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Abstract—In recent years, there has been a growing interest in
academia and industry in the analysis of electrical consumption
in residential buildings and the implementation of smart home
energy management systems (HEMS) to reduce household energy
usage and costs. HEMS have been designed to emulate the statis-
tical and functional characteristics of real smart grids. However,
a major challenge in this research area is the limited availabil-
ity of publicly accessible datasets. To address this challenge and
further leverage the potential of artificial HEMS applications, it
is crucial to develop time series that accurately represent diverse
operating conditions of synthetic systems. This paper introduces
a novel approach based on the combination of variational auto-
encoder-generative adversarial network (VAE-GAN) techniques
to generate time-series data of energy consumption in smart
homes. Additionally, we investigate the performance of the gener-
ative model when integrated with a Q-learning based HEMS. The
effectiveness of the Q-learning based HEMS is assessed through
online experiments using real-world smart home data. To evaluate
the quality of the generated dataset, we employ various metrics
including Kullback–Leibler (KL) divergence, maximum mean
discrepancy (MMD), and the Wasserstein distance, which quan-
tify the disparities between probability distributions of the real
and synthetic data. Our experimental results demonstrate that
the synthetic data generated by VAE-GAN closely aligns with the
distribution of real data. Furthermore, we demonstrate that the
utilization of the generated data facilitates the training of a more
efficient Q-learning based HEMS, surpassing the performance
achieved with datasets generated using baseline approaches.

Index Terms—Synthetic data, load consumption, smart grid,
deep learning, generative adversarial network, q-learning.

I. INTRODUCTION

THE DESIGN of modern smart homes must take
into consideration energy-efficient technologies and

renewable energy sources. Recent advances in smart grid
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research include new technologies and strategies for man-
aging energy generation, storage, supply, and demand [1].
Smart homes, as a critical component of the smart grid,
are projected to increase household energy efficiency, save
energy costs, and improve user comfort [2]. Utilities and
smart home controllers can acquire information from smart
meters for use in forecasting consumption and genera-
tion, demand-side management, and economic power dis-
patch [3]. Thus, acquiring fine-grained data about the living
environment is becoming an essential precondition for a
smart home.

It has become increasingly common to use artificial intelli-
gence and statistical analysis for demand response and energy
management tasks requiring accurate short-term (second-to-
minute scale) representations of load behavior. These tech-
niques usually require large datasets of representative data for
training. However, the collection of such data presents sig-
nificant security and privacy challenges, with relatively few
high-quality publicly available datasets [4].

Therefore, synthetic data generation become an attrac-
tive alternative to training machine learning algorithms that
can decide, for example, the optimal time for implement-
ing demand response or charging an EV [5]. A variety of
techniques had been used to generate such datasets, includ-
ing Markov chains [6], statistical models [7], and physical
simulator-based methods [8]. A major drawback of these
methods can be attributed to targeting a limited number
of problems, applications tailored to specific scenarios, and
the lack of scalability. Specifically, these methods require
case-by-case analyses for each device, user behavior, and
environment. But it is impractical to model all the detailed
energy consumption behaviors and state transitions when a
large number of user devices are involved. Recent studies, on
the other hand, have utilized deep learning-based approaches
that can be applied to large-scale datasets and can be con-
ducted directly on raw data, without the need for further
analysis [9].

