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Abstract— Realistic modeling of the movement of people in an
environment is critical for evaluating the performance of mobile
wireless systems such as urban sensing or mobile sensor networks.
Existing human movement models are either fully synthetic or rely
on traces of actual human movement. There are many situations
where we cannot perform an accurate simulation without taking
into account what the people are actually doing. For instance,
in theme parks, the movement of people is strongly tied to the
locations of the attractions and is synchronized with major external
events. For these situations, we need to develop scenario specific
models.

In this paper, we present a model of the movement of visitors in a
theme park. The nondeterministic behavior of the human walking
pattern is combined with the deterministic behavior of attractions
in the theme park. The attractions are divided into groups of rides,
restaurants and live shows. The time spent by visitors at different
attractions is calculated using specialized queuing-theoretic models.
We compare the realism of the model by comparing its simulations
to the statistics of the theme parks and to real-world GPS traces
of visitor movement. We found that our model provides a better
match to the real-world data compared to current state-of-the-art
movement models.

I. INTRODUCTION

Recent advances in mobile devices enabled the increased
popularity and usage of mobile applications. The realistic mod-
eling of human movement is very important for the performance
assessment of mobile wireless systems. Human mobility models
simulate the movement patterns of the mobile users and are a
key component for simulation-based performance evaluation [1].

Early mobility models relied on some type of variations of
the idea of a random walk. Examples of this include the random
waypoint (RWP) [2] and Brownian Motion [3] models. These
models are only a very coarse approximation of human behavior.
It was found that one of the most important characteristics of
human mobility is the combination of regularity and spontaneity
in deciding the next destination point. This behavior can also
be defined as making both deterministic and nondeterministic
decisions in the same time period. For instance, theme park
visitors usually pre-plan their visit. They try to optimize their
time on rides while minimizing the time it takes to walk from
one attraction to another. Nevertheless, when they are in the
park, they may change their decisions spontaneously depending
on various factors. Random mobility models are not a good
match for this behavior.

The current human mobility models can be classified into
trace-based [4] and synthetic [5] models. The trace-based
models generally use GPS traces and Bluetooth connectivity

observations. However, it is difficult to collect real data and
the amount of publicly available data is limited. Therefore,
synthetic models, which are defined on mathematical basis,
are widely used in the simulations. Most mobility models aim
for a generic human movement modeling. However, human
movement patterns depend on the application scenario. The
mobility of people is driven by their goals when they are moving
in the environment. For instance, walks in a city center are
driven by the need to rapidly reach specific destinations. In
a university campus, walks are constrained in space by the
destination of classrooms, meeting rooms, and cafeterias. At
the same time, they are constrained in time by the schedules of
classes and meetings. In an amusement center, the movement
would be determined by the attractions the users planned to
visit. These examples illustrate the need for the scenario-specific
model of human mobility.

In this paper, we present a mobility model of visitors in
a theme park. The outputs of the model are the synthetic
movement tracks, pausing locations (waiting points) and pausing
times. First, the fractal points are generated by the model
in order to create the pausing and stopping locations. The
concentrated locations of these fractal points are defined as
the meeting locations of visitors or attractions. This method
decreases the number of waypoints in a map, allowing the
simulation of a large number of visitors. It also makes the
mobility model more realistic since real attractions such as
restaurants or rides in the environment can be simulated by their
individual models. These locations are grouped into four main
attraction types of theme parks: main rides, medium-sized rides,
live shows, and restaurants. The waiting times of visitors at these
attractions are modeled using queuing theory.

Let us now consider how such a model can be used for
wireless mobile applications. For instance, a wireless sensor
network (WSN) can be deployed in a theme park for purposes
such as finding the fastest way to move from one location
to another considering the current density of the crowds in
different areas of the park. Such WSN can actually rely on
the personal mobile devices of the visitors and can be used
to offer an interactive theme park experience. Social networking
applications or multi-player games can be offered to the visitors
with the support of a deployed wireless system or in an ad hoc
working mode. The performance of such a system would highly
depend on the mobility of the users and must be evaluated by
simulation before deployment.

