A Comparative Evaluation of Mobile Computing Systems

Damla Turgut, Nevin Aydin and Ramez Elmasri
Department of Computer Science and Engineering
University of Texas at Arlington
Arlington, TX 76019, USA
Email:{turgut, aydin, elmasri}@cse.uta.edu

ABSTRACT

As mobile computing systems and applications be-
come more common, we see many differences and
many similarities among various applications. In this
paper, we study three existing mobile computing sys-
tems: Bayou, Odyssey, Rover and then propose a
methodology for describing mobile systems. We il-
lustrate how current systems fit within our taxonomy
and postulate new systems and describe their charac-
teristics. We describe how mobile applications differ
from traditional distributed systems and identify com-
mon features of mobile computing systems: mobile-
awareness, network flexibility, data integrity, update
semantics, and consistency guarantees. We compare
and contrast these systems based on these identified
common features. We also evaluate them with respect
to two detailed mobile scenarios. Calendar manage-
ment scenario involves mobile and fixed clients, which
update textual data as separate workgroups. Multi-
media presentation scenario involves a high-resolution
presentation, where adjustments are made over a low-
bandwidth connection. Bayou handles the first sce-
nario well; Odyssey is more suited to the second sce-
nario. Rover, in contrast, provides infrastructure sup-
port for both scenarios but require additional object-
oriented programming.

I. INTRODUCTION

The growth of the internet has led to the emer-
gence of mobile computing. Many applications that
had been unforeseeable a few months ago have become
reasonable or will be in the near future. Multimedia
in mobile applications has increased the size and com-
plexity of data that such applications need to process.

The researchers have designed information systems
to address the needs of mobile computing users. We
examine three such systems: Bayou [3], Odyssey [2],
and Rover [5]. Previous research [4] has compared
Bayou, Rover, and Coda (the predecessor of Odyssey).
That comparison focused on the ability of each sys-
tem to handle weakly connected hosts. In this paper,

however, we compare the systems based on criteria
common to any mobile computing environment.

First, we describe the differences between mobile
computing and more traditional distributing systems.
Section 2 introduces the common requirements of mo-
bile computing systems. Section 3 gives an overview
of the three mobile computing systems. In section 4,
we qualitatively rank the ability of the mobile comput-
ing systems to meet the requirements given in section
2. Section 5 discusses two mobile computing scenarios
in detail and describes how the three systems support
the scenarios. We conclude by contrasting the abilities
of the three systems considered. For the remainder of
the introduction, we outline general application areas
for mobile computing.

A common office activity is reserving conference
rooms for presentations and meetings, known as the
group calendar application [3]. We would like man-
agers to be able to reserve rooms even while away on
a business trip. Traditional calendar programs assume
that everyone updating the (shared) calendar has reli-
able network connections and thus the software cannot
handle disconnected mobile hosts.

Another mobile application is email using the POP
protocol which allows a server to hold a user mail and
allows the user to retrieve the email from any sys-
tem. With only slight additional coding, a POP client
can support mobile computing by pre-fetching all new
messages during a brief network connection and queu-
ing the user replies until the user reconnects [3].

Emergency response is also well suited application
area. Often emergency response personnel need spe-
cific information, such as a copy of an emergency call
report for a medical or police emergency. Fixed net-
works are unavailable for an emergency response team,
and often the only wireless communications available
are satellite communications with very high latency.
Ideally, a mobile system supporting emergency re-
sponse teams would allow two way communication of
both voice and graphical data.



II. COMMON REQUIREMENTS

Much research literature has focused on systems de-
signed to support distributed computing. This section
contrasts mobile computing systems with traditional
distributed systems and briefly describe the common
requirements of the mobile computing systems.

Mbobile-awareness: Traditional distributed sys-
tems use a variety of data migration algorithms to
move data to the places where it is needed. In mo-
bile computing environments, however, a mobile client
might change some data and then disconnect from the
network. The data migration algorithm must not use
the mobile host as sole owner of the data. Mobile-
transparent systems modify the server to allow appli-
cations to run on mobile host without any modifica-
tions. Mobile-aware systems in contrast modify both
the server and the mobile host applications.

