
Optimizing Clustering Algorithm in Mobile Ad hoc
Networks Using Simulated Annealing

Damla Turgut Begumhan Turgut, Ramez Elmasri and Than V. Le
School of EECS Dept of Computer Science & Engineering

University of Central Florida University of Texas at Arlington
Orlando, FL 32816-2450 Arlington, TX 76019-0015
turgut@cs.ucf.edu {bturgut,elmasri,thle}@cse.uta.edu

Abstract— In this paper, we demonstrate how simulated
annealing algorithm can be applied to clustering algo-
rithms used in ad hoc networks; specifically our recently
proposed weighted clustering algorithm(WCA) is optimized
by simulated annealing. As the simulated annealing stands
to be a powerful stochastic search method, its usage for
combinatorial optimization problems was found to be ap-
plicable in our problem domain. The problem formulation
along with the parameters is mapped to be an individual
solution as an input to the simulated annealing algorithm.
Input consists of a random set of clusterhead set along
with its members and the set of all possible dominant
sets chosen from a given network of N nodes as obtained
from the original WCA. Simulated annealing uses this
information to find the best solution defined by computing
the objective function and obtaining the best fitness value.
The proposed technique is such that each clusterhead
handles the maximum possible number of mobile nodes
in its cluster in order to facilitate the optimal operation of
the MAC protocol. Consequently, it results in the minimum
number of clusters and hence clusterheads. Simulation
results exhibit improved performance of the optimized
WCA than the original WCA.

I. INTRODUCTION

Mobile ad hoc networks have gained tremendous
importance over the last decade. Even though, ad hoc
networks were originally designed and developed for
military purposes, they are also currently used in various
civilian applications such as conferencing, emergency
services, home networking, automotivePC interaction,
personal area networks and bluetooth, embedded com-
puting applications, and so on [10]. These types of
networks are created dynamically in an ad hoc manner
as the name refers. Their life duration is generally short;
it can vary from hours to days to weeks. They become
visible in places where a wired backbone is not feasible
due to time or economics constraints. An ad hoc network
is not only created dynamically but also adapts itself
to ever changing network configurations. Analogous to

cell structure in cellular architecture, the nodes in the
network are generally partitioned to individual clusters.
Each cluster is managed by a special node called a
clusterhead. The clusterheads are responsible for the
formation of clusters, maintenance of the topology of
the network and resource allocation to all of the nodes
in their clusters. The set of clusterheads is known as a
dominant set. Since the configuration of the clusterheads
are constantly changing due to dynamic nature of the
mobile nodes, creating a large overhead, minimizing the
number of clusterheads becomes essential.

Optimization of the clusterheads is an NP-hard prob-
lem [1], [2]. A general approximation algorithm that
runs in polynomial-time needs to be used in order to
solve this kind of problems. It is difficult to find such
algorithm to obtain near optimal solution. Simulated an-
nealing is considered an approximation algorithm where
it is applicable to various problems in general. Genetic
algorithm is another approach in optimizing the cluster
election procedure [12]. We choose simulated annealing
(SA) technique which is a probabilistic search method
widely used in wide range of areas such as mathemat-
ics, computer science, engineering, operations research,
chemistry, physics, and so on [6], [8], [11]. The SA
algorithm can be considered as a version of an “iterative
improvement algorithm” which considers only specific
transitions and terminates in the first local minima found.
Unlike this algorithm, simulated annealing allows vari-
ous types of transitions in which some of them may be
opposite towards achieving the goal. For instance, cost-
increasing transitions are also accepted along with cost-
decreasing transitions whereas iterative improvement al-
gorithm would allows only cost-decreasing ones to pass.
However, it is proven that eventually simulated annealing
produces more optimal solution than the original iterative
improvement algorithm.

In this paper we are focusing on the application of
the SA approach to combinatorial optimization problems.

