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Abstract— Time synchronization is essential in wireless sensor
networks as it is needed by many of the applications for basic
communication. The inherent characteristics of sensor networks
do not permit simply applying the traditional time synchro-
nization algorithms. Therefore, many new time synchronization
algorithms have been proposed and few of them have provided
security measures against various degrees of attacks. In this
paper, we review the most commonly used time synchronication
algorithms and evaluate these algorithms based on factors such
as their countermeasures against various attacks and the types
of techniques used (cryptographic vs. statistical)

I. INTRODUCTION

Wireless sensor networks naturally sense the desired event
or phenomena in the real-world environment, communicate the
sensed data to the global processing unit via the intermediate
sensor nodes or gateway nodes for processing to draw relevant
conclusions. Most of the time, the data received from multiple
sensors are aggregated before reaching the final processing
unit. In order to carry out the tasks discussed above, the
physical time of the sensor nodes has to be synchronized with
each other. The distributed wireless sensor networks heavily
depends on the time synchronization for various reasons such
as determining location and proximity of the deployed sen-
sor nodes, intra-network coordination among different sensor
nodes, temporal messege ordering, security, time division
multiplexing in wireless communication, improving energy-
efficiency of sensor nodes by scheduling the sleep times of
the sensor nodes, and so on [16].

In the computer synchronization history, Lamport’s work
[11] is considered a pioneering approach that emphasizes the
need of virtual clocks in computer systems in which causality
is more important than the absolute time. Even though, the
total ordering of the events was the focus of Lamport’s method,
this work has influenced the way the sensor networks have
emerged today.

Most computer devices contain an internal clock, usually
designed to be synchronized with the exact real-world time
at the specific location of the computer. Although many func-
tionalities depend on the clock even on desktop computers,
for instance the scheduled Friday afternoon virus checks, or
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the popular “make” program, which determines whether a file
needs to be recompiled comparing the timestamp of the source
and object files. However in practice, a desktop computer can
function correctly even if its internal clock is minutes or even
years away from the correct time.

Let us first define the ways in which the clocks of two
nodes A and B might be out of sync. Let us note the clock
of a node X with a function CX(t), which returns the reading
of the clock at real time t. The first type of difference is the
offset: δAB = CA(t) − CB(t). That is the two clocks are
identical, except that the clock of node A is early (if δAB >
0). Now, we might fix this by setting the clock of node A
back, however, that would create a problem, because the same
time slice would appear twice for node A. This creates major
problems for a number of protocols. It is better to set the clock
of node B forward; however, most protocols simply require the
nodes to keep track of their offsets without actually changing
the internal clock.

The second type of synchronization difference is the clock
skew, that is one of the clocks is running faster than the other.
This can be expressed as a difference in the derivatives of the
clock function in respect to the time: ηAB = ∂CA(t)

∂t − ∂CB(t)
∂t .

While this appears to be a more difficult problem, if a node
is aware of its clock skew, it can very easily account for it.

Neither clock offset nor clock skew requires periodic syn-
chronizations. If we know the offset and the skew of a node’s
clock, we can calculate the time difference at any moment
in time. However, the frequency of the clocks can change
randomly because of environmental conditions such as tem-
perature difference, or the aging of the hardware, a condition
called drift error. The drift error appears as a non-zero second
derivative in one or both clocks λAB = ∂2CA(t)

∂t2 − ∂2CB(t)
∂t2 .

The clocks of sensor nodes usually accumulate several seconds
of drift error per day, as the drift is not predictable, it needs
to be solved using clock syncronization.

However, for sensor networks, that is, the correct synchro-
nization of the clocks is frequently a necessary component
of the ability of the sensor network to function correctly.
Unsynchronized clocks can yield invalid observations, can
create uncovered areas and timeslots, and in the worst case
can disable the communication architecture of the network.



Let us consider several examples. The individual nodes of
the sensor network are sending their timestamped observations
to the sink.