Network Flexibility: Traditional distributed sys-
tems distinguish between client/server architectures
and peer-to-peer architectures. In mobile computing,
the distinction between clients and servers is not as
crucial as the distinction between mobile hosts and
fixed hosts. Some mobile computing systems use a
fixed client/server architecture and some are more
flexible, but all systems must handle network failures
more robustly than traditional distributed systems.
Often, a mobile host will be voluntarily or involun-
tarily disconnected from the network for an extended
period of time, and while connected, the mobile host
network connection may be less reliable than the net-
work connections for the fixed hosts.

Data Integrity: Mobile systems often differ from
distributed systems on how they handle data integrity
issues in that a conflict means two or more hosts have
issued incompatible updates to the same piece of data.
Conflict detection and resolution refers to a system’s
ability to detect conflicts and manage the conflicts ei-
ther with or without user intervention.

Update Semantics: Update protocols for dis-
tributed systems assume a particular host is the man-
ager of a piece of data and the host is known or can
quickly be determined. In contrast, in a mobile com-
puting environment, a host may be disconnected from
the network for an extended time, and thus cannot
communicate with the manager of a piece of data.

Consistency Guarantees: A distributed system
with fast and reliable network communication can of-
fer a stronger consistency guarantee than a mobile sys-
tem. Often, mobile computing systems distinguish be-
tween tentative and committed updates. A committed
update is final; a tentative update is subject to being
rolled-back if it conflicts with other updates.

ITIT. OVERVIEW OF THE SYSTEMS
In this section, we briefly describe three mobile
computing systems and consider how they address
each of the requirements we identified above.

A. Bayou

Bayou, developed by Xerox PARC [3], uses a flex-
ible client/server architecture in which any host can
become a server. Each server has a complete copy of
the database and can handle tentative updates. Only
the primary server can commit transactions. Bayou
does not directly distinguish between mobile hosts
and fixed hosts, but its algorithms can handle low-
bandwidth connections, disconnected hosts, and par-
titioned networks [7]. An application-specific merge
procedure identifies and resolves conflicts. For ex-
ample, requests to reserve two different rooms at 3
o’clock will not be a conflict unless the meeting in-
volves the same participants. Bayou uses a novel anti-
entropy algorithm which over time guarantees lazy-
release consistency. The anti-entropy algorithm [3] is
designed so that it makes progress towards consistency
even if a network connection is unexpectedly broken.
The anti-entropy protocol can also accommodate an
unconnected host through floppy disks or other re-
movable media. Figure 1 shows Bayou’s architecture.
Clients can connect to any reachable server; servers
can be created or retired as needed.

Primary
Server

Server

Committed | Tentative
Data pata
Write Log

=

Figure 1: Bayou System Architecture

B. Odyssey

Odyssey, developed at Carnegie Mellon University
[2], uses a client/server architecture in which a single
server can send data to many different clients. Instead
of a file-based server, Odyssey uses a series of wardens,
each of which has specific knowledge for specific data.
When a client requests a data item, it sends a list of
its capabilities, which are forwarded to the appropriate

Server

Committed | Tentative
Data Data

Write Log




warden. The warden prepares and transmits the data
in a format suited to the capabilities of the client. For
example, if a fast client with a high-bandwidth connec-
tion requests a movie file, the warden can send a full-
screen color version of the movie. If another client on
a low-bandwidth connection makes a request for the
same movie, the warden will send a black and white,
1/4-screen version of the movie. Odyssey does not di-
rectly support disconnected hosts. One unique feature
of Odyssey is that it can respond to dynamic changes
in bandwidth availability. Odyssey stores data only
in a single server and thus, the server can easily arbi-
trate between conflicting updates. Odyssey’s update
protocol resembles distributing computing rather than
mobile computing. Figure 2 shows Odyssey’s system
architecture (from [1]).