0-7803-7700-1/03/$17.00 (C) 2003 IEEE 1492

Metropolis algorithm [9] was the original idea behind the
optimization technique of SA. Kirkpatrick et. al, [7] has
used Metropolis algorithm as a global optimizer. Thus,
simulated annealing is also known as global optimizer.
This algorithm is then applied to the physical design of
computers. The advantage of using simulated annealing
is its ability to scale for large scale optimization prob-
lems and its robustness towards achieving local optima
convergence.

SA starts with an initial solution, s. A neighbor to
this solution s′, is then generated as the next solution by
SA and the change in cost, ∆F (s, s′) is evaluated. If a
reduction in cost is found, the current solution is replaced
by the generated neighbor, otherwise we decide with a
certain probability whether s remains or s′ becomes the
current solution. The probability of accepting a transition
that causes an increase, ∆F , in the cost is usually called
the acceptance function and is set to e(−∆F

T
) where T

is the control parameter that corresponds to temperature
in the analogy with the physical annealing process. In
SA, the algorithm is started with a relatively high value
of T , to have a better chance to avoid being prematurely
trapped in a local minimum. The control parameter is
lowered in steps until it approaches to zero. After ter-
mination, the final configuration is taken as the solution
of the problem at hand. That is, simulated annealing is
a generalization of the local search algorithm.

The rest of the paper is organized as follows. In section
2, we propose the optimized version of WCA. Simulation
results are presented in section 3 and conclusions are
offered in section 4.

II. OPTIMIZING A CLUSTERING ALGORITHM

Let us briefly summarize the Weighted Clustering Al-
gorithm (WCA). In WCA, the clusterheads are selected
based on the weight Wv of node v. Wv is obtained as

Wv = w1∆v + w2Dv + w3Mv + w4Pv.

where ∆v is the degree-difference, Dv is sum of the
distances of the members of the clusterhead, Mv is the
average speed of the nodes, and Pv is the accumulative
time of a node being a clusterhead. w1, w2, w3 and w4 are
the corresponding weighing factors such that

∑4
i=1 wi =

1. The node v with the minimum Wv is chosen to be
the clusterhead. Once a node becomes the clusterhead,
neither that node nor its members can participate in the
cluster election algorithm. The election algorithm will
terminate once all the nodes either become a clusterhead
or a member of a clusterhead. All the clusterheads are
aware of their one-hop neighbors as well as the ordinary

TABLE I

SIMULATED ANNEALING ALGORITHM NOTATIONS

Notation : Meaning
N : total number of nodes
s : a random clusterhead set (dominant set)

V (s) : set of all possible dominant sets
F (s) : objective function
T0 : initial temp. of stepped geometric decrease
α : a constant to decrease temperature T
L : # of steps to run with unchanged temp.

ST : max. steps algo. runs without much change
ε : change in the objective function

nodes know their clusterheads. Please refer to [4], [5]
for complete details of WCA.

A. Applying Simulated Annealing

In this section, we propose an optimized version
of WCA by the use of simulated annealing algorithm
(WCA SA). Our goal is to optimize WCA such that
the clusterhead set (dominant set) is minimized while
load in the network is evenly balanced and each clus-
terhead node serves the maximum number of nodes.
The maximum number of nodes that a clusterhead can
serve which is defined as clusterhead’s degree is con-
figurable, meaning that, if a different network topology
is presented, the existing topology can be adapted to
the new scenario. In order to have a smaller number of
clusterheads, each clusterhead must serve the maximum
possible nodes within their clusters.

The terms used in our simulated annealing algorithm
are shown in Table I. Furthermore, F (s) gives the fitness
value of dominant set s and defined as follows:

F (s) =
∑

i=1

|s|Wvi

1) WCA SA Algorithm: Initially, we choose a solution
s at random from neighborhood V (s), then we compute
the objective function F (s) of solution s. Solution s
and F (s) will become the best solution and fitness
value ever met during the course of the algorithm. Next,
we choose any solution s′ at random from V (s); if
F (s, s′) = F (s′)−F (s) ≤ 0, which means if the fitness
value of the next solution (solution s′) that is generated
by simulated annealing is less than or equal to the current
best solution so far, then s′ becomes the current solution;
otherwise we decide with a certain probability whether s
remains or s′ becomes the current solution. However, in
the case where ∆F (s, s′) > 0, the probability (l, ∆F) of
moving s′ as current solution decreases when ∆F (s, s′)