Another class of applications of the model is supporting



theme park administration. Theme park administrators must
direct visitors efficiently among attractions and balance the
number of visitors at each attraction. It is desirable to balance
the density of the crowd in different areas of the park. The
administrators can use the mobility model to estimate the impact
of different actions they can take, for instance, by deploying
live entertainers and arranging the paths for pedestrian traffic
dynamically. The predictive results of the models can be used
to decide the locations of security personnel.

II. RELATED WORK

There are various human mobility models presented in the
literature. One collection of these are the random walk model
group, in which the next destination of a node and the velocity
are chosen randomly based on some probability distribution.
RWP [2] mobility model is the most commonly used random
walk model and it creates random movement patterns for inde-
pendent nodes in an area without any constraints. RWP serves
as the base and has been extended for many other models [5].
However, random walk models are not appropriate for human
mobility in realistic scenarios such as a theme park, since the
nodes in such models do not have any prior planning in their
movements.

Human mobility has several characteristic features, which
have been observed by different measurement methods. Exam-
ples of these features are truncated power-law distributions of
pause times, inter-contact times, fractal waypoints and heteroge-
neously defined areas of individual mobility. Rhee et al. [6], [7]
shows that these properties are similar to the features of Lèvy
walks and used these properties to design Self-similar Least
Action Walk (SLAW) model. SLAW is a context based Lèvy
Walk model, which produces synthetic walk traces by taking
the degree of burstiness in waypoint dispersion and heavy-tail
flight distribution as inputs.

According to SLAW mobility model, the mobile nodes walk
from one waypoint toanother. The clusters of waypoints form
the areas where the people pause or stop most of the time. In
a theme park, these waypoints correspond to the areas which
attract people. SLAW models human mobility in a general
context where the waiting times at the waypoints are determined
according to a power law distribution. However, for our par-
ticular theme park scenario, the waiting times must be defined
according to the characteristics of the attractions. The attractions
at theme parks can be combined into groups of main rides,
medium-sized rides, live shows and restaurants [8]. The waiting
times of visitors at these attractions are modeled using queuing
theory. Basically, in our model, queueing theory is integrated
with the mobility model, to create a realistic user mobility model
for the theme parks.

There are scenario specific mobility models offered in the
literature for the evaluation of wireless mobile systems. Liu
et al. [9] develops a physics-based model of skier mobility
in mountainous regions by considering the physical effects
of gravity and the steepness of the terrain. The goal of the
model is to evaluate the effectiveness of wireless communication

devices in improving avalanche safety. The weighted waypoint
mobility model [10] by Hsu et al. describes the pedestrian
movement patterns among preferred locations on a campus. The
preferred locations are predetermined in the environment and
assigned with “weights”, which define the probability of being
selected as the destination by the pedestrians. Ro and Van Hanh
[11] presented a mobility model to evaluate their solution for
supporting global mobility in PMIPv6 networks. ParkSim [12]
by Vukadinovic et al. is a software tool simulating the mobility
of theme park visitors. The tool is used for the simulation of
wireless ad hoc networks and its mobility model is driven by
the possible activities the visitors would perform in the park.

III. HUMAN MOBILITY MODEL

A. Overview of the model

In this section, we present a scenario-specific mobility model
for the theme park visitors. Before describing the model, let us
briefly explain the fundamental characteristics of these enter-
tainment areas. Theme parks are large areas with one or more
“themed” landmarks that consist of attractions. Visitors of a
theme park plan to see a subset of these attractions by walking
during their scheduled visit. SLAW model provides an effective
strategy in representing social contexts of common gathering
places of walking people by fractal points and heavy-tail flights
on top of these fractal points. We use this idea as a baseline for
a more realistic mobility model and apply queuing models to
represent the behavior and effects of different types of attractions
on mobility of theme park visitors.

B. Modeling a theme park

In this subsection, we describe the five main phases to model
a theme park. The model of a theme park is built upon these
phases starting with the first phase of fractal points generation.

1) Fractal points: We use the term fractal points based on
the usage for the SLAW mobility model [7]. As a human
behavior, people are more attracted to visit popular places.
This characteristic of human walk is expressed in the mobility
model by the fractal points. In our model, the fractal points
are initially created in an empty area using the same technique
in SLAW. A fractal point can be considered as a waypoint at
the beginning. All fractal points and the area, in which these
points are generated in, are used to form a landmark. Fig. 1
demonstrates the first phase of the model in a scenario, where
1000 fractal points are generated in an area of 1000×1000
meters.

