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Abstract— The distributiveness of mobile ad hoc networks
makes resource allocation strategies very challenging since there
is no central node to coordinate and monitor the activities of
all the nodes in the network. Since a single node cannot be
delegated to act as a centralized authority due to limitations in
the transmission range, several delegated nodes may coordinate
the activities in certain zones. This methodology is generally
referred to as clustering and the nodes are called clusterheads.
The clusterheads employ centralized algorithms in its cluster;
however, the clusterheads themselves are distributive in nature.

In this paper, we propose a clustering method i.e., identify
the clusterheads among all the nodes. Though there are several
clustering algorithms that have been proposed; however, to
the best of our knowledge, there is none that characterizes
the different node parameters in terms of entropy. Entropy
is a measure of information. We use the local information
available to every node to determine the mutual information.
We considered two parameters in the selection procedure,
namely, energy and mobility. Extensive simulations have been
conducted and the performance of the proposed clustering
scheme has been shown in terms of the average number of
clusterheads or clusters, the average number of cluster changes,
and the average connectivity. The results demonstrate that the
mutual information captured through entropy is very effective
in determining the most suitable clusterheads.

I. INTRODUCTION

Deployment of infra-structured networks are time con-
suming and therefore cannot be set up at times of utmost
emergency. Therefore, mobile multi-hop radio networks, also
called ad hoc or peer-to-peer networks, play a critical role in
places where a wired (central) backbone is neither available
nor economical to build, such as law enforcement operations,
battle field communications, disaster recovery situations, and
so on. Such situations demand a network where all the
nodes including the base stations are potentially mobile, and
communication must be supported untethered between any
two nodes. However, maintaining such seamless connection
is difficult because of the inherent characteristic of mobile
ad hoc networks i.e., highly dynamic topology changes due
to the mobility of the nodes. Also, the bandwidth is limited
and the signal quality is unpredictable.

In spite of these constraints, ad hoc networks are designed
such that they are able to dynamically adapt themselves
with the changing network configurations. One of the ways
to handle the topology changes and maintain a connected
network can be brought about by entrusting certain nodes
with more responsibility. These nodes are typically called
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clusterheads and are responsible for the formation of clus-
ters each consisting of a number of ordinary nodes. A
clusterhead is responsible for resource allocation to all the
nodes belonging to its cluster. Due to the dynamic nature
of the mobile nodes, their association and dissociation to
and from clusters perturb the stability of the network and
thus reconfiguration of clusterheads is unavoidable. This
is an important issue since frequent clusterhead changes
adversely affect the performance of other protocols such as
scheduling, routing and resource allocation that rely on it.
Choosing clusterheads optimally is an NP-hard problem [4].
Thus existing solutions to this problem are based on heuristic
(mostly greedy) approaches and none attempts to retain the
stability of the network topology [4], [7]. We believe a
good clustering scheme should preserve its structure as much
as possible when nodes are moving and/or the topology
is changing. Otherwise, re-computation of clusterheads and
frequent information exchange among the participating nodes
will result in high computation overhead.

Several clustering algorithms and heuristics have been
proposed in the literature [1], [6], [8], [9], [11], [12]. Many
existing solutions take into account various heuristics of
clusterhead suitability. However the most recognized ones
are based upon clusterhead selection which rely on random
events such as node id assignment (as in the Lowest ID
algorithm) and the degree of connectivity (as in the Highest
Degree algorithm). The Lowest ID [2], [3] heuristic assigns
a unique ID to each node and chooses the node with the
minimum ID as a clusterhead. Thus, the IDs of the neighbors
of the clusterhead will be higher than that of the clusterhead.
In Highest Degree [8], [10], each node broadcasts its ID to
the nodes that are within its transmission range. A node z
is considered to be a neighbor of another node y if x lies
within the transmission range of y. The node with maximum
number of neighbors (i.e., maximum degree) is chosen as a
clusterhead. If there is a tie, it can be broken arbitrarily by
the nodes’ IDs.

In this paper, we propose a distributed clustering algorithm
which takes into consideration the local information available
to all the nodes. This local information is measured in terms
of entropy. We consider two parameters for the determination
of the clusterheads- mobility of the nodes and their energy
consumption. We show how we can compute the mutual
information for these two factors and combine the results
through a liner model. Our method of calculating the mutual
information is generic enough and can easily be extended
to include other physical factors. Through simulation exper-
iments, we show the performance of our proposed scheme
in terms of the average number of clusterheads, the average
number of cluster changes, and the average connectivity.



The rest of the paper is organized as follows. In section
I, we discuss why a relative measure is required and how
entropy can be used to capture the mutual information. In
section 111, we propose the entropy based clustering scheme
considering mobility and energy of the nodes. The simulation
model and results are presented in section IV. Conclusions
are drawn in the last section.