Mobile Quick Time
Host Warden
soQL
leeroy| warden
Application

Requests Unix File
Warden

Intercepter

Unix Kernel

Figure 2: Odyssey System Architecture

C. Rover

Rover, developed at MIT [5, 6], is a client/server
architecture which uses Relocatable Dynamic Objects
(RDOs). Each object has a host server that manages
consistency issues related to that object. Clients can
retrieve objects from the server or use remote proce-
dure calls (RPCs) instead. If a client is disconnected
from a server, it can queue the remote procedure calls
(QRPCs); these will be transmitted to the server when
the client reconnects. Rover supports disconnected
hosts by allowing RPC commands to be queued and by
the use of split-phase transactions, meaning that the
client can disconnect between initiating the transac-
tion and receiving the results of the transaction. Rover
does not directly detect conflicts; a server instead will
use a custom conflict detector based on the applica-
tion, data types, and operations involved. Once a
server commits a transaction, it sends a response to
the client allowing the client to maintain data consis-
tent with the server. Figure 3 shows Rover’s system
architecture.

IV. MOBILE COMPUTING SYSTEMS

In this section, we describe the characteristics com-
mon to Bayou, Odyssey and Rover: transparency,
data replication, consistency guarantees, network flex-
ibility and network robustness.

Transparency: Transparency refers to the ability
of the system to interface with ordinary network ap-
plications. Existing mobile computing systems require

Application Application

| <77 Network
Network %Network

Object
Cache
Scheduler
Schedule

Comand;9 _| | Conflict
Log Detection

-

Figure 3: Rover System Architecture

changes to the server software. Mobile-transparent
systems use existing client software, but mobile-aware
systems require changes to the client software. An-
other transparency issue is how involved the user must
be in data management. A system with no trans-
parency would require extensive modifications to both
server and client software as well as significant user
intervention. Perfectly transparent system would re-
quire no changes to either client or server.

Data Replication: Data replication measures not
just the number of copies of the data but also the
degree to which the system keeps track of replicated
data. A system with no data replication stores data
only at a single central server. A system with medium
amount of data replication allows data to be stored in
multiple locations, but keeps track of which hosts have
copies of the replicated data. A system with high data
replication allows any host to have any piece of data
and may not keep track of which hosts have which
piece of data.

Consistency Guarantees: The systems are
ranked by the strengths of their consistency guar-
antees using the following types: inconsistent data,
application-specific consistency, lazy-release consis-
tency, weak consistency, pipelined-PRAM, sequential
consistency, and strong consistency.

Network Flexibility: Network flexibility of a sys-
tem indicates whether a system allows servers to be
dynamically created or retired. A system with no net-
work flexibility uses a fixed client/server architecture
with a single server. An extremely high value for net-
work flexibility indicates a maximally flexible system
in which servers can be dynamically created or retired.
Intermediate values indicate systems which can sup-
port more than one server, but either have a desig-
nated primary server or do not support dynamic re-
tirement of a server.

Network Robustness: Network robustness indi-
cates whether a system can maintain its consistency
guarantee in the face of unreliable network communi-
cation. A system with no robustness assumes the net-
work topology is stable and the communication links
remain functioning. A system with very high network



robustness can continue operation even when the host
disconnects and reconnects to the network. Interme-
diate values indicate a system that is flexible in some
areas, but has strong requirements in other areas.

A. Rankings of The Systems

In this section, we rank the systems discussed in
section 3 based on the criteria described above. Table
1, in the conclusions, summarizes our evaluation.

A.1 Bayou

Bayou has very low transparency. The imple-
menter not only must the use custom software for
both the client and the server, but also must write
application-specific merge procedures. Bayou has very
high data replication; any host can acquire any copies
of data items without informing the global system.
Over time, Bayou will achieve lazy-release consistency.
Bayou’s merge-proc allows the programmer to define
an application-specific consistency guarantee. Bayou
has high network flexibility in that any host can be-
come a server and any client can retrieve or update
data from any server. Bayou’s only area of inflexi-
bility lies in having a primary server which commits
changes. Bayou has extremely high network robust-
ness and accommodates changing topologies and un-
reliable communications. Even if the network link
fails in the middle of an anti-entropy update message,
Bayou still makes progress toward data consistency.
Bayou’s algorithm is flexible enough to allow the up-
date messages to be transported on removable media
such as floppy disks. The only drawback to unreliable
or slow communication is that it lengthens the time
required to achieve lazy-release consistency.