2) Clusters: After generation of fractal points, we determine
the parts of the area with highest fractal points. The goal of this
phase is finding the areas where people are more attracted to
gather together.

We use a modified version of DBScan [13] algorithm on the
generated fractal points to find the attraction locations. DBScan
is a density based clustering algorithm for discovering clusters
with noise points, which has two input parameters, epsilon
“Eps” and minimum number of points (neighbors) “MinPts”.



Fig. 1. Fractal point generation phase of the model.

The Eps-neighborhood of a point p, denoted by NEps(p), is
defined by NEps(p) = {q ∈ D|dist(p, q) ≤ Eps} where D
is the database of points. In our DBScan approach, for each
point in a cluster, there are at least “MinPts” neighbors in the
Eps-neighborhood of that point.

In our model, DBScan algorithm is modified based on our
requirements. The input parameters include epsilon, minimum
number of neighbors, number of clusters and proportion of noise
points among all fractal points. The number of clusters and
noise point ratio are used to specify a landmark. For instance, if
there are 25 attractions in a theme park, the number of clusters
becomes 25. The noise point ratio is used to determine the
nondeterminism in mobility empirically (e.g. 10%) or based on
statistical data collected from the visitors of a theme park. The
values of the minimum number of neighbors and epsilon are
searched with a heuristic, which alters the values of these two
parameters based on the previous results. Changing the values
of these two parameters directly changes resulting number of
clusters and noise point ratio. For instance, if epsilon has a
larger value and minimum number of neighbors has a smaller
value compared to the previous iteration, DBScan produces less
number of clusters, with a smaller noise point ratio.

Let us assume a landmark is required to have 5 queues
and the proportion of noise points to be approximately 0.10.
The initial epsilon and minimum number of neighbors are set
as 30 meters (for dimensions of 1000×1000 meters) and 8
empirically. After setting the initial values, the fractal points are
scanned iteratively and the values of new epsilon and number
of neighbors parameters are set based on the results of the
last iteration. When there are expected number of queues and
expected approximate proportion of noise points, the clustering
of fractal points is finalised and the parameters get their final
values.

After the clustering of fractal points, the most dense areas are
determined. Fig. 2 shows an example clustering output, over
1000 fractal points in an area of 1000×1000 meters. In this
example, 15 clusters are generated and marked, whereas the
fractal points, with a proportion of 10% among all fractal points
are not clustered.

Fig. 2. Clusters generated by DBScan over 1000 fractal points.

3) Attractions and Noise Points: The noise points are ob-
tained from the previous step, and we categorize clusters as
queues. The most dense areas found by clustering step are
marked as “attractions”. In our model, attractions are represented
by queuing models. We decide on the types and the weights of
the queues based on the number of waypoints and previous work
on theme park design. The weight of a queue is defined accord-
ing to the number of fractal points included in its corresponding
cluster. The central point of a queue is the average position of
all the fractal points included in its corresponding cluster. Non-
clustered fractal points are marked as “noise points”. According
to Wanhill [8], the attractions in a theme park are defined by
queuing models and their percentages are distributed as given
in Table I.

TABLE I
ATTRACTION PERCENTAGES

Attraction Queue model Percentage
Main rides (RD) M/D/n 17%
Medium-size rides (M-RD) M/D/n 56%
Restaurants (RT) M/M/1 17%
Live shows (LS) M/M/n 10%

Each attraction has a corresponding queue type and the queue
types have their particular properties. M/D/n queue has a
constant service time, whereas M/M/1 and M/M/n queues
have service times according to exponential distribution.

In our model, M/D/n queue model is used for the main rides
and the medium-sized rides since they have very similar queue
behaviors. M/M/1 queue model is used for restaurants and
M/M/n queue model is employed for live shows. Restaurants
and live shows have exponential service rates, while main rides
and medium-sized rides have constant service rates.

The attractions and noise points in the model are defined as
the waiting points in a landmark. Basically, attractions and noise
points form a landmark in our model.