In our recent paper [10], our approach involved generat-
ing electric load profiles and PV generation synthetic data
for a smart home using variational autoencoder-generative
adversarial networks (VAE-GAN), and we compared the dis-
tributions of synthetic data for the VAE-GAN model and
vanilla GAN network to the real data distributions. According
to the statistical metrics such as KL divergence, Wasserstein
distance, and maximum mean discrepancy, the distribution
of data points was extremely close between synthetic data
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and real data for both PV power generation and energy
consumption load profiles. Nevertheless, it is a key defin-
ing characteristic of a realistic time series to maintain an
awareness of temporal differences between synthetic and real-
time series. For instance, If PV power production shifted
earlier or later in the day rather than following sunrise
and sunset patterns, the distribution would still be similar
to the real data, but it would not be realistic. The addi-
tion of electric vehicles (EV) charging load consumption
synthetic data could provide additional insights and value
in understanding smart home electricity consumption pat-
terns. Also, no experiments were conducted to investigate
if the synthetic dataset is applicable in real-life practice.
To address these shortcomings, we propose a revised archi-
tecture for the variational autoencoder-generative adversarial
network (VAE-GAN) technique for generating time-series data
of smart homes from a variety of synthetic data sources
and investigate the performance of synthetic data genera-
tive models in the presence of control operations. In contrast
to the schemes mentioned above, this strategy enables the
learning of various types of data distributions in a smart
home, including electric load profiles, PV power generation,
and EV charging load consumption, and can subsequently
generate plausible samples without carrying out any prior
analysis before the training phase. The VAE-GAN architec-
ture is favored in this model since it allows us to fine-tune
the regulated latent space that influences the generated out-
put, as opposed to vanilla GAN, in which the generator
maps the input noise to the generated output and makes
it susceptible to mode collapse, in which the generator
repeatedly produces the same optimal input sequence to mis-
lead the discriminator [11]. Furthermore, we compare one
model-based and two data-driven generative models, includ-
ing Gaussian Mixture Model (GMM), vanilla GAN, and
VAE-GAN.

Taking advantage of the synthetic data, we propose a
Q-learning-based smart home energy management system
(HEMS). The generated data is used for the offline training
of Q-learning HEMS agents, which aims to maximize long-
term management profit. Then, the trained agents are tested
online in an environment based on real-world data. Finally,
we compare online profits to further investigate how the data
generation method will affect the HEMS performance. The
idea behind this scheme is that we assume good-quality syn-
thetic data in the offline training can better prepare the agent
for real-world operations [12]. Thus, the performance of the
Q-learning-based HEMS is used to demonstrate the quality of
the synthetic data.

Compared with conventional model-based optimization
algorithms, such as convex optimization, the reinforcement
learning (RL) based method can avoid the complexity of defin-
ing a sophisticated optimization model since the optimization
problem can be transformed into a unified Markov decision
process (MDP) scheme. On the other hand, most existing
HEMS models assume a perfect environment for data col-
lection and algorithm training [13]. By contrast, the proposed
Q-learning HEMS uses synthetic data for training, overcoming
the data availability bottleneck.

The main contributions of this paper are as follows:
• We propose a VAE-GAN-based scheme to generate high

temporal resolution synthetic time-series data for energy
consumption in a smart home.

• We compare the performance of the proposed approach
with techniques based on Gaussian Mixtures and vanilla
GANs.

• We further investigate the quality of the synthetic data
by using it to train a Q-learning-based HEMS model.
Evaluating the HEMS agent online in environments based
on real-world data, we find that the VAE-GAN method
allows higher HEMS profit than other baselines.

The rest of this paper is organized as follows. Section II
introduces related work. Section III shows the proposed smart
home synthetic data generation model and Q-learning-based
HEMS model. Section IV presents the simulation settings and
results, and Section V concludes the paper.

II. RELATED WORK

The majority of previous work in generating synthetic
energy consumption data for smart homes can be classi-
fied into model-based or data-driven approaches. Model-
based approaches describe the features of household devices
with hand-crafted features and mathematical equations. For
instance, [14] proposes a bottom-up residential building energy
simulation, which simulates occupant behavior patterns with
a Markov chain clustering algorithm. Reference [6] combined
non-intrusive load decomposition and Markov chain meth-
ods for user energy consumption simulation. Reference [8]
defines a smart residential load simulator based on MATLAB-
Simulink, and it includes dedicated physical models of various
household devices. References [7] and [15] utilize Gaussian
Mixture Modeling to estimate the distribution of the arrival
and departure time of electric vehicles (EVs) and to perform
temporal modeling of the charging sessions.