In Figure 1, and intruder is sensed consecutively by sensors
S1 and S2, and their reports sent to the sink. Based on the
reports (intruder, S1, t1) and (intruder, S2, t2), knowing the
locations of the sensors S1 and S2, and noticing that t1 < t2
and t2 − t1 < 1 second, the sink can correctly infer that the
observations refer to the same intruder who is moving from
left to right (in certain cases, this inference can be performed
through in-network processing). However, this inference is
valid only under the assumption that the clocks of the two
sensors are synchronized at the level of tenths of seconds. Let
us explain this further.

If the clock 1 and 2 are synchronized, that is, they have
the same offset δ(1) = δ(2) compared to a universal time t,
then, t

(2)
2 − t

(1)
1 = t2 + δ(2) − t1 − δ(1) = t2 − t1 > 0. So,

t2− t1 indicates the correct order of the arrival to the sensors.
However, if there is a large offset between these two, δ(1) −
δ(2) ¿ 0, that is, the clock of δ(1) is early. We might have a
situation that t

(2)
2 −t

(1)
1 = (t2−t1)+δ(2)−δ(1) < 0, that is, the

sink will infer incorrectly that the intruder is moving from right
to left. This is case if the clock of the sensor S1 is two seconds
late, the inference would be that the intruder moves from right
to the left. As a drift of several seconds per day is a normal
occurrence for the internal oscillators of the devices, we can
not rely on the initial setting of the clocks at deployment time.
The clocks need to be synchronized periodically in the field.

Notice that the faster the intruder moves, the smaller (t2 −
t1) and the more accurate synchronization is needed in order
to make the correct inferences.

Our second example concerns the wake-up time of the
sensors. Sensors have limited power resources. To extend the
lifetime of a deployed network, the sensor nodes are frequently
selectively put to sleep. The idea of the method is that the set
of currently active nodes at any given moment in time covers
the area to be surveyed and form a connected network. If
an attacker can modify the internal clock of certain sensor
nodes, such that these nodes, for instance, do not wake up
in time, certain areas might not be surveilled by the sensors
for a certain amount of time, allowing an intruder to operate
unreported.

Finally, Time Division Multiple Access (TDMA) based
channel sharing protocols rely on the participating nodes to
transmit at well defined time slots. Relatively small time drifts
in the clock of the individual nodes can make the transmission
intrude on the adjacent time slot, causing a collision. Repeated
collisions can significantly disrupt the network. A detailed
survey on clock synchronization protocols can be found in
[17], [21].

The rest of the paper is organized as follows. The challenges
and design issues of time synchronization protocols in sensor
networks is summarized in Section II. In Section III, we survey
some of the time synchronization protocol including possible
attacks and proposed countermeasures against these attacks.
The types of attackers and attacks are presented in Section
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Fig. 2. Packet delay components

IV. Section V gives detailed discussion about the approaches
for secure time synchronization. We conclude in Section VI.

II. TIME SYNCHRONIZATION IN SENSOR NETWORKS

A. Challenges

Different applications will have different synchronization
requirements and almost all the synchronization methods rely
on message exchange between nodes. The non-determinism
in the network operations can cause delays on the message
delivery in turn contributes to the error in synchronization. Let
us see how the source of a message’s latency is decomposed
in Figure 2. According to [9], [10], the time synchronization
schemes have four basic packet delay components: send time,
access time, propogation time, and receive time.

• Send Time. This is the time it takes to construct a
message at the sender including the overhead of the
operating system and the time to transfer the message
to the network interface.

• Access Time. This is the delay encountered at the
medium access control (MAC) layer prior to accessing
the transmission channel due to contention, collisions,
and so on. This delay is dependent on the MAC protocol
in place. For instance, Carrier Sensing Multiple Access
(CSMA) [8] requires every node to sense the carrier
before transmitting, and does not start a transmission if
the medium is busy. CSMA/CA consists of both carrier
sensing and a collision avoidance; the IEEE 802.11
standard [7] is the best-known instance of CSMA/CA.

• Propogation Time. This is the time required in propa-
gation of the message from sender to the receiver. The
propagation time varies depending on the location of
the sender and the receiver. For instance, if they are
one-hop neighboring nodes in an ad hoc network, the
propogation time equals to the physical propogation time
of the message traveling in the media. On the other hand,
the propogation time can be much larger if we add such
as switching and queueing delays into the formula.