4) Landmarks: Landmarks are generated as a result of
the previous steps, including the generation of fractal points,
density-based iterative clustering and generation of queues ac-
cording to their weights, queue types, and service rates to



Fig. 3. A landmark model including queues, noise points and initially
distributed mobile nodes.

represent attractions in a landmark.
A landmark is a place where there are multiple queues and

noise points. Each landmark has two dimensions specifying its
size. Fig. 3 shows a landmark model with initial placement of
20 visitors (mobile nodes), queues and noise points in an area of
1000×1000 meters. In this figure, central points of the queues
are represented by squares. The noise points and initially located
mobile nodes are shown by small dots and circles respectively.
Each queue is presented with its queue type: main rides (RD),
medium-sized rides (M-RD), live shows (LS), and restaurants
(RT).

The proposed landmark model is used to model areas such as
a landmark in a theme park or an open-air event on a university
campus by assigning the number of queues and the proportion
of noise points accordingly.

5) Theme Park Map: For modeling the theme park, we use
a graph theoretical approach. The theme park map is modeled
as a graph consisting of vertices and weighted non-directional
edges. Each vertex in the graph represents a landmark. If there
is a path between two landmarks, an edge is added with a
weight corresponding to the transportation time between the two
landmarks.

Theme parks are usually large areas with transportation
services among the main locations of attractions such as buses,
trains and cars. In our model, we separate the landmarks in a
theme park such that people only walk inside, and there is no
fast, motorized transportation available. Furthermore, most of
the theme parks are located in non-uniform 2D areas, which
creates another challenge to simulate a theme park with a
model assuming a uniform 2D area. By separating the areas of
attractions as landmarks in a theme park and adding weighted
non-directional edges between the landmarks, we generalize

the model of human mobility in a landmark to the human
mobility in the large theme park. The mobility model includes
the landmarks for human walks and the edges between them for
transportation of visitors. We do not assume a theme park as a
uniform 2D area, since it includes geographical obstacles such
as areas without pavements for pedestrians and paths or roads
used for transportation. These characteristics of our mobility
model allows our model to be more realistic compared to the
existing mobility models of theme park visitors.

C. Visitor model

In the model, the visitors of the theme park are represented
by mobile nodes. We define the states of the mobile nodes in
a landmark as “initial”, “inQueue”, “moving”, “inNoisePoint”
and “removed”. At the beginning of the simulation, all mobile
nodes are in “initial” state. A mobile node changes its state to
“inQueue” when it starts waiting in a queue. It changes its state
to “inNoisePoint” when it starts waiting in a noise point. There
are two different states for waiting, since waiting in a noise
point and in a queue are not the same. When a mobile node
is changing its location to arrive to a new destination, which
may be a queue or a noise point in the landmark, it is in the
“moving” state. The state of a mobile node is “removed” when
the hangout time of the node passes.

Initially, each visitor decides a hangout time for the particular
landmark, a time a visitor plans to stay in the landmark. Hangout
times are generated randomly by exponential distribution for
each visitor. After deciding the hangout time, each of the visitors
selects a subset from the set of all queues in the landmark to
visit with particular hangout time. The size of the subset (the
number of queues to visit) selected by a visitor is proportional
to the corresponding hangout time of that visitor. If the visitor is
not in “inQueue” state when the hangout time ends, the visitor
leaves the landmark. In other words, the visitor arrives at an
exit point of the landmark. If the visitor is waiting in a queue,
(in “inQueue” state), the visitor continues to wait in the queue
and leaves the landmark after being serviced. We assume every
visitor has a constant speed of 1 m/sec. After queue selection,
the visitors move according to the least action principle among
the selected queues and noise points. If a visitor visits a queue
or a noise point, that point is marked as visited and is not visited
again by the same visitor.