A.2 Odyssey

Odyssey has medium amounts of transparency. It
requires extensive changes to server software and also
requires that the data to be stored (or at least con-
verted) in several forms. However, it requires only
minimal changes to client software. Odyssey’s op-
erations are completely transparent to the end user.
Odyssey has no data replication; because data is
stored in a central server, Odyssey can offer sequential
consistency. Odyssey has very low network flexibility;
it uses a traditional client/server model. Odyssey’s
sole source of flexibility is allowing unknown entities to
use internet connections and become clients. Odyssey
also has low network robustness; if the server or the
server’s network link goes down, then Odyssey will be
unable to function. Odyssey does, however, take into
account the quality of the client’s network connection.

A.3 Rover
Rover Toolkit requires additional programming to
support particular mobile computing applications.

Rover can either support mobile-aware or mobile-
transparent systems. In [5, 6], Rover authors describe
how Rover can be used with an unmodified Netscape
client to support mobile operations. Thus, trans-
parency in Rover can vary from none to high. Rover
programmers can choose between using Remote Pro-
cedure Calls (RPCs) and using Relocatable Dynamic
Objects (RDOs). Rover supports moderate amount
of data replication although programmers can use a
fixed client/server architecture. Rover directly sup-
ports primary-copy, tentative-update, optimistic con-
sistency. If the user wishes to have a stronger con-
sistency guarantee, the user must add additional ob-
jects to Rover to support the consistency guarantee.
Thus, we rank Rover having an application-specific
consistency guarantee. In Rover, each object has a
home server. The objects are transported to clients as
needed and different applications can use the objects
on a Rover client. Thus, Rover has very low network
flexibility. Once the object is initially retrieved, Rover
allows for disconnected operations. Thus, Rover has
high network robustness.

V. MOBILE COMPUTING SCENARIOS

In this section, we develop two typical scenarios and
then describe how each of the three systems can ad-
dress specific needs of mobile computing.

Calendar Management: Consider a calendar man-
agement program used in a conference. Originally, the
organizers are connected to a high-bandwidth corpo-
rate network in Dallas. However, the conference is in
San Francisco. The organizers will be making changes
to the conference schedule on the plane while traveling
to San Francisco. While the organizers are en route,
the conference center, in conjunction with organizers
who have remained in Dallas, may need to adjust the
schedule as well. Ideally, when the conference organiz-
ers land in San Francisco, they will be able to quickly
merge their changes with the changes made in Dallas.
A mobile system supporting this application should
resolve conflicting updates and allow a workgroup to
make changes even while they are disconnected from
the main network. This application does not require
transparency and if we assume that the mobile hosts
have reasonably sized disk drives then data replication
is unimportant. This application requires a network
robustness and a flexible network architecture.

Multimedia Presentation: Consider a corporate
executive working in Santa Cruz, California. The ex-
ecutive is preparing a multimedia presentation for dis-
play to some investors in New York. Both New York
and Santa Cruz have high-capacity networks; however,
while on the plane, the only network connection avail-



able to the executive is an expensive, low-speed mo-
dem connection. A mobile system supporting this ap-
plication should allow our executive to modify his pre-
sentation over a low-bandwidth connection on a plane
while still being visually impressive when presented
over a high-bandwidth connection in New York. Since
the multimedia application may exceed the capacity
of the mobile host, it is essential that a system sup-
porting this application have medium data replication.
The system does not need to be able to handle flexible
network architecture, but it needs to efficiently handle
low-bandwidth network connections.