• Receive Time. This is the time for the receiver node
to process the message and acknowledge the host the
arrival of the message. Depending on the level in which
the arrival time was timstamped, the receive time may or
may not include the overhead of the transfering of the
message from the network interface to the host.
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The challenge is not only the existance of packet delay
but also the difficulty of prediction of the time needed on
each delay components even though Figure 2 shows each
component on equal length.

B. Design issues

Here, we present set of metrics for evaluating time syn-
chronization protocols in sensor networks. Naturally, there are
tradeoffs between these metrics; therefore, it is difficult to find
a protocol which can satisfy them all.
• Availability and scope. All the nodes in the network

can be synchronized based on a global time or a set of
nodes locally in close proximity to each other can be
synchronized based on a local time. Due to mainly the
the energy and bandwidth constraints in large-scale sensor
networks, global synchronization is not only difficult
to implement but also can be costly as well. Only a
few application would require global synchronization.
Completeness of coverage within the specific region of
nodes determines the availability requirement.

• Cost and size. Since most sensor nodes considered are
small and low-cost devices, the secure synchronization
algorithms must be designed to meet the cost and size
requirement. For example, it is not a viable solution to
attach a Global Positioning System (GPS) device to a
sensor node.

• Efficiency. Due to the lightweight and small size of the
sensor nodes used in many sensor network applications,
they posses limited resources such as energy, memory,
computation power, and so on. The security mechanisms
developed within the time synchronization protocols must
adapt to the limited computation power and memory of
these sensor nodes since most security protocols are com-
plex and requires extensive resources to run efficiently.
Additionally, communication capabilities are also limited
due to these resource constraints. GPS or Universal Time
(UTC) are generally used to synchronize the network to
an accurate time in traditional protocols such as Network
Time Protoocol (NTP) [14]. Using GPS requires high
energy consumption; therefore, it is not considered a

viable solution. Reducing the energy consumption can
be achieved by transmitting over sequences of hops of
short distances rather than a single one-hop long path.
The secure time synchronization algorithms should also
take into consideration the time needed to synchronize
the nodes.

• Infrastructure. Sensor networks may have to deployed
in a random fashion to remote or dangerous regions. In
this case, the sensor nodes are expected to self-organize
themselves into a network since they cannot rely on an
existing infrastructure such as NTP [14] in which the
precise time is available to any node in the network from
only a few hops away. NTP achieves this by providing the
referenct time at various points in the network. The task
of the secure time synchronization becomes complex due
to the many factors such as scalability issues, mobility,
and of course the lack of infrastructure to rely on.

• Lifetime. The duration of the synchronization can be one
of the two forms: (i) almost instantenous or (ii) persistent
in which case the synchronization lasts as long as the
lifetime of the network itself. The nearly instantenous
synchronization can be appropriate for applications in
which an immediate action needs to be triggered based
on the nodes’ detection times of a specific event.

• Network dynamics. Irregardless of the type of deploy-
ment (random vs. pre-engineered) sensor nodes face high
degree of network dynamics such as frequent changes
in the network topology due to mobility, network par-
titioning, or energy depletion of the nodes. Designing
secure time synchronization protocol becomes even more
complex task when one needs to consider ways to ensure
the running of the network operations smoothly under
these dynamic changes.

• Precision. The level of precision or accuracy required
generally depends on both the application and the objec-
tive of the synchronization. There are three basic types
of synchronization methods. The first one relies on the
ordering of messages and events; it is considered the
simplest. The next method allows the nodes to keep track



of the drift and offset with respect to their neighboring
nodes. This the most common type of synchronization
encountered in the time synchronization protocol appli-
cations. The most strict and complex one is the global
synchronization in which all the nodes are synchronized
according to a global time accross the network. This
method is the least used one since it is the most difficult
to implement and also precise time synchronization is not
always essential.

III. SECURE TIME SYNCHRONIZATION

These examples show us that time synchronization is vital
for the correct operation of a sensor network. As relatively
small time drifts can cause significant disruption, we cannot
rely on the precision of the hardware; we need to use external
synchronization protocols. Furthermore, it was found that as
relatively small changes in the clocks can disturb the operation
of the sensor network or even cause it to make erroneous
inferences about the observed event, the time synchronization
protocols are a convenient target for malicious attackers.
Most time synchronization protocols were not designed with
security in mind. Recently, however, several research groups
performed an analysis of various vulnerabilities, and proposed
countermeasures against them.