Visitors decide their next destinations by Algorithm 1, which
is a modified version of Least Action Trip Planning (LATP) [7]
algorithm. In the LATP algorithm, a visitor tries to minimize
the Euclidean distance traveled from a waiting point to a new
waiting point (destination). The waiting points are the queues to
be visited and the noise points in the landmark. This strategy is
different than Dijkstra‘s Shortest Path algorithm, since it does
not always cause the new destination to be the nearest waiting
point, where every unvisited point has a probability to be the
next destination. The parameter alpha is used to determine this
probability. We modified the algorithm to match the require-
ments of our mobility model. Instead of using identical waiting
points, weighted waiting points are used. The weight of noise



point is always 1 and the weight of a queue is set as the number
of fractal points included in its corresponding cluster. In this
approach, queues with larger weight values, such as main rides,
have more probability to be selected as the new destination
points. In other words, visitors are more attracted to gather in
queues with larger weight values. For calculation of Euclidean
distances, we used the exact positions of the noise points in the
landmark and positions of the central points of queues.

Algorithm 1 Algorithm for deciding the next destination
1: Q: Set of all unvisited queues planned to visit
2: N : Set of all unvisited noise points
3: W : Set of weights for queues
4: cp: Current position of the visitor
5: Pr: Empty set of probabilities
6: for each n in N do
7: d(cp, n) := Euclidean distance between cp and n
8: Pr(n) := ( 1

d(cp,n) )
α

9: end for
10: for each q in Q do
11: d(cp, q) := Euclidean distance between cp and q
12: Pr(q) := ( 1

d(cp,q) )
α

13: Pr(q) := Pr(q) ∗W (q)
14: end for
15: Select a point p according to probabilities Pr from the set

Q ∪N
16: if p ∈ N then
17: return Position of the point p
18: else
19: return Position of a random sit-point in the queue p
20: end if

At each iteration of the simulation, we check the queues to
find the number of visitors serviced and the visitor states for
possible changes. For instance, if a visitor is serviced by a
queue at a time step, the state of the visitor must change from
“inQueue” to “moving”.

When a queue is selected, the visitor goes to a random sit-
point inside the cluster area as the new destination position.
Each queue in the landmark has a service rate and the number
of visitors per service. Waiting time of a visitor in a queue
depends on the number of visitors already waiting in the queue
ahead of that visitor, service rate and the number of visitors per
service of the queue. For instance, if the queue is modeled by
an M/M/1 queue, number of visitors per service is equal to
1, and if the queue is modeled by an M/M/n queue, number
of people per service is equal to n. When a visitor goes to a
noise point, the visitor starts waiting in the position of the noise
point. The waiting time of the visitor is generated randomly by
truncated Pareto distribution.

D. Application to real scenario

The mobility model can be easily applied to model a real
theme park scenario. Each smaller park in a large theme park

Fig. 4. An illustration of the application of model to a real-world scenario:
Disney World parks in Orlando.

would be modeled as a landmark. For each park, real dimension
lengths are used to specify the 2D rectangle area of a landmark.
OpenStreetMap [14] can be used to determine the longitudes
and latitudes for the theme parks.

In a real scenario, the number of attractions and types of those
attractions are generally known. If types of every attraction in
the park are not known, the queue types and numbers specified
in this paper can be potentially used. With this approach, a
portion of a theme park can be modeled as a landmark. After
generation of landmarks, edges and the weight values are set.

Each visitor in this scenario has a total hangout time which is
the amount of time to spend in the theme park. Initially, visitors
decide the parks (landmarks) to be visited in an order that
provides minimum times for transportation (minimum weights)
between them. For each landmark, a visitor also plans to visit
particular attractions (queues) whenever the visitor comes into
a new landmark. Whenever a visitor finishes hanging out in a
park, the visitor goes to the next planned park, through the edge
between the two parks.

Assume a large theme park consisting of three main parks,
as shown in Fig. 4. In this figure, landmarks are the vertices
and the lines connecting landmarks are the edges with different
weights. OpenStreetMap [14] is used to illustrate the model on
this map. Fig. 4 contains three main parks of Disney World in
Orlando. These main parks are Epcot, Animal Kingdom and
Hollywood Studios. The last main park, Magic Kingdom is not
included for illustration purposes. As you can see in the figure,
the parks have labels L1, L2 and L3, and the weights of the edges
between the parks have labels W1, W2 and W3. Landmarks can
be generated according to the real sizes of the areas of the main
parks, and the weights are set with the real transportation times.
Dimension lengths and numbers of attractions are also set for
each main park.

The simulation of the model applied to the real scenario
by this graph theoretical approach, generates realistic synthetic
traces of visitors mobility in theme parks.