A. Bayou Support for the Scenarios

Bayou can directly support our calendar manage-
ment scenario. Bayou allows any system to become
a server and allows disconnected workgroups to make
changes to the content even if the primary server is
unreachable. Our conference organizers should allow
one of their mobile computers become a server while
still connected to the corporate network. The organiz-
ers can make changes to the schedule independent of
any changes made to the copy on the primary server.
If desired, the workgroup can split and the result-
ing two mobile servers can achieve local consistency
using the anti-entropy algorithm even if the primary
server is unreachable. When the mobile computers are
again able to reach to the corporate network, the mo-
bile server(s) can run the anti-entropy protocol with
the primary server to achieve global consistency. An
application-specific merge procedure provides a way
to automatically detect false conflicts. Figure 4 shows
this scenario.

Bayou cannot handle the multimedia presentation
scenario as well as the first scenario. For the executive
to be able to make changes, the executive’s computer
must become a server, meaning the computer must
hold a copy of the entire presentation which could eas-
ily exceed the disk space available on the mobile host.
Even if the executive has enough storage space for the
entire presentation, update messages sent while on the
flight would likely take an inordinately long time to
transmit over the low-bandwidth modem connection.
Bayou does allow updates made while on the flight to
be queued until a high-bandwidth connection is avail-
able, but Bayou does not have a method of reducing
the storage or bandwidth costs of read requests.

B. Odyssey Support for the Scenarios

Odyssey provides only limited support for the first
scenario. Odyssey allows only a single server. Our
conference organizers must decide whether the server
will be on a mobile host on their plane or the fixed
host connected to the corporate network. While the
conference organizers are disconnected from the cor-

Central
Server
data

‘ Organizer

Secretary

Organizer Organizer

Organizer
(server)
data

Initially, all clients are connected to a high—speed network in Dallas. One of the
coordinators has downloaded the schedule and registered for the flight.

Central

Server
data

‘ Secretary

Organizer Organizer
(server) Jata

Organizer ‘

‘ Organizer

While on the plane, one of the organizers can modify the schedule while the secrete
can update the database on the central server.

Central

Server
data

Secretary

Organizer Organizer Organizer

Organizer
server
¢ )dala

(disconnected workgroup)

At the conference, the organizers can modify the schedule using mobile host as
server. The mobile host and primary server can periodically connect to resolve
conflicts. If needed, additional servers can be created either at the central office
or at the conference site.

Figure 4: Bayou Support for Mobile Calendar Appli-
cation

porate network, the network has been partitioned and
some clients will be unable to make changes to the
data on the server.

Odyssey does however, provides extensive support
for the second scenario. Odyssey allows several rep-
resentations of the same data optimized for different
bandwidths. Thus, the executive can re-sequence a
low-resolution black and white movie while on the
plane; when he returns to a high-bandwidth network,
Odyssey will reflect the changes in the high-resolution,
high-bandwidth color presentation. Figure 5 shows
this scenario.

C. Rover Support for the Scenarios

Rover partially addresses the requirements needed
for the first scenario. Our conference organizers can
make changes even when disconnected from corporate
network. However in Rover, the organizers cannot
synchronize their changes locally; instead they must
wait until they reconnect to the main network and
synchronize their changes with the fixed server. Any
conflicts arising from different conference organizers
will not be noticed until the organizers reconnect to
the corporate network.

Rover also provides some support for the second
scenario. Rover allows the executive to store a cache
of objects. The corporate executive can freely mod-
ify any objects in his/her cache. The changes made



s High—resolution
erver presentation

High—Bandwidth High—resolution
Network Video

(managen

Initally, the manager views and edits the presentation
in full-screen color video.

High—resolution
presentation

Low—Bandwidth Low-—resolution
Network Video
Mobile Host| (manager)

While on the plane, the manager views the presentation as a
low—resolution, black and white video. Changes made by the
manager will affect the full data held by the server.

Server

High—resolution|
presentation

High—Bandwidth
Network

Fixed Host | (manager)

When the manager reaches his destination and reconnects tc
a high—capacity network, he can see the modified presentatic
in full-screen color video.