1493

TABLE II

PARAMETERS USED

T0 α L ST ε
50 0.9 100 10 0.1

increases as well as with time. This strategy allows for
escaping from the local minima, at least for small values
of l, and tends to a classical descent algorithm when time
elapses. In general, the probability p(l, ∆F) is defined
by the following expression:

p(l, ∆F) = exp(−l/T × ∆F (s, s′))

where T is called “temperature” by analogy with physi-
cal systems. T is a function of l and the main degree of
freedom. There are several rather complex approaches
to handle this, such as “cooling strategy”, “random
number” and so on. However, we have used a simpler
approach called the “stepped geometric decrease”. The
algorithm starts at a chosen temperature T0, and runs for
L steps with unchanged temperature; then temperature is
decreased at a constant factor α < 1: αT0 = T1; after L
steps with temperature T1, temperature is decreased to
T2 = αT1 and so on. The algorithm stops after a certain
number of steps (ST) if there is no significant change in
the objective function.

In the algorithm we have used the following five
constant parameters: T0, α, L, ST , and ε as described in
Table I. In our implementation we choose the values for
these constants as shown in Table II. These parameters
are configurable from implementation meaning that the
parameter values can be adjusted to serve a particular
application.

2) Select Random Dominant set: The goal of this
sub-function is to select a random dominant set from
a network of N nodes. A node ID starting from 1
to n uniquely identifies each node within a given
network of N nodes. Each node in the network is
either a clusterhead or a member of a clusterhead
(neighbor). A node is a neighbor of a clusterhead
if the distance between the node and its clusterhead
is less than or equal to the transmission range.
The Select Random Dominant Set function starts by
selecting a random node from the network of N nodes.
If the node is neither clusterhead nor neighbor of other
clusterhead, and its node degree is less than or equal to
MAX DEGREE, it becomes a clusterhead. It computes
the weight (Wv) for this clusterhead and adds it into

dominant set. This routine is repeated until every node
in the network is either clusterhead or neighbor of a
clusterhead.

3) Compute Object Function: This sub-function is
mainly used to calculate the fitness value of dominant
set. The fitness value of dominant set is calculated by
summing up all the clusterhead’s weight in the dominant
set.

WCA SA()
Begin

Select Random Dominant Set s
Compute Object Function F (s)
Replace s∗ by s And F∗ by F (s)
While TRUE do

Repeat L times
Select Random Dominant Set s
Compute Object Function F (s′)
If F (s, s′) ≤ 0 {

s′ becomes current solution s
Compute Object Function F (s)
If F (s) is less than F∗

Replace s∗ by s And F∗ by F (s)
}
Else {

Generate a random number in [0,1]
If random number ≤ p(1, ∆F) {

s′ becomes current solution s
Compute Object Function F (s)

}
}
Replace T by a ∗ T (a < 1)
If F is decreased by less than ε percent for
a fixed # ST of consecutive series of L steps

FALSE
}

End

Compute Object Function()
Begin

FitnessValue = 0
For each ClusterHead in DominantSet

FitnessValue = FitnessValue + Wv of ClusterHead
Return FitnessValue

End

1494

Select Random Dominant Set()
Begin

DominantSet = empty
While there are remaining nodes
do

If (node is not a ClusterHead)
and (node is not a member of ClusterHead)
and (Degree of node ≤ MAX DEGREE)

{
Compute weight Wv for this node
Add node to DominantSet

}
}

End

III. SIMULATION STUDY

We simulate a system of N nodes on a 100×100
grid. The nodes could move in all possible directions
with displacement varying uniformly between 0 to a
maximum value (max disp), per unit time. In our sim-
ulation experiments, N was varied between 20 and 60,
and the nodes moved randomly in all possible directions
with a maximum displacement of 10 along each of the
coordinates. Every time unit, the nodes move a distance
that is uniformly distributed between 0 and max disp.
Thus, the maximum Euclidean displacement possible
is 10