Fig. 5. A simulation of movement of 20 mobile nodes in the landmark after
1 hour simulation time.

IV. SIMULATION STUDY

A. Simulation environment

In this paper, the experiments are carried out to validate our
mobility model in landmarks. The set of landmarks with edges
between them can be used to simulate the mobility in and among
the landmarks in a theme park map.

The simulation of our model generates synthetic mobility
traces of mobile nodes in a specified 2D area, with dimension
length, number of queues and noise point ratio. Figure 5 shows
an output example of a simulation run with 20 mobile nodes,
which is taken when simulation time is 3600 seconds.

Each mobile node in the landmark draws its trajectory lines
while moving. These trajectory lines are the consecutive points
in the figure, that illustrate mobility of the mobile nodes in the
landmark. The waiting points are the points where direction of
a mobile node changed in the trajectory. The waiting points
are either noise points or random sit-points close to a central
point of a queue. Figure 6 demonstrates another simulation with
200 mobile nodes after 3600 seconds of simulation time. In
this figure, by looking at the positions of the mobile nodes
represented by small circles, we can see the expected human
behavior to gather in common places such as the dense regions
of waypoints in the model. The use of fractal points and planning
trips according to the least action principle somewhat represents
this social human behavior.

We conducted simulation experiments for square landmarks
with dimensions of 1000×1000 meters and 2000 mobile nodes
(visitors). For all the experiments, total simulation time is
36000 seconds. Mobile nodes have hangout times exponentially
distributed between 2 hours and 10 hours. For a 1000×1000
landmark, we used 15 queues and approximately 0.1 noise point
ratio. Each queue has a service rate and a number of visitors

Fig. 6. Positions of 200 mobile nodes distributed in the landmark after 1 hour
simulation time.

per service parameters. For a simulation of 2000 mobile nodes,
we used 40 as the number of visitors per service for main
rides, 20 for medium rides and live shows. Mobile nodes are
initially randomly distributed to the fractal points as their initial
locations. We assume each mobile node has a constant speed
of 1 m/s. Minimum waiting time in a noise point is 30 seconds
and Pareto alpha value is 1.5. In Algorithm 1, alpha value used
for deciding the next destinations is 3.0.

At the beginning of each simulation, each mobile node is
assigned with the queues to visit, according to its hangout time
and number of queues in the landmark, before starting to move.
A mobile node exits the area if its hangout time is over. If a
mobile node is waiting in a queue when hangout time is passed,
it keeps waiting and is being removed after serviced by the
queue. Mobile nodes keep track of visited queues and noise
points so that once a mobile node visits a queue or a noise
point, it does not come back to the same queue again. For a
waiting point, the visitors visited that point in a particular time
and their departure times from that waiting point are also keep
tracked, for each queue and noise point in the landmark.

B. Simulation results

In this section, the simulation results are analyzed by com-
paring 41 GPS traces (taken from CRAWDAD archive at Dart-
mouth College) collected from 11 volunteers who spent their
Thanksgiving or Christmas holidays in Disney World, SLAW [7]
and RWP [2] mobility model simulations. We examine funda-
mental characteristics of mobility features, including distribution
of flight lengths, distribution of waiting times (pause times) and
waiting rate of visitors.

Equally sized areas are used for the comparison of our model,
SLAW and RWP. For the GPS traces, we assume that a visitor
is not walking if the visitor moves for more than 150 meters
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in 30 seconds sampling time, which would exceed the regular
human speed of 5 m/s. Accordingly, we filtered the data where
the visitors are not walking, but possibly traveling in a bus or
another vehicle in the theme park. If a mobile node is in a
circular area with a radius value of 10 meters in the time period
in consecutive sampling times of 30 seconds, we assume that
the mobile node is waiting in a waiting point.

1) Experiment 1: Flight Lengths. A flight length is the
distance between two consecutive waiting points of a visitor.
Flight length distribution is one of the most significant charac-
teristics of human mobility models, since it allows us to make
realistic comparison of human mobility extracted from GPS
traces with random walk models and other mobility models. In
this experiment, we compared flight length distribution of the
simulation with GPS traces, SLAW and RWP mobility models.