On the other hand, recent developments in using GANs
have achieved great success in producing synthetic time-series
data. Reference [16] coupled non-intrusive load decomposi-
tion with a conditional GAN to generate synthetic labeled
(e.g., appliances) load for a smart home. For smart grid appli-
cations, [17] proposes a GAN-based approach that captures
spatial and temporal correlations between renewable energy
sources. Reference [18] applies a GAN to the features derived
by ARIMA and Fourier transform for generating realistic
energy consumption data. Reference [4] uses a GAN to learn
the level and pattern features of smart home time-series data,
both of which are defined by household consumption and
activity, and generate synthesized data with a distribution sim-
ilar to the real data. Reference [19] clusters daily load profiles
with known clustering techniques and uses a GAN to synthe-
size daily loads for each cluster. Reference [20] proposed a
GAN with a Wasserstein loss function to learn temporal and
power patterns of EV charging sessions and create a synthetic
load dataset.

Reinforcement learning-based energy management models
have been extensively investigated in the smart grid. For
example, a correlated Q-learning-based approach is proposed
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Fig. 1. Overall architecture of the proposed scheme.

in [5] for microgrid energy management, and a multi-agent
reinforcement learning method is introduced in [21] to min-
imize the energy cost of different smart home devices. A
self-learning HEMS model is presented in [22], which includes
price forecasting, price clustering, and power alert systems.
Reference [23] introduced a Bayesian deep reinforcement
learning method for microgrid energy management under
communication failure.

However, most aforementioned make the strong assumption
of a perfect data collection and agent training environment. In
a real-world environment, fine-grained and good-quality data
may be inaccessible due to privacy concerns or measurement
errors. As such, synthetic data-based HEMS is much more
realistic since the agent can use pre-generated and fine-grained
data for training.

III. METHODOLOGY

The overall architecture of the proposed approach is
described in Fig. 1, and the organization of this work is
introduced as followings:

• Synthetic data generation: Given a real-world smart
home dataset, we first apply the VAE-GAN-based method
to produce synthetic data, including the smart home
load profiles, PV power generation, and EV charging
load consumption, which is introduced in the following
Sections III-A–III-D.

• Q-learning based HEMS training: Next, the generated
synthetic data is used for the offline training of Q-learning
based HEMS. The intelligent HEMS agent will interact
with a synthetic data-based environment and produces
HEMS strategies to maximize long-term profit, which is
included in Section III-E.

• Real-world HEMS operation test: Finally, the trained
HEMS agent will be tested in a real-world data-based
environment. The test is designed to evaluate the real-
world performance of the synthetic data-based HEMS,
providing an in-depth evaluation of the synthetic data
quality. Specifically, it is expected to demonstrate that
our synthetic data can be applied to HEMS training, and
the agent can obtain a satisfying real-world performance
without touching real-world data.

Among the well-known deep learning-based generative
models, GAN and Variational Autoencoders are two of the
best known. In this network, the encoder module first encodes
the input sequence as a Gaussian distribution over the latent

space. Then, the supervisor module trains the encoder module
to approximate the next time step. In the generator module,
the input sequence is reconstructed from the latent space in
an attempt to fool the discriminator. On the other hand, the
discriminator module trains the generator to create realistic
sequences by identifying fake samples.

In the following, we first introduce the autoencoder (AE)
and variational autoencoder (VAE), then we present generative
adversarial network (GAN) and VAE-GAN generative models.
Finally, we include the Q-learning-based HEMS control.

A. Autoencoder (AE)

An autoencoder is a neural network architecture that uses an
unsupervised learning technique to compress the input dimen-
sions into a compressed knowledge representation, called
latent space, and then reverses the compressed knowledge
representation into the original input dimensions. This archi-
tecture has two essential modules: the encoder and the decoder.
The encoder module maps the input sequence (x) into the
meaningful latent space (z), and based on z the decoder mod-
ule outputs a reconstruction of the original input sequence (x̂).
The original input is unlabeled, but the decoder is trained
to make reconstructions as close as possible to the original
input by minimizing the reconstruction error, Lreconstr, which
is the distance between the original input and the subsequent
reconstruction.

Lreconstr = ‖x̂ − x‖2 (1)

where x and x̂ are original input and the reconstruction,
respectively.

