

capable camera that results in lower resolution images than

the other sensor nodes. We assume there are k sensor nodes

{N1, N2, ..., Nk} deployed in the target area. Different types

of sensor nodes perceive different types of information such

as picture, sound, and odor. Each data type has a weight value

according to its importance {W1,W2, ...,Wk}. We consider

quality and resolution of the data as a factor of credibility.

Images taken by cameras with different resolutions and images

with different brightness and contrast levels (e.g, an image

taken at night and another in the sunlight) can be given as

such examples.

Let us define the credibility for the ith event as

Ci = λ×Wi (2)

where λ is an impact factor of the quality and resolution of the

sensed data. We consider the maximum Ci = 1 with Wi = 1,

λ = 1, and the minimum Ci to be equal to 0.

The distance of an animal to the sensor node is considered

as an important factor of the initial reward. The main reason

is its effect to the accuracy of the data. For instance, the

loudness of sounds from the animals may affect the accuracy

of classification of the animal species. Another example may

be the resolution of the image taken by a sensor node or the

distance of the image.

Idist = α× 1

Aest
(3)

By Equation 3, distance to the animal will be reflected into

an estimation of the area size where the animal is located.

The smaller the estimated area Aest is, the more credible the

sensing result is. α is a constant value used for adjusting the

value Idist.
We define the duration parameter Iduration of the sensed

event for the initial reward. Events having longer durations

are considered more effective evidences for the appearances of

the animals. For instance, an event with a longer duration may

infer that the animal prefers staying in the proximity of the

sensor node. Iduration also used for data types such that when

an animal is detected, sensor nodes records series of images

with a previously defined frequency. Some environmental

noise may also cause similar results. We consider a threshold

value Tmax for the maximum duration that leads to ideal

Iduration and define the duration parameter as

Iduration =
T

Tmax
(4)

where T is the duration of the event and 0 < Iduration ≤ 1.

Finally, we define the initial reward IRi of the event i as

below.

IRi = σ × Ci × Idist × Iduration (5)

where σ is a parameter that depends on the type of animal.

For instance, information sensed by endangered animal species

may have better reward.

V oIi shows the value of the sensed event i at the time

when it is sent to a mobile sink (UAV). V oIi has the maximum

value at the moment the event is detected and then it gradually

decreases as time passes.

V oIi = IRi × e−Bt (6)

where B is a factor to control the convergence speed of the

VoI. Our main objective is to maximize VoI collected by the

UAV during its operation.

IV. ANIMAL MONITORING SYSTEM

A. Network model

Considering an observation area with animals living in

it, the goal is to monitor specific animals’ appearance. In

our approach, we divide the area into virtual grids. In each

grid, a set of sensor nodes with monitoring functionalities are

deployed.

Fig. 2. The network model.
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1) Sensor nodes: Sensor nodes are deployed by uniform

random distribution in strategic parts of the observation area.

As illustrated in Fig. 2, sensors in a grid can be treated as

a cluster and a clusterhead is selected periodically. Sensors

inside a virtual grid can communicate with the clusterhead

directly or via a hop-by-hop communication. The clusterhead

is responsible for receiving event messages from other sensors

and then submitting all the event messages to the UAV.

Routing and clustering are not within the scope of this paper

as they are well-investigated research topics.

2) Unmanned aerial vehicles: UAVs have been widely

used in various applications due to their advantages such

as flexibility, fast speed and good endurance. In this WSN

application, UAV is used as an autonomous mobile sink for

gathering time sensitive information. Apart from previously

mentioned advantages, using UAV for animal monitoring not

only overcomes the geographical challenge but also has no

harmful effects on animals such as the unbalancing effect [5].

Assumptions of the network model are given as follows:

- There is a single UAV

- The UAV has no energy constraints, while it is not the

case for the sensor nodes.

- The UAV flies with a fixed speed and it only communi-

cates with clusterheads.

B. Markovian decision-based path planning

Wildlife animals have their own habitats, which means they

are more likely to stay at a certain location for rest or just

having activities in a small area. Fig. 3 shows real movement

trajectories of 4 zebras in 3 days.

In this figure, the regions visited by the zebras are marked

with their corresponding grid indices. As it can be seen, the

mobility choices of zebras are not random. Instead, most of

the time they prefer to stay in the places shown with gray color

and they appear in other marked regions in shorter durations.