In the following, we survey some of the time synchro-
nization protocols, discuss their benefits and outline possible
attacks and proposed countermeasures.

A. Reference Broadcast Synchronization

A pioneering approach called post facto synchronization
was proposed by Elson and Estrin [1]. This is low-power
method of synchronization of clocks when the timestamps
must be accurate for desired events. The nodes’ clocks are are
normally unsynchronized. When a phenomena is sensed, each
node records the time of sensing according to its own local
clock. Shortly after, a beacon node sends a synchronization
message to the nodes within its transmission range. The nodes
receiving this message can adjust their timestamps of the
sensed phenomena to the time of the receipt of this synchro-
nization message. The post facto synchronization forms the
basis for the reference broadcast synchronization method.

A sender to receiver synchronization method is used in
most time synchronization protocols. In this method, the
sender transmits the timestamp information and the receiver
synchronizes.

The Reference Broadcast Synchronization (RBS) [2] proto-
col differs from the sender to receiver synchronization since
it uses receiver to receiver synchronization method. Basically,
the RBS is based on a synchronization signal broadcasted by
an external unit. The receivers record their local time when
they received this reference message, and then exchange this
information among themselves (see Figure 3). The recording
of a message is not 100% exact, because of hazards such as the
propagation time of the message or the processing time of the
packet at the lower protocol layers. To improve the precision,
a number of reference messages can be broadcasted, the nodes

exchange the arrival times for each message and then find the
best approximation using a least squares fit.

The keypoint of the RBS is that it uses broadcast tech-
nique within wireless medium to minimize latency and non-
determinism issues related to latency in the time synchroniza-
tion protocol. On the other hand, the most notable drawback
of the RBS is its requirement of a network with a physical
broadcast channel [2].

Let us consider a scenario shown in Figure 4 (a) where a
group of nodes lie in the range of multiple broadcast instead
of a range of a single broadcast. Both sender nodes A and B
send a synchronization message. According to the transmission
ranges, nodes 1-4 will be able to synchronize with node A
and nodes 4-7 can synchronize with node B; however, nodes
A and B cannot hear each others synchronization message.
Among the nodes, node 4 is the only one that can hear
the synchronization messages from both nodes A and B.
This means that node 4 can correlate the clocks in node A’s
neighborhood to the clocks in node B’s neighborhood or vice
versa. In Figure 4 (b), we have 3-hop network topology and
the corresponding logical topology in Figure 4 (c). The dotted
lines, in other words the graph edges, are drawn between two
nodes whose clocks are known to each other, for instance, node
pairs (1-4),(7-9),(8-9), and so on. Note that there are two links
between nodes 8 and 9 meaning that they have two receptions
in common since they are located in the overlapping region
of C and D.

Possible attacks on RBS: In RBS, two nodes upon receiv-
ing a broadcast signal, exchange their local clock time. An
attack can happen if one of the receiver nodes is compromised
with an incorrect time. The compromised node then can send
the incorrect time information to its neighbor causing the
uncompromised node calculating an incorrect offset.

Multi-hop version of RBS can face attacks as well. If com-
promised node is located in any of the overlapping regions, it
can inject an incorrect value into the clock conversion process,
affecting multiple regions at once. This miscalculation in the
clock conversion can be propagated across the network.

B. Time Synchronization Protocol Sensor Networks (TPSN)

TPSN [6] has two phases: level discovery and synchroniza-
tion. In the level discovery phase, a spanning tree is created
for the sensor network where each node is assigned a level.
The root of the tree is usually a base station and assigned level
0. It is assumed that a node at level n can communicate with
a node or a set of nodes at level n− 1. In the synchronization
phase, the child nodes are synchronized to the parent. The
synchronization is initiated by the child node which sends
a synchronization packet at time t1. This is received by the
parent at t2 and an acknowledgment packet is sent in response
at time t3. The values of t2 and t3 will be included in the
acknowledgement packet. This packet is received by the child
node at time t4 (see Figure 5). Knowing these four time values
the child node can calculate its clock offset relative to the
parent node as well as propogation delay as follows:
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∆t =
(t2 − t1)− (t4 − t3)