B. Variational Autoencoder (VAE)

After training the autoencoder model, the decoder module
can produce new content given a random latent space. Due to
the unregulated latent space, which can lead to severe over-
fitting, the decoder may not be able to interpolate indefinitely
in the absence of data points included in the input sequence.
Latent space regularity is reliant on the distribution of the
input sequence and the dimension of the latent space, hence
it is not always guaranteed. As a solution to this limitation,
variational autoencoders include a regularization parameter,
such as Kullback–Leibler (KL) divergence, in the learning pro-
cess to achieve the Gaussian distribution of the latent space
and avoid overfitting. In this architecture, the VAE encoder
(E) encodes the input sequence (x) as a distribution over
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Fig. 2. VAE-GAN model architecture. In this network, the encoder mod-
ule encodes the input sequence as a Gaussian distribution over the latent
space, defined by mean and variance vectors. The supervisor module trains
the encoder module to approximate the next time step closely in the latent
space. In the generator module, the input sequence is reconstructed from the
latent space in an attempt to fool the discriminator so the generated sequence
is considered real. The discriminator module trains the generator module to
create realistic sequences by identifying fake samples from real ones.

latent space defined by Gaussian distribution first moment,
mean, and second moment, standard deviation, and parameters.
Ultimately, the encoder is trained to minimize the Lprior loss
and output a latent space with a Gaussian distribution. In the
training process, the VAE minimizes a loss function (LVAE)

that consists of two terms: the reconstruction term and the
regularization term, which is the KL divergence between the
latent space distribution and standard Gaussian distribution.

Lprior = DKL(E(x)||N (0, 1)) (2)

LVAE = Lprior + Lreconstr (3)

where DKL is the KL divergence, E is VAE encoder, N (0, 1)

is the Gaussian distribution, and Lprior is the loss.

C. Generative Adversarial Network (GAN)

Generative models, such as GAN, are used to generate
new data samples. This architecture consists of two neural
networks: one attempts to detect and learn patterns in the input
data and produce a new sample, while the other aims to dis-
tinguish between real input data and the synthesized sample.
These two networks play against each other and actively seek
equilibrium.

• Generator (G): Takes an input noise z, which usually has
a normal distribution, and maps that into data samples
G(z; θg), with θg as the network parameter.

• Discriminator (D): D(x; θd) returns the likelihood of
x being classified as a member of the original data, where
0 represents fake data and 1 represents original data.

G and D engage in an adversarial game, equation (4), where
G attempts to fool the D and maximize the final classification
error, while D is trained to classify fake data more accurately
and minimize the error.

min
G

max
D

LGAN(D, G) = Ex
[
log(D(x))

]

+ Ez
[
1 − log(D(G(z)))

]
(4)

where G and D has been defined as generator and discrimina-
tor, x and z are input sequence and noise, respectively.

D. Data-Driven Generative Model

To generate synthetic smart home data we adopted a VAE-
GAN architecture, as presented in Fig. 2 that avoids the

Fig. 3. VAE-GAN encoder module structure.

Fig. 4. VAE-GAN generator, supervisor, and discriminator modules
structure.

shortcomings of the vanilla GAN or VAE. For example, vanilla
GAN is prone to mode collapse, a situation where the gener-
ator finds an input sequence that fools the discriminator and
repeatedly produces it over and over again. The VAE-GAN
architecture, introduced by Larsen et al. [24], generates new
data samples based on a regulated latent space rather than
producing new data samples from a noise input. The discrim-
inator will further classify the generated sample. Considering
that the data for smart homes is time-series data, it is essen-
tial that the encoder be able to not only detect the underlying
pattern and distribution in the input data but also retain the
realistic order in which events occur. As a result, we took
TimeGAN’s [25] concept of incorporating a supervisor module
into our VAE-GAN architecture. We will discuss each module
in more detail.