Il. MOTIVATION

Different algorithms emphasize characteristics which may
or may not be important based upon the architectural features
of the individual network application. For example, a network
that handles multimedia traffic, topological instability causes
changes in the data transfer path threatening the timely
transmission of streaming media. Thus heavy-duty cluster-
head election techniques may be favored if greater network
stability is achieved. In mobile ad hoc networks consisting of
heterogeneous mobility devices, more powerful devices may
overburden smaller less capable ones, placing a demand upon
them which they are incapable of handling. These devices
also may tend to transmit less data with less frequency,
placing very little burden on the network. Certainly, an under-
powered device would not be a good candidate as a cluster-
head, regardless of its node ID; therefore, we conclude that
the Lowest ID election in general is not a good algorithm for
non-homogeneous networks. In highly mobile and dynamic
networks, clusterhead elections are unavoidable, and the best
course of action is to minimize the impact of the election
process.

Algorithms which guarantee leader election with a certain
amount of deviation from the optimal solution, would deem
fit. That would also reduce the periodic instabilities brought
on by the high rate of clusterhead changes, while minimizing
the impact of the routing overhead associated with high levels
of nodal re-affiliation.

Most algorithms work based on a pre-defined metric. The
clustering decisions are based on the absolute values obtained
by these metrics. Though it might seem to work, but at times
the performance is misinterpreted. For example, consider an
ad hoc network in operation. When the nodes are initialized,
the performance of the network is expected to be at its
best since the energy is at its maximum. However, with
the lapse of time and energy depletion, there would also
be a performance degradation. So, we must consider, the
parameters at that point of time. More importantly, compare
the nodes’ suitability relative to each other.

We propose to take advantage of the mutual information;
therefore, we use entropy based measures. Entropy has been
widely used to capture the information content within a
system. A measure of statistical dependence or correlation
is usually sought between two or more parameters i.e., the
random variables of a time series.

If X and Y are the random variables with joint distribution
p(X,Y) and marginal distributions p(z) and p(y), then the
mutual information I(X;Y") is the relative entropy between
the joint distribution and the product distribution. Hence,

I(X;Y) is given by

I(X;Y) = Zzp(w,y)log% (1)

I1l. PROPOSED ALGORITHM

By analyzing the relative entropy of the nodes, we can
derive values which help determine nodal suitability. The
proposed algorithm consists of the weighted linear sum of
two entropy measurements: battery expectancy and mobility.
We use these two parameters to demonstrate how the relative
entropy can be calculated and the results combined to find
the most suitable nodes to act as clusterheads. Though we use
these two measurements, our algorithm is generic enough and
can be extended to account for any other physical parameters.

A. Mobility Entropy

Determination of mobility entropy is based upon mutual
information, which is an appropriate measure of change
based upon previous expectation values. Each node collects
a history of the broadcast (beacon) signals received from its
neighbors during a period of time. Every node maintains
a list containing the IDs of each node heard within the
hearing range of the node. A node whose mobility is stable
relative to its virtual cluster would see fewer changes in its
neighborhood list. Since the motion is relative, it is impos-
sible to ascertain whether the node itself or the neighbors
node moved. Comparing the change in the neighbor list and
more importantly the rate of change of the neighbor list, it
is possible to infer the relative mobility of the nodes with
respect to each other and to the clusterhead. We make a few
probabilistic statements.

1) Several and frequent changes in neighbor list are more
likely due to the node in question moving, rather than
a large number of neighbors moving at once.

2) A few changes in neighbors is more likely due to
neighbor movement away and towards the node, rather
than the node’s own movement.

3) Nodes which lie close to periphery of the transmission
are likely to have a ping-pong effect i.e., in and out of
the neighborhood list.

Observing the mobility of a node with respect to another,
the probability that a node is moving, and the marginal
probability that the node itself is moving can be calculated
by the the mutual information.

Let us observe the behavior of the neighbor list of a
particular node ¢ for a time interval of A¢. Let us assume
that node j appeared in the list at least once. We measure
two quantities. First,the number of times node j appeared.
It can be noted that for a node to appear multiple times,
it must also disappear that many times. Second, the total
amount of time node j stayed in the neighbor list of node
¢ during the interval At. The first quantity gives a measure
of relative mobility and the second one provides an intuition
about the relative stationarity of nodes ¢ and 5. If a node 4
counts the number of appearances of other nodes j, then it
can compute the joint distribution for all the other nodes, i.e.,



p(i,j) for all 5. Also, p(i) is known to node 4, and it can
gather information about p(j) from its neighboring nodes, or
the nodes that visited 7. Thus we get the mutual information
as was given by equation 1.

B. Energy Entropy

Since clusterheads have the extra responsibility to forward
packets on behalf of other nodes, they are prone to battery
drainage. Therefore, a node with good residual battery power
is a good candidate for being a clusterhead. Though, the
remaining battery is easy to measure, the rate at which it
will deplete is still uncertain. This uncertainty arises due
to the fact that the energy spent by a forwarding node is
proportional to the transmission power, i.e., the power at
which a node transmits a packet so that the packet reaches
the intended receiver. It is known that more power is required
to communicate to a larger distance. Thus, transmit power
depends on the relative distance between the transmitter and
the receiver nodes. Note, that the maximum range (Raz)
attainable by a node is limited by the maximum allowable
transmit power, Py,qz.