For instance, in the top-left figure, a zebra spends most of the

time in 5 out of 16 regions (s1, s4, s5, s6, s13) while shortly

passing through the regions s12, s8, s9, and s0. Furthermore,

we observe that a zebra can visit an already visited location

multiple times as the regions s0 and s1 were visited by another

zebra in the bottom-right figure. We conclude that sensing a

zebra in a region may infer the possibility of future visits to

the same region.

Based on these observations, we use a Markov decision

process (MDP) model for the path planning problem of UAV.

A finite state MDP is defined with a 5-tuple (S,A, P,D,R, γ)
where S = s0, s1, ..., sm is a finite set of states. A is a set of

actions and P is a set of state transition probabilities. D is

the initial-state distribution, from which the start state s0 is

drawn. R : S −→ A is the reward function and γ ∈ [0, 1)
is a discount factor. In the context of UAV path planning, we

define the elements of MDP as follows.

- S is the set of states (grids) in the network.

- A is the set of cardinal directions that UAV can go

plus staying in the same grid: {north, east, south, west,

northeast, southeast, southwest, northwest, stay} .

Fig. 3. Movement trajectories of 4 zebras from the ZebraNet dataset.

- P is the set of state transition probabilities. Our model

is deterministic, i.e. the probability of ending up in

the desired grid is 1. The probability of accidentally

appearing in non-desired states is 0.

- D is the initial-state distribution which is 1 for the top-left

corner grid in the network and 0 for all other grids. This

means that the algorithm always starts from state s0.

- R is the reward UAV gets if it enters gird s. Reward is

calculated using Equation 5.

- γ ∈ [0, 1) is the discount that obtaining the information

in distant future worth less compared to getting informed

in the near future.

In our model, the set of clusterheads in the network are

represented by the set of states S in MDP. In this setting,

UAV needs to make decision on its next visiting location

after collecting the clusterhead’s event messages, which can be

represented by the state transitions in the MDP model. After

visiting each clusterhead, the UAV will update its information

of the network and decide the new visiting clusterhead. This

decision process has an analogy to the MDP in which rewards

of the previous actions will have an effect on the next state

transition decision. Lastly, maximizing the VoI in our problem

means optimizing rewards in MDP.

We introduce MDP modeling into our path planning prob-

lem. Solving the MDP gives a policy which tells us the next

grid in the observation area that the UAV should visit. To solve

the MDP, we use Q-learning algorithm [18]. By utilizing value

iteration method, we calculate the Q-value for each state using

the following equation.

Q(s, a) ← R(s) + γmax
a′

Q(s′, a′) (7)

Q(s, a) is the new Q-value for taking action a when the
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Fig. 4. Deciding the next state based on Q-values.

UAV is in state s. R(s) is calculated using Equation 5. s′ is

the grid the UAV appears when it takes action a and a′ is any

action possible when we are in state s′. This means each time

a is taken from state s, UAV reaches state s′, calculates the

maximum Q-value of the next state by taking any arbitrary

action from state s′, sums it with initial reward it gets as it

enters state s′, and uses this value to update Q(s, a).

In the context of UAV path planning, when the UAV goes

to one of the neighboring grids, it may find zebras or may

not find anything. The UAV will then update the reward of

coming to this state from the previous state. The outcomes of

these visits help the UAV to decide which grid to visit next.

Formally, this policy is obtained using the following equation.

π(s) = argmax
a

Q(s, a) (8)

Fig. 4 illustrates path planning decision for the UAV based

on the Q-value of each action in the current state. The UAV is

initially in state s4 as it decides which of the adjacent states it

should visit. The actions are shown by the arrows. Available

actions are either visiting the neighboring states or staying in

the same state. The Q-value corresponding to each action is

shown near each arrow. The UAV decides to take action which

leads to state s5 since the Q-value of the corresponding action

is higher than the others. In addition, there is a probability

of random exploration during selection of the next state. The

exploration is based on the ε− greedy policy of Q-learning.

The flow-chart of the proposed path planning approach can

be seen in Fig. 5. Both exploration and exploitation are impor-

tant for the UAV performance. After visiting each clusterhead,

the UAV needs to select the next grid with ε− greedy policy,

0 < ε < 1. The UAV selects the next grid in a stochastic

way with probability ε; otherwise, it visits the next state in a

deterministic way of choosing the best action.

Fig. 5. Flow chart of state transitions of the UAV.

V. SIMULATION STUDY

A. Simulation environment

The proposed WSN application and the UAV path planning

approach are tested with simulation experiments. We imple-

mented a Java-based discrete time simulator. The movement

traces of zebras come from the ZebraNet [6] dataset that

contains the location information of 5 zebras in June 2005 at a

10km × 10km area near Nanyuki, Kenya. The sampling time

of the GPS traces is 1 minute and the total experiment time is

5 days. We establish our experimental network by converting

the information from the dataset into our grid-based network

model. A single UAV is used for event message collection.