As opposed to mapping the input sequence into a meaning-
ful latent space, The encoder module (E) here translates the
original input sequence x into two vectors that represent the
mean (μ) and variance (σ ) of a standard Gaussian distribution.
Minimizing Lprior (equation (2)) forces the encoder to com-
press the data over a standard Gaussian distribution. μ and σ

are mapped into the latent space z using the reparameterization
technique. The encoder uses five layers of Dilated One
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Dimensional Convolutions (dilated Conv1D) stacked one on
top of the other (see Fig. 3). This architecture promises simi-
lar performance but lower complexity and faster convergence
compared to the Long Short-Term Memory (LSTM) networks
typically used for time-series analysis. The Conv1D layer
architecture resembles the WaveNet architecture [26], as each
layer has a stride length of one and kernel size of two, but the
dilation rate varies in each layer. As the second layer dilates
at any second of the input sequence (skipping every other
timestep), the third layer dilates at any fourth, etc., the lower
layers are more focused on short-term dependencies while the
higher layers capture long-term dependencies.

The supervisor module computes the distance between the
latent representation at the current time step (z) and the next
time step (ẑ), minimizing Lsupervisor. Added to the encoder
loss function, equation (6), allows the encoder to approximate
the next time step in the latent space, retaining the original
sequence of events.

Lsupervisor = ‖z − ẑ‖2 (5)

LE = Lprior + Lsupervisor (6)

The generator module (G) is trained to reconstruct the
original input sequence, given latent space z as the input
by minimizing the Mean Squared Error (MSE) between the
reconstructed sequence and original input sequence (Lreconstr+
Lprior). The generator loss also contains the term LdG, com-
puted as in equation (8), quantifying the likelihood of the
discriminator classifying the reconstructed sequence as a fake
sequence. The goal is to make the reconstructed sequence so
realistic that it can mislead the discriminator.

LdG = Ex
[
log(D(G(z)))

]
(7)

Lgenerator = Lprior + Lreconstr + LdG + Lsupervisor (8)

Lreal = Ex
[
log(D(x))

]
(9)

Lfake = Ez
[
1 − log(D(G(z)))

]
(10)

Lnoise = Ez
[
1 − log(D(N (0, 1)))] (11)

LD = Lreal + Lfake + Lnoise (12)

The discriminator module (D) is responsible for classifying
the original input sequence and fake data samples. D mini-
mizes LD, equation (12), in the training process, which has
three terms. Lreal, equation (9), is the likelihood of original
input data being classified as fake data, Lfake, equation (10),
is the likelihood of reconstructed data sample being classified
as real, and Lnoise, equation (11), is the likelihood of classi-
fying a random noise input as a real data which is added to
LD to improve the convergence of the discriminator.

E. Q-Learning Based HEMS Control

In this section, we introduce the Q-learning-based HEMS
model. As shown in Fig. 5, the components of the smart home
involved in the energy production and consumption include the
PV panels, loads, EV, and the ESS:

• PV: The PV is considered a pure energy supplier. The
PV power will first serve the energy demand of EVs and
other smart home devices, then the surplus energy can be

Fig. 5. The proposed smart home energy management system.

used for ESS charging or selling to the energy trading
market for profit.

• EV and other smart home loads: EV and other smart
home loads are pure energy consumers. They will first
receive the power supply from PV or ESS for operation
or buy electricity from the market if the internal power
supply is insufficient.

• ESS: Finally, the ESS can be a power supplier when dis-
charging, or a consumer when charging. For charging,
it uses the surplus PV power or buys electricity from
the market. For discharging, it supplies energy to EVs
and smart home devices or sells electricity to the energy
trading market for profit.

The HEMS model takes advantage of the flexibility of ESS
to minimize the total energy cost and maximize profit. The
optimization task of the centralized HEMS model is described
as follows:

max
∑T

t=1
Ptotal

(
γ psell

t + (1 − γ )pbuy
t

)
(13)

s.t. Ptotal = PESS
t + PPV

t − PL
t − PEV

t (13a)

γ = 1
{

Ptotal > 0
}

(13b)

PESS
t = Pchqt (13c)

qt =
⎧
⎨

⎩

−1 ESS charges
0 ESS unchanged
1 ESS discharges

(13d)

Soct+1 = Soct − PESS
t

CESS
(13e)