Let us now calculate the uncertainty in the relative distance
between a transmitter and a receiver. Since, the nodes are
randomly scattered, the receiver will lie anywhere in the
circle with radius R,,,, with equal probability, with the
transmitter node being at the center of the circle. If we
use polar co-ordinates, the radial distance is assumed to be
uniformly distributed between 0 and R,,.., and the angle
uniformly distributed direction between 0 and 2.

The position of the receiver is characterized by fr(r) and
fe(0), denoting respectively the distance probability density
function (pdf) and the directional pdf. The two pdfs are
defined as follows:

I 0<r<R
_ Rz > > fimazx

fr(r) = { 0, elsewhere. @)

L. o0<é<or

— 27 — —
fo(6) = { . elsewhere. )
The joint pdf is given by
ﬁ%:; 0 S r S Rmaz7

fre(r,0) = 0<6<2n 4

0, elsewhere.

Given this pdf of the distance of the receiver from the
transmitter, the transmission power distribution, and hence
the energy dissipation can be obtained. For the joint pdf of
distance as fre(r,8), we calculate the pdf for the trans-
mission power. We assume that the attenuation in the signal
strength is inversely proportional to the square of the distance
i.e, if P, and P, are the transmit and receiver powers
respectively,

P. =P, x d“ (5)

where « is the path loss exponent and usually lies between 2
and 6. Therefore, the pdf for the transmission power, fp(p;),
is given by

fR@(Pt_a)a 0 S r S Rmaw;
fe(P) = 0<6<2rm (6)
0, elsewhere.

Since, according to our assumption transmission power is
directly proportional to the energy consumed, we use the
transmission power pdf to calculate the energy entropy. We
use Shannon’s entropy for this purpose. Shannon’s entropy
for a random variable with Y with pdf fy (y) is

+oo
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Thus, the energy entropy is given by
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C. Total Entropy

At all times, every node computes its instantaneous mo-
bility entropy (Hmopitity) and battery entropy (Henergy) and
announces these values to the current clusterhead (if it exists).
The node with the lowest entropy wins the election; receives
the node list for the virtual cluster and notifies each member
of its new role. A node whose neighbor list never changes,
would have a total combined entropy of 0. A node with a
significant amount of relative motion and a small residual
battery would have significantly higher total entropy. We use
a simple linear combination to find the total entropy, Hyozq-
We define the total entropy as

Hiotar = wy Hmobility + w2Henergy (9)

where w; and w, are the weighing factors and wy +ws = 1.
The weighting factors can be adjusted as per the desired
priority for the network i.e., how important are mobility and
energy with respect to each other.

1V. SIMULATION MODEL AND RESULTS

To study the performance of our proposed clustering
scheme, we conducted extensive simulation experiments
where N nodes were randomly distributed over an area
of 100 x 100 units. The mobility of nodes followed the
random waypoint model [5] with the displacement varying
uniformly between 0 to a maximum value per unit time.
Other parameters for simulation are shown in Table I.

To measure the performance of our proposed entropy-
based clustering algorithm, we identify three metrics: (i)
the average number of clusterheads or clusters, (ii) the
average number of clusterhead changes, and (iii) the average
connectivity. It can be noted that the average size of a cluster,
i.e., average number of nodes in a cluster is nothing but
the total number of nodes in the system divided by the
number of clusters. These three metrics are studied for the
varying number of nodes, transmission range, and maximum
displacement.



Parameter : Value

N .20, 40, 60, 80, 100
Max. displacemment 2-10
Transmission range 10 - 100

w1 : 0.5

ws . 05

TABLE |
SIMULATION PARAMETERS

Figures 1 and 2 show the average number of clusters as a
function of transmission range and maximum displacement
respectively. For low transmission ranges, the number of
clusters is much higher because the member nodes are
likely to wander out of the range of the clusterhead. As the
transmission range increases, nodes are more lileky to remain
within the radio radius of the clusterhead regardless of how
fast they move. As the average node velocity increases (in-
crease in maximum displacement), there is a small increase
in the number of clusters due to the nature of the motion to
disperse the nodes.

Figures 3 and 4 show the average clusterhead connectivity,
or nodal degree during the course of the simulation. As
transmission ranges increase, there is almost a linear increase
in the nodal degree, owing to the uniform random motion.

Figures 5 and 6 show the rate at which the clusterheads
change. It is to be noted that a lower value of clusterhead
changes is desirable since it reflects stability of the topology.
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Fig. 1. Average number of clusters vs. transmission range

V. CONCLUSIONS

In this paper, we proposed a clustering scheme based
on entropy measures. We considered two important aspects
of ad hoc networks- mobility and energy consumption of
nodes. Through the exchange of beacon messages, the nodes
gather information about their mutual mobility and energy.
We use a generic linear combination model to consider
the both entropies. We conducted simulations that show the
performance of the proposed clustering scheme in terms of
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the average number of clusters, the average number of cluster
changes, and the average connectivity. We also compared our
results to Lowest ID and Highest Degree clustering schemes.
The results demonstrate that the mutual information captured
through entropy is very effective in maintaining the stability
of the network.
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