The purpose of the application is to detect the appearances

of the zebras. During the operation, when a zebra first appears

in a region, the sensor nodes should record it. However, if the

same zebra stays in a small area for a long time, such as

the case when the zebra sleeps there, it may cause excessive

energy consumption to the sensor nodes. Therefore, we define

the events as following.

- If a zebra moves from one grid to another, we record it

as an event.

- If a zebra always stays in a grid, instead of recording

every minute (the sampling time interval of the data), we

periodically record its location once in every Δt amount

of time.

Considering the proposed WSN model, the UAV needs to

collect messages from sensors deployed on the ground. As a

result, the speed and the altitude of UAV should not be very

high. In this case, we used a Bayraktar mini UAV [19] for our

experiments since it has a good endurance performance and a

moderate maximum flight speed (60km/h).

Using 1 minute sampling time as the experimental unit time

causes the UAV to move 1 km each time step that produces

low resolution results. To make the results more accurate, we

set the unit experimental time steps (rounds as 10s). In this

case, the UAV speed is set as 100− 200m/round.

Table I includes the parameter values used in our experi-

ments. While we assume homogeneous events for simplicity in
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TABLE I
EXPERIMENTAL PARAMETERS

Network size 10km× 10km
Number of grids (states) 16
Grid size 2500m× 2500m
Unit experimental time (round) 10s
UAV speed 100− 200m/round
Decay speed of VoI (parameter B) 0.05
Radius r for direct observation 200m
Initial reward IR (σ, Ci, Idist, Iduration) 10.0 (10.0, 1.0, 1.0, 1.0)

the simulation experiments, in real-world applications events

have different IR values based on the mathematical model in

Section III.

For the performance evaluation of the proposed Marko-

vian decision process-based (MDP) path planning approach,

we compare its outcomes with three other path planning

approaches: greedy, traveling salesman problem-based (TSP)

and random. All four approaches are used for autonomous

movement of the UAV in the network for collection of event

messages.

Let us briefly describe the three path planning approaches

in the simulation study. As described in Section III, each event

has an initial reward (IR). In the greedy approach, when the

UAV visits a grid, IRs of events in this grid are summed for

future grid selection. The UAV always pursues the highest

local IR in its movement. In other words, the UAV flies to a

neighbor grid with the highest IR. In addition, the UAV also

maintains a visited grid list to guarantee all grids are visited.

In the case of multiple neighbor grids having the same IRs,

the UAV randomly selects one of them.

In the TSP approach, solution to the TSP problem is used as

it provides the shortest path of visiting all grids among all the

possible paths. Given the network structure, the path produced

by TSP is actually fixed, which means the UAV always flies

along a pre-set movement path. This pre-determined path

feature results in a very stable experimental performance and

also can be used as a good reference for comparing with

adaptive approaches. Lastly, in the random approach, the UAV

simply selects its next destination grid randomly among all the

grids in the network.

To systematically examine the performance of a path plan-

ning strategy, we include results with three performance met-

rics in our simulation study.

1) Value of information: VoI is the most essential metric

in animal monitoring application and maximizing the VoI is

the main goal in designing the proposed MDP path planning

approach. The definition of VoI is given in Section III and the

parameter values used in the experiment is given in Table I.

2) Message delay: Since event messages can only be kept

in sensors and wait in their buffer until being sent to the UAV,

message delay is an important metric. Long message delays

make the event messages lose their values. In this experiment,

we measure the average message delay and the message delay

distribution of all events.

3) Number of zebras encountered: As the UAV flies in the

network, we define a radius r inside which the zebras are

assumed to be directly observed by the UAV. Although the

number of zebras encountered is not the main goal in designing

our path planning approach, direct encounters can be helpful

for the monitoring as the UAV can capture higher resolution

images.

B. Simulation results

Let us include the experimental results of the path planning

approaches. We implemented 4 independent UAVs which are

controlled by MDP, greedy, TSP and random approaches

respectively. The results are obtained from an average of 10

simulation runs.
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Fig. 6. Performance comparison of VoI w.r.t. simulation time.