High—resolution
Video

Figure 5: Odyssey Support for Multimedia Presenta-
tion

will be stored in an operations log, which can be sent
to the server over a relatively low-bandwidth connec-
tion. The executive can also queue changes to objects,
which are not in his/her cache; however, to retrieve in-
formation from an object, the executive must have a
local copy of the object. The programmer of the Rover
objects has the opportunity to make tradeoffs among
operations performed on the server, operations per-
formed on the client, and data transmitted from the
server to the client. When the client changes the lo-
cal object, an operations log records the transactions
made depending on the size of the operations log and
the size of the data. The client can either send the
complete object to the server or it can send the op-
erations log which the server executes on the master
object. Thus, our programmer can design the presen-
tation object to only download a low-bandwidth ver-
sion of the presentation and yet apply any changes to
the high-bandwidth version on the server side. With
this additional programming, Rover supports the mul-
timedia scenario.

VI. CONCLUSIONS

In this paper, we have identified and contrasted
characteristics common to mobile computing systems:
mobile-awareness, network flexibility, data integrity,
update semantics, and consistency guarantees. We
evaluated Bayou, Odyssey and Rover mobile comput-
ing systems according to the support they provided
for calendar management and multimedia presenta-

Table 1: Comparison of Mobile Computing Systems

Characteristics Bayou Odyssey Rover
Transparency very low medium none-high
Data replication very high none medium
Consistency lazy-release  sequential varies
Network flexibility high very low very low
Network robustness very high low high

tion scenarios. Table 1 shows our evaluation of these
systems. Bayou directly supports disconnected work-
groups and has flexible server architecture to react to
partitioned networks. Bayou’s anti-entropy protocol
allows servers to progress towards consistency even
while on a intermittent or unreliable network connec-
tion. Bayou, however, offers only a weak consistency
guarantee. Odyssey in contrast requires continuous
(but possibly low-bandwidth) connection to a central
server, but Odyssey can offer a stronger consistency
guarantee. Rover requires additional programming,
but can offer to choose between consistent data and
disconnected operations.

One of the major tradeoffs in mobile computing sys-
tems is between offering strong consistency guarantees
and robustly handling disconnected workgroups or un-
reliable network communication. Another issue is how
much transparency to support. We expect that as the
systems become more flexible, they will support oper-
ations that are both transparent and flexible.

References
[1] Noble, B., Price, M., and Satyanarayanan, M. ”A Pro-
gramming Interface for Application-Aware Adaptation in
Mobile Computing.” Proceedings of the Second USENIX
Symposium on Mobile and Location-Independent Com-
puting, Ann Arbor, MI, April 1995.

[2] Noble, B. Mobile Data Access. School of Computer Sci-
ence, CMU, CMU-CS-98-118, May 1998.

[3] Peterson, K., Spreitzer, M.J., Terry, D.B., Theimer,
M.M., and Demers, A.J. "Flexible Update Propagation
for Weakly Consistent Replication.” Proceedings Six-
teenth ACM Symposium on Operating Systems Principles
(SOSP), Saint-Malo, France, October 1997.

[4] Pitoura, E. and Samaras, G. Data Management for Mo-
bile Computing, Kluwer Academic Publisher, 1998.

[5] Tauber, J.A. Issues in Building Mobile-Aware Applica-
tions with the Rover Toolkit. MS Thesis, MIT, May 1996.

[6] Tauber, J.A. and Kaashoek, M.F. "Mobile Computing
with the Rover Toolkit.” IEEE Transactions on Comput-
ers: Special issue on Computing, 46(3), March 1997.

[7] Terry, D.B., Demers, A.J., Peterson, K., Spreitzer, M.J.,
Theimer, M.M., and Welch, B. ”Session Guarantees for
Weakly Consistent Replicated Data.” Proceedings of the
International Conference on Parallel and Distributed In-
formation Systems (PDIS), Austin, Texas, September
1994, pp. 140-149.