2
(1)

d =
(t2 − t1) + (t4 − t3)

2
(2)

The decomposition of the packet delay has been depicted
in Figure 6 similar to [9], [10] as shown in Figure 2. The
transmission and reception time are more detailed here. The
transmission time is the time it takes to transmit a packet
on a bit-by-bit basis at the physical layer via the wireless
link [6]. The reception time is the time required to receive
and forward all the bits to the link layer. Both transmission

time and reception time are generally considered deterministic;
however, variations can occur depending on the underlying
hardware structure.

The nodes are assumed to have unique ids and each node has
knowledge of its neighboring nodes. TPSN takes advantage
of only the symmetric links for pair wise synchronization
between nodes even though the network may also have asym-
metric links. This can be considered one of the drawback of the
protocols. Other drawback may include its limited suitability
for applications serving highly mobile networks and its lack
of support for multi-hop communication. On the other hand,
TPSN is scalable and its computation overhead is less than
some other protocols such as NTP [14]. The root selection
and the tree construction mechanisms need to be reinvoked
when topology changes occur due to node failures or other
factors.

Possible attacks on TPSN: A compromised node cannot
cause any problem by requesting a time synchronization
message because the message will reach to the parent node
only. On the other hand, the compromised node can send
erroneous time information to its children.

Naturally, the child node is relying on the parent for its clock
synchronization, by providing incorrect values for t2 and t3,
the parent can set an arbitrary offset on its child node. What
is more, this incorrect offset will then be propagated down the
tree. Therefore, the number of nodes whose synchronization
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can be affected by the compromised node depends on the
location of the compromised node on the tree. One way for a
malicious attacker to compromise a larger number of nodes is
to reposition itself in a higher location on the tree or to answer
queries instead of the proper parent. This is surprisingly easy
to do in the original algorithm.

Yet another type of attack can surface when the compro-
mised node misinforms its level in the tree, basically announc-
ing a lower level than its current level. The compromised
node can also attempt to trick other nodes at its level in
requesting synchronization updates from itself. Furthermore,
the compromised node can disconnect a number of nodes from
being included in the tree by simply not participating in the
level discovery phase.

C. Flooding Time Synchronization Protocol (FTSP)

In FTSP [13], the nodes are participating in a process in
which a root node is elected. The root is the origin of the
time synchronization messages. If a node does not hear a
time synchronization message for a while, it declares itself
the new root. The protocol requires that if at a later time the
node receives a time synchronization message from a node
with a lower id than itself, it gives up its root status. When a
node receives a time synchronization message from the root, it
adjusts its clock and broadcasts its own time to its neighbors.
In the message broadcast, the preamble bytes are transmitted
first, followed by sync bytes, message descriptor, the actual
message, and finally crc bytes (see Figure 7).

Possible attacks on FTSP: The FTSP protocol is more
robust for node failures than the TPSN protocol, as there
is no need to maintain a tree structure which is notoriously
vulnerable to single point failures - the failure of a single
node can disconnect the whole subtree. The weak point of the

FTSP protocol is the election process. Any node can declare
itself a root, and the protocol relies on the node to step back
if a lower id root appears. A compromised node can easily
masquerade as a root, and by declaring a very low id it can
actually dislodge the existing legitimate root. Then, by sending
a synchronization message with a fake timestamp, it can make
the nodes synchronize to an incorrect time.

D. Countermeasures for the attacks

In this section, we describe the possible countermeasures
for time synchronization attacks in both single-hop and multi-
hop networks [12]. In single-hop networks, transmission range
of each node reaches to every other node in the network. Let
us consider a specific case of a single-hop networks in where
there is a base station and its transmission range covers all the
nodes in the network. The challenge for this type of networks
is to preclude the malicious node(s) from compromising the
base station and immediately start injecting the network with
invalid timing information. In this case, the message from the
base station must be authenticated in order to carry out the
correct sequence of time synchronization methods. This can
be achieved by utilizing a broadcast authentication scheme
such as µTESLA [15]. Another approach can be the use of
different private keys between the sender and receiver nodes.