Fig. 6 shows the performances of the path planning ap-

proaches in terms of the VoI w.r.t. simulation time. In MDP,

the UAV continuously learn the appearance of zebras in the

network and as a result it is more likely to visit grids that

previously had zebras. It can be seen that MDP does not show

a good performance at the beginning of the simulation since

the learning process has just started and there is not much

information in the Q-table. As the learning process continues,

the VoI obtained by MDP gradually outperforms others. The

random approach performs the worst due to its totally random

state selection. The result of TSP is slightly better than greedy.

This is because the greedy approach always selects the grid

with the maximum IR from the neighbor grids. This local

maximization policy limits its overall performance. With the

TSP approach, the UAV always flies along a fixed path in the

network, resulting in a stable performance.

Fig. 7 shows the impact of ε− greedy policy on the VoI. It

can be seen that when ε = 0.8, which means the UAV has 80%

probability to select the next state randomly, the performance

is the worst. As the value of ε decreases from 0.8 to 0.4, the

probability of making deterministic decisions increases. This

causes an improvement in the VoI performance. On the other

hand, we also observe that when ε = 0.2 the performance

of VoI is worse than that when ε = 0.4. This shows that

the exploration is also important and the total deterministic
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Fig. 7. The impact of ε on VoI w.r.t. simulation time.

policy can actually limit the performance. Empirically, we use

ε = 0.4 in our experiments as it provides the best tradeoff.

The performance results of different simulation runs us-

ing the MDP approach are shown in Fig. 8. Note that the

ε − greedy policy brings stochastic next state decisions and

therefore leads to randomness in the results. To examine the

stability of our approach despite the randomness, we compare

4 randomly selected simulation runs of the MDP approach

with the same parameter settings. It can be seen that though

some slight differences exist between results of the different

simulation runs, the outcomes are not significantly different.
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We include the results for the average message delay in

Fig. 9. The standard errors show the stability of the path

planning approaches in terms of message delay. It can be seen

that the random approach has the highest average message

delay, which is followed by the greedy one. Interestingly, we

observe that the standard error of TSP is 0. This is because

TSP has a fixed path and the movement trajectories of the

zebras are the same, which results in constant performance.
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Fig. 9. Average message delays of the MDP, greedy, TSP, and random
approaches.

Fig. 10 shows the probability distribution function (PDF)

of the message delay for each path planning approach. As it

can be seen, MDP is the clear winner with more than 40%

of all messages having less than 5 minutes message delays.

On the other hand, for greedy and TSP, only less than 25% of

the same messages are gathered in less than 5 minutes. The

random approach again has the worst performance resulting

in less than 15% of the messages with short message delays.
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Fig. 10. PDF of message delays of the MDP, greedy, TSP, and random
approaches.

Lastly, we analyze the results for the total number of zebras

encountered by the UAV in Fig. 11. The random path planning

approach causes the UAV to encounter the least number

of zebras during its operation. While the greedy and TSP

approaches seem to result in the same number of encountered

zebras, TSP is more stable than greedy. This is because the

UAV in greedy approach visits the grids randomly when the

IRs of all neighbor grids are the same. Even though the MDP

approach does not cause the UAV to track zebras directly,
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it still provides the best performance. This is an expected

outcome of the model after a learning period, since the UAV

has a high probability of visiting the grids where zebras have

appeared before.
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Fig. 11. Number of zebras encountered for the MDP, greedy, TSP, and
random approaches.

Overall, it can be seen in the experimental results that

MDP highly outperforms the other path planning approaches.

Compared to the greedy approach as an example, MDP pro-

duces 80% increase in VoI, 30% increase in average message

delay, and 90% increase in the number of zebras encountered.

Although greedy path planning approach also relies on the

previous information, it considers only the last time instance

of zebra appearances in each grid. Unlike the greedy approach,

the UAV in MDP continuously learn the events from the

network and then update the Q-value in each grid. The Q-

table maintained by the UAV reflects all previous information

on the activities of zebras. As the learning process continues,

the UAV is more likely to go to the hot-spots where zebras

often appear. Additionally, both exploration and exploitation

modes are introduced so that while the UAV is visiting the

hot-spots, it also explores new regions in the observation area.

VI. CONCLUSION

In this paper, we propose using UAV-aided WSNs for animal

monitoring in wildlife areas. In our model, the UAV visits the

clusters of static sensor nodes for data collection purpose. We

propose a Markovian decision-based path planning approach

for the UAV to maximize the VoI. The proposed network

model is simulated using real-world mobility traces of zebras.

Simulation results show that the performance of the proposed

path planning approach is better than random, greedy, and

TSP-based approaches. The MDP approach results in approxi-

mately 60% increase in VoI and the number of observed zebras

and 20% decrease in message delays.
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