The first set of experiments are conducted by using the same
parameter settings to verify that the simulation is consistent
according to the flight length distributions. For each experiment,
we normalize the number of flight lengths to 1000. The flight
length distributions of 5 randomly selected experiments are
given in Fig. 7. These experiments have flight length counts
between 64000 and 68000; however, all the experiments are
normalized to the flight length count of 1000. As expected, flight
length distributions are consistent, have similar characteristic,
and there is no significant difference between the distribution
lines. The experiment shows the similar expected behavior of
the synthetic simulation of the mobility model, among different
runs of the simulation model.

In another set of experiments, flight length distribution of the
simulation model is compared to GPS traces, SLAW and RWP
mobility simulation results. The results of the simulations are
given in Fig. 8. Our proposed mobility model outperforms other
two synthetic mobility models. The flight length distribution of
our model is closer to the GPS traces compared to SLAW or
RWP mobility models. SLAW has a similar characteristic but
shorter flight lengths and RWP model has a uniform distribution
as expected. Fig. 8 also shows that flight length distributions of

RWP model is significantly different than the GPS traces, which
proves modeling human mobility with this model is not realistic.
On the other hand, our simulation model, GPS traces and SLAW
mobility model have heavy-tail flight distributions.
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In the last set of experiments for flight lengths, we modeled
Disney Magic Kingdom, which is one the four main parks in
Disney World. The square area for Magic Kingdom is modeled
as a landmark with dimensions approximately equal to 850x850
meters using OpenStreetMap [14]. RWP model is not used for
this experiment set, since our model and SLAW provide better
results in the previous set of experiments.

For the Magic Kingdom landmark simulation, our mobility
model performs significantly better than SLAW. Fig. 9 shows
that the flight length distribution of our model is very close to
the flight length distribution of GPS traces.

2) Experiment 2: Number of Waiting Points. In this ex-
periment, we analyze the number of waiting points averaged
for one hour for the synthetic mobility models and the GPS
traces. Average number of waiting points of GPS traces is
approximately 10.5, which means every visitor is waiting at
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roughly 10 different locations in an hour on average. For SLAW
mobility model, the average numbers of waiting points are close
to 20, that doubles the GPS traces, while it is approximately 7.5
for our simulation and 3.3 for RWP model. The results of the
experiment set are given in Figure 10 which shows that our
mobility model performs significantly better than the other two
synthetic simulations in terms of similarity to the GPS traces.
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Fig. 10. Average waiting points per one hour from the simulation, Orlando
Disney World GPS traces, SLAW and Random Waypoint Mobility Model.

3) Experiment 3: Waiting Times. In this experiment, we com-
pare waiting time distribution of the simulation with GPS traces
and SLAW. RWP model is not used in this experiment since the
mobile nodes have constant waiting times. This constant waiting
time value can be changed by the constant input parameter of
the RWP model.

To compare the waiting times of the two mobility models with
the GPS traces, the results of these three traces are normalized to
1000. Fig. 11 shows that waiting time distribution of our model
is again closer to the GPS traces, compared to SLAW mobility
model, and both simulations have similar statistical behavior of
heavy-tail waiting time distribution. By setting service rate and
number of visitors per service parameters of each of the different
queue types realistically, one can obtain more accurate results
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Fig. 11. Normalized waiting time distributions from the simulation, Orlando
Disney World GPS traces and SLAW.

very similar to the real-world scenario of theme park visitors
mobility.

V. CONCLUSION

In this paper, we present a model of the movement of visitors
in a theme park. In this model, we combine the nondeterministic
behavior of the human walking pattern with the deterministic be-
havior of attractions in the theme park. We divide the attractions
into groups of main rides, medium-sized rides, live shows and
restaurants. We use queuing-theoretic models to calculate time
spent by visitors at different attractions. We validate accuracy
of our model through extensive simulations using theme park
statistics, GPS traces collected in a real theme park and the data
generated by simulations of other mobility models. We find our
model provides a better match to the real-world data compared
to current state-of-the-art movement models.

As a future work, we plan to include basic micro-mobility
behaviors in the model to achieve more realistic synthetic
simulations. Furthermore, we are planning to use the mobility
model to evaluate applications of wireless sensor networks with
mobile elements for theme park scenarios.
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