In the multi-hop networks, many nodes may need to com-
municate with each other via intermediate nodes due to the
limited transmission ranges. It makes sense for nodes to
receive the global time of their immediate neighbors instead of
neighbors several hops away. In that case, we need to take into
consideration the incurred network delays between these nodes
and their far away neighbors. An approximation approach can
be used find an upper bound on the error produced by the
malicious node. Introduction of redundancy to the network is
another viable approach. For instance, both FTSP and TPSN
compute the offset and skew of their clock based on the timing
information obtained from only one neighboring node. This
redundancy approach can be easily applied to FTSP where a
set of nodes can be used for the synchronization computations.
The nodes can take the median of these received multiple
updates. The private keys can be setup between the nodes
and their neighbors at the beginning such that a malicious
node can be precluded from injecting erroneous updates into
the network. Furthermore, if a node becomes aware of one of
its neighbors update value being substantially different than
the updates from its other neighbors, the node can refrain



itself from including the updates from the suspicious neighbor
into its computations of clock skew and offset. This approach
of containment works however under the assumptions that
the nodes have sufficient number of sources for the updates.
For instance, in TPSN, children of the nodes nearby the
malicious or compromised node must find another parent
which may not always be feasible. Essentially, maintaining
multiple trees come with a price whereas in FTSP, no such cost
exist. Utilizing the LS linear regression by each node in the
network to compute the skew of its clock can further enhance
security in time synchronization protocols. Algorithms such as
RANSAC [3] can be used for this purpose.

IV. ATTACKERS AND ATTACKS

The possible attacks against time synchronization protocols
depend on the nature and capabilities of the attackers. We
will first identify three different types of attackers, outline the
types of attacks they are capable of, and then we will discuss
the various types of defenses proposed against these types of
attacks.

We will describe the system with the characters regularly
used in the description of cryptographic protocols. We assume
that Alice and Bob (and potentially, additional nodes Carol,
Dave, and so on) are engaging in a time synchronization
process.

The malicious outsider Malory is a wireless device inserted
in the range of the nodes of the sensor network, which has
the ability to send and receive packets. We assume that the
attacker can eavesdrop on any ongoing transmission, we can
also assume that the attacker can eavesdrop on any ongoing
transmission, we can also assume that the attacker can transmit
messages which are physically indistinguishable from the
other nodes messages. However, this type of attackers do not
have access to keys or other confidential information, other
than what it can infer from eavesdropping on transmissions.

Attacker with jamming and replay ability, Jimmy is an
attacker which has the ability to jam the message, record it and
possibly replay it at later time. This type of attack is called
a pulse delay attack. Although the existence of jamming in
principle can be detected, it requires significant resources, and
by default, most nodes are not prepared for it.

A compromised node is a node which was taken over by
the attacker. We will denote them with Zach (for zombie). One
example of this is the physical capture of the node by an at-
tacker, although a node can, in principle, be compromised with
purely software methods. Compromised nodes have access to
all the keys and other information of the original node, and
represent the most difficult type of attackers to defend against.

The challenge of secure time synchronization is to defend
against all the three types of attackers. An attacker is consid-
ered successful if it succeeds in making the nodes calculate
an incorrect offset. By default, all three time synchronization
protocols we described are vulnerable to all three types of
attackers.

V. APPROACHES FOR SECURE TIME SYNCHRONIZATION

Malicious outsiders can affect all types of protocols. The
primary defense against a malicious outsider is cryptographic
techniques of the authentication of messages. If the sender and
the receiver is sharing a key KB , they can use it to sign the
messages. To prevent an attacker to capture a valid message
and insert a copy of it later in a different synchronization
round, the sender sends a random nonce in the initial message,
which then needs to be signed by the synchronization partner.
While the attacker can still replay the same message in the
same synchronization round, by simply considering only the
first arrived message, the receiver can ignore the malicious
outsider.

Ganeriwal et. al. [4], [5] proposed a series of secure time
synchronization protocols based on this idea. The protocols
are adapted to pairwise single-hop, multi-hop synchronization
and for group synchronization. The protocols can also detect
the existence of a pulse delay attack by calculating the end
to end delay d of the message. If the delay is larger than
a predetermined threshold d∗ the protocols assume that an
attack is in progress and abort the synchronization. We should
note that key exchange is a major problem for these types
of algorithms, due to the ways in which sensor nodes are
deployed, which does not always permit the exchange of the
keys in a secure environment.