√
2. In the original WCA, we assumed that each

clusterhead can at most handle δ = 10 nodes (ideal
degree) in its cluster in terms of resource allocation. Due
to the importance of keeping the node degree as close
to the ideal as possible, the weight w1 associated with
∆v was chosen high. The next higher weight w2 was
given to Dv, which is the sum of distances. Mobility
and battery power were given low weights. The values
used for simulation were w1 = 0.7, w2 = 0.2, w3 = 0.05
and w4 = 0.05. Note that these values are arbitrary at
this time and should be adjusted according to the system
requirements. The same values for all weighing factors
are used both in the original and the optimized WCA.

A. Performance Metrices

We compare the performance of WCA with three
performance metrics: (i) the number of clusterheads,
(ii) the number of reaffiliations, and (iii) load balancing
factor (LBF). The number of clusterheads in the net-
work defines the dominant set. The reaffiliation count
is incremented when a node gets dissociated from its
clusterhead and becomes a member of another cluster
within the current dominant set. These parameters are

studied for varying number of nodes (N) in the system
and maximum displacement.

To quantitatively measure how well balanced the clus-
terheads are, we use a parameter called load balancing
factor (LBF) as was given in [4], [5]. Therefore, it is not
desirable to have any clusterhead overly loaded while
some others are lightly loaded. The load handled by a
clusterhead is essentially the number of nodes supported
by it. A clusterhead, apart from supporting its members
with the radio resources, also has to route messages
for other nodes belonging to different clusters. At the
same time, it is difficult to maintain a perfectly load
balanced system at all times due to frequent detachment
and attachment of the nodes from and to the clusterheads.
As the load of a clusterhead can be represented by
the cardinality of its cluster size, the variance of the
cardinalities will signify the load distribution. We define
the LBF as the inverse of the variance of the cardinality
of the clusters. Thus,

LBF = nc∑
i
(xi−µ)2

where nc is the number of clusterheads, xi is the
cardinality of cluster i, and µ = N−nc

nc
, (N being the total

number of nodes in the system) is the average number
of neighbors of a clusterhead. Clearly, a higher value of
LBF signifies a better load distribution and it tends to
infinity for a perfectly balanced system.

1 2 3 4 5 6 7 8 9 10
6.5

7

7.5

8

8.5

9

9.5

Maximum Displacement

A
ve

ra
ge

 n
um

be
r

of
 c

lu
st

er
s

N=20
N=30
N=40
N=50
N=60

Fig. 1. Average number of clusters, tx range=30

B. Experimental Results

Figures 1 and 2 show the average number of clus-
terheads with the varying max disp for original WCA
and optimized WCA respectively. We observe that the
average number of clusterheads is almost the same for

1495

1 2 3 4 5 6 7 8 9 10
6

6.5

7

7.5

8

8.5

Maximum Displacement

A
ve

ra
ge

 n
um

be
r

of
 c

lu
st

er
s

N=20
N=30
N=40
N=50
N=60

Fig. 2. Optimized WCA-Average number of clusters, tx range=30

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Maximum Displacement

 R
ea

ffi
lia

tio
ns

 p
er

 u
ni

t t
im

e

N=20
N=30
N=40
N=50
N=60

Fig. 3. Reaffiliations per unit time, tx range=30

different values of maximum displacement since it sim-
ply results in a different configuration but the cluster size
remains the same. We observe that the optimized WCA
yields lower number of clusters. Figures 3 and 4 show
the reaffiliations per unit time with the varying max disp
for original WCA and optimized WCA respectively. As
the displacement becomes larger, the nodes tend to move
farther from their clusterhead, detaching themselves from
the clusterhead and causing more reaffiliations per unit
time. Figures 5 and 6 show how the load balancing factor
(LBF) varies with time for original WCA and optimized
WCA respectively. We observe that after every dominant
set update, there is a gradual increase in the LBF. This
gradual increase in LBF is due to the diffusion of the
nodes among clusters. While the values of LBF has
varied between 0 and 0.06 in Figure 5, it went up to
0.6 in Figure 6 indicating a ten times more balanced
system.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Maximum Displacement

 R
ea

ffi
lia

tio
ns

 p
er

 u
ni

t t
im

e

N=20
N=30
N=40
N=50
N=60

Fig. 4. Optimized WCA-Reaffiliations per unit time, tx range=30

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

 L
oa

d
ba

la
nc

e
fa

ct
or

 (
LB

F
)

Time

Clustering Invoked
(dominant set update)

Fig. 5. Load distribution

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

 L
oa

d
ba

la
nc

e
fa

ct
or

 (
LB

F
)

Time

Fig. 6. Optimized WCA-Load distribution

IV. CONCLUSIONS

In this paper, we showed how simulated annealing
can be applied to clustering techniques in mobile ad
hoc networks. Weighted Clustering Algorithm (WCA) is

1496

one such algorithm which can dynamically adapt itself
with the ever changing topology of ad hoc networks.
We have mapped the initial solution given by original
WCA to simulated annealing algorithm in order to find
the best possible solution from a set of all possible
set of dominant sets. Data contained in the solution is
used to compute the objective function of a particular
solution according to the simulated annealing algorithm.
The fitness value is computed in order to obtain the
best solution by comparing each solution to the current
best. This algorithm eventually finds the best solution
without getting stuck in local minima by following the
simulated annealing algorithm. Simulated annealing was
applied to WCA to optimize its performance such that
each clusterhead handles the maximum possible number
of nodes in its cluster. The simulation results show that
fewer clusterheads are obtained by applying simulated
annealing to WCA than the results of the original WCA.

REFERENCES

[1] S. Basagni, I. Chlamtac, and A. Farago, “A Generalized Clus-
tering Algorithm for Peer-to-Peer Networks”, Proceedings of
Workshop on Algorithmic Aspects of Communication (satellite
workshop of ICALP), Bologna, Italy, July 1997.

[2] B. Bollobas, Random Graphs, Academic Press, 1985.
[3] V. Cerny, “Thermodynamical Approach to the Traveling Sales-

man Problem”, Journal of Opt. Theory, Vol. 45, 1985, pp. 41-
51.

[4] M. Chatterjee, S.K. Das and D. Turgut, “An On-Demand
Weighted Clustering Algorithm (WCA) for Ad hoc Net-
works”, Proceedings of IEEE GLOBECOM 2000, San Fran-
cisco, November 2000, pp. 1697-1701.

[5] M. Chatterjee, S.K. Das and D. Turgut, “WCA: A Weighted
Clustering Algorithm for Mobile Ad hoc Networks”, Journal
of Clustering Computing, (Special Issue on Mobile Ad hoc
Networks), Vol. 5, No. 2, April 2002, pp. 193-204.

[6] J.H. Kalivas, Adaptation of Simulated Annealing to Chemical
Optimisation Problems, Elsevier, 1995.

[7] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, “Optimization
by Simulated Annealing”, Science 220, 1983, pp. 671-680.

[8] P.J.M. van Laarhoven, Theoretical and Computational Aspects
of Simulated Annealing, Centre for Mathematics and Computer
Science, 1988.

[9] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller, “Equation of State Calculations by Fast Computing
Machines”, Journal of Chemistry and Physics, Vol. 21, 1953,
pp. 1087-1092.

[10] C.E. Perkins, Ed, Ad Hoc Networking, Addison Wesley, 2001.
[11] D.T. Pham and D. Karaboga Intelligent Optimisation Tech-

niques: Genetic Algorithm, Tabu Search, Simulated Annealing,
and Neural Networks, Springer, 2000.

[12] D. Turgut, S.K. Das, R. Elmasri, and B. Turgut, “Optimizing
Clustering Algorithm in Mobile Ad hoc Networks Using Ge-
netic Algorithmic Approach”, Proceedings of IEEE GLOBE-
COM 2002, Taipei, Taiwan, November 17-21, 2002.

1497

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