Notice that cryptographic methods are not feasible against
a compromised node, which has all the keys and knowledge
to correctly answer all the challenges, appropriately sign
its messages. If the time synchronization protocol happens
only between Alice and Zach, it is impossible for Alice to
detect or mitigate the attack. However, for protocols with a
larger number of participants, we can use the redundancy
in the synchronization messages to identify the malicious
participants or messages. We note that delay attacks can be
performed by either Zach or Jimmy, but not Mallory.

Song et al. [18] propose a method for making time syn-
chronization protocols resilient to delay attacks based on tech-
niques of outlier detection. The essential assumption behind
this method is that the synchronization signals received from
compromised nodes will be “much different from other”.
Thus, messages coming from compromised nodes can be
identified using statistical techniques as outliers, eliminated
from the package, and the synchronization performed with the
remaining nodes.

The authors propose two alternative methods. One of them
uses the generalized extreme studentized deviate (GESD), a
generalization of the well known Grubb’s test from statistics.
GESD can identify multiple outliers in a sample drawn from
a normal distribution. GESD requires as one of its outputs the
estimated number of malicious nodes.

A somewhat simpler approach is based on a delay threshold.
At the setup time of the system, the nodes determine the
maximum amount of time offsets they will tolerate, based on
information about the typical drift rate of the nodes. A received
offset which is higher than this value will be considered to



come from a malicious node and discarded.
As an observation, naturally, Zach, the compromised node

would have exact knowledge about the thresholds used (but
not Jimmy). Therefore, Zach has the possibility to remain
undetected, by setting the delay such that it will put it just
below the threshold (or, in the GESD case, such that it will
not be identified as an outlier), but still have a distorting
effect on the time synchronization process. Thus, the statistical
techniques can only reduce, but not necessarily eliminate the
effect of delay attacks by nodes with insider knowledge.

Sun et al. [19] propose a statistical method for secure and
resilient clock synchronization in the presence of compromised
nodes. The techniques are applied for both level-based clock
synchronization, where a hierarchical structure of nodes is
developed which determines which node is synchronized with
whom, and diffusion based clock synchronization, which does
not use such a structure and simply relies on the reachability
information of the network. Naturally, the level based approach
allows for a more disciplined control of the synchronization
flow, and thus a higher accuracy, whereas the diffusion method
has the advantage that it can be applied to dynamic sensor
networks with mobile nodes.

Furthermore, the authors consider both the case with a sin-
gle source of synchronization information, and with multiple
sources. For instance, in the single source case, the goal is
assumed to be to find the clock offset δiS from the node to
the source. The technique assumes that at every level, a normal
node collects 2t+1 candidate source clock differences from its
2t + 1 neighbors, and chooses the median of them. Thus, the
node can tolerate up to t compromised nodes, while retaining
correct synchronization. Similar considerations apply to the
diffusion based approach. In the case of multiple sources, the
node can receive synchronization information from 2s + 1
sources, synchronized to the same external standard (such as
a GPS signal) and tolerate up to s compromised sources by
selecting the median.

Note that this approach uses the whole redundancy of the
system to defend against an external attack - out of 2t + 1
recorded offsets, the method will pick a single one, the offsets
median. Approaches which assume a benign environment
usually select the mean of these measurements, therefore
improving accuracy - however, the mean is vulnerable to even
a single malicious node.

In addition, this approach requires a unique pairwise key
based authentication of the nodes. Otherwise, the malicious
node could impersonate multiple nodes (the so-called Sybill
attack).

A significantly improved version of this technique was
presented in [20]. In the approach called TinySeRSync, time
synchronization is performed in two phases. While we will call
them Phase I and Phase II for convenience, these two processes
are taking place asynchronously in the sensor network. In the
first phase, single-hop pairwise synchronization is performed.
The main feature of the pairwise synchronization process is
that it relies on a hardware enhanced authenticated MAC layer
timestamping. The hardware is programmed to add a times-

tamp authenticated with a message integrity code (MIC) to
every MAC packet transmitted. This is especially challenging
for the newer radios, such as the ones on the newer generation
MICAz motes, where the time required to authenticate the
timestamp can interfere with the transmission rate of the
radio. The authors propose a prediction based approach where
the authenticated timestamp includes a prediction of the time
required to calculate the MIC.

Through these techniques, the nodes achieve a sufficiently
good local level synchronization, which is exploited in the
second phase. The second phase implements a global synchro-
nization using the µTESLA broadcast authentication protocol.
This protocol relies on the loose time synchronization between
the nodes, uses a unidirectional keychain. Messages received
need to be stored by the receiver and will be authenticated
only after several timeslots. This prevent an attacker from
forging messages, but it opens the doors for a denial of
service attack. The messages received need to be buffered for
future authentication, and as the memory of sensor nodes is
limited, Mallory can create fake messages, which will not pass
the authentication test, but will fill the buffer, preventing the
node from receiving legitimate messages. To prevent denial
of service attacks, the authors propose a modified version of
µTESLA. To reduce the timeslots when the adversary nodes
can flood the node with messages based on captured keys
(which the receiver node needs to store for future authenti-
cation). TinySeRSync uses an implementation with very short
delays r (made possible by the good local synchronization
achieved in phase I). However, such short delays would require
the generation of a large number of keys, the implementation
alternates short intervals r used for message broadcasting, with
long intervals R used for broadcasting the disclosed keys.

The global synchronization in TinySeRSync still relies on
the selection of the median from the 2t + 1 candidate offsets,
therefore tolerating the presence of at most t compromised
nodes.

Notice that the approach presented in [19], [20] uses the
median rather than the mean, as a choice of the estimated
time offset, thus obtaining a high protection against malicious
nodes (provided the technique is coupled with cryptographic
defenses). However, it sacrifices the ability to improve preci-
sion through multiple independent observations.

We can attack the general problem of finding the best esti-
mation of the time offset δbest from a set of candidate offsets
{δ1, .., δn} by applying the principles of robust estimation.
We note that the individual offset measurements δi might
have natural noise, but some of them might be a result of
a malicious attack. For any estimation method, the breakdown
point is the smallest number of contaminated values which
can move the estimate arbitrarily far from the correct value.
Unfortunately, the most frequently used estimators, the average
and the least squares estimator have a very low breakdown
point; a single malicious value can modify the estimate ar-
bitrarily far. Manzo et. al [12] propose the use of the Least
Mean Squares (LMS) estimator for a more robust modelling.
The generalized extreme studentized deviate (GESD) used by



TABLE I
A CONCISE SUMMARY OF THE VARIOUS TECHNIQUES PROPOSED FOR SECURE TIME SYNCHRONIZATION

Approach Protects against Uses
crytographic
techniques?

Uses statistical
techniques?

Ganeriwal et. al. [4] Jimmy, Mallory Yes Yes
Song et. al. [18] Zach, Jimmy,

Mallory
No Yes

Sun et. al. [19] Zach No Yes
TinySeRSync, Sun et. al
[20]

Zach, Mallory Yes Yes

Manzo et. al. [12] Zach Yes Yes

[18] is another example of the application of the techniques
of robust estimation.

VI. CONCLUSIONS

Among the many challenges in designing and employing
wireless sensor networks is the clock synchronization between
the sensor nodes. Agreeing on a common time is needed
and even required by many of the sensor applications to
carry out the sensing, communication, and processing of the
sensed data. The time synchronization protocols in traditional
wired networks cannot simply be reused in the wireless
sensor networks domain due to the inherent characteristics
and limited resources of these networks. Therefore, several
time synchronization protocols have been proposed recently;
however, most of them do not consider security aspect during
the design stages. There are only handful protocols where the
security has been taken into the consideration.

In this paper, we reviewed three most common secure time
synchronization protocols: i) Reference Broadcast Synchro-
nization (RBS), ii) Time Synchronization Protocol Sensor
Networks (TPSN), and iii) Flooding Time Synchronization
Protocol (FTSP). We then evaluated these algorithms based on
factors such as their countermeasures against various attacks
and the types of techniques used (cryptographic vs. statistical).
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