Socmin ≤ Soct ≤ Socmax (13f)

where T is the total optimization period, psell
t and pbuy

t repre-
sent the price of selling energy to the energy trading market
and buying energy from the market, respectively. PESS

t , PPV
t ,

PL
t and PEV

t represent the power of ESS, PV, smart home
load, and EV charging load at time slot t, respectively. Ptotal

denotes the total power consumption/demand of the smart
home, and (13a) is the energy balance constraint. 1 is an indi-
cator function. 1{Ptotal > 0} = 1 when Ptotal > 0, which
means the agent will sell surplus energy for profit; other-
wise, 1{Ptotal > 0} = 0 if Ptotal < 0, which means buying
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energy from the market. Pch is the fixed ESS charging power.
qt = −1, 0, 1 when ESS charges, remain unchanged and dis-
charges, respectively. CESS is the fixed capacity of ESS, and
Soc is the ESS state of charge (SOC). Equations (13c) to (13e)
are ESS operation constraints, and (13f) is the SOC upper and
lower bound constraint.

To transform this optimization task into the context of
Q-learning, we define a Markov decision process (MDP) as
follows.

• State: The agent state is defined as
st = {Soct, PPV

t , PLoad
t }, where PLoad

t = PL
t + PEV

t
represents the total energy consumption of smart home.

• Action: Based on the total energy demand and PV power
generation, the agent decides on the action at = qt,
which indicates the charging, discharging, or remaining
unchanged status of ESS.

• Reward: By selecting actions intelligently, the agent
intends to maximize the total profit in the optimization
period, and the reward function is defined by:

rt = Ptotal
(
γ psell

t + (1 − γ )pbuy
t

)
, (14)

which is the objective function of our problem formula-
tion equation (13).

In Q-learning, the agent aims to maximize the long-term
expected reward

Vπ (s) = Eπ

[ ∞∑

n=0

γ nr(sn, an)|s = s0

]

, (15)

where s0 is the initial state, n is the number of iterations, Eπ

is the expected value under action selection policy π , r(sn, an)

is the reward of selecting action an under state sn, and γ is the
reward discount factor. A lower γ means focusing on immedi-
ate rewards, and a high γ indicates that future reward is more
important.

Then, we define the state-action value

Qnew(sn, an) = Qold(sn, an) + α
(

rn + γ max
a

Q(sn+1, a)

− Qold(sn, an)
)
, (16)

where Qold(sn, an) and Qnew(sn, an) are old and new Q-values,
respectively, indicating the accumulated reward of selecting
action an under state sn. sn+1 is the state of n+1 iteration, and
α is the learning rate. A high learning rate will lead to a fast
learning process, but the results can be unstable; otherwise, a
lower learning rate may result in very slow convergence and
a long training time.

In addition, we use the ε-greedy policy for the action
selection.

π(s) =
{

arg max
a

Q(sn+1, a), rand > ε,

random action selection, rand ≤ ε.
(17)

where rand represents a random number (0 ≤ rand ≤ 1),
and ε < 1. When rand > ε, the agent takes greedy policy
to select the action with maximum Q-value; otherwise, the
action is selected randomly for exploration. ε-greedy policy
can balance the exploration and exploitation of the Q-learning
agent to maximize the long-term expected reward.

Algorithm 1 Q-Learning for HEMS
1: Initialize: Q-learning and smart home parameters
2: Phase 1: Offline training using synthetic data:
3: Input: generated synthetic data of smart home load, EV

load, and PV power generation.
4: for episode = 1 to E do
5: With probability ε choose action a randomly.

Otherwise, a = arg max(Q(s, a))

6: Agent calculates reward based on equation (13).
7: Update agent state {t, St, wg,t} and Q-value:
8: Q(s, a) = (1 − α)Q(s, a) + α(r + γ maxQ(s′, a′))
9: end for

10: Output: Trained Q-learning based HEMS strategy.
11: Phase 2: Online test using real-world data:
12: Input: Real-world data.
13: Deploy the pre-trained Q-learning agent for an opera-

tion test.
14: Output: HEMS profit under real-world data.

Finally, the Q-learning-based HEMS algorithm is summa-
rized in Algorithm 1, which consists of two phases. In the
offline training phase, given the generated synthetic data, the
intelligent agent is trained to maximize the total profit. Then,
in the online test phase, we apply real-world data for online
operation, which aims to test the performance of agents that
are trained on synthetic data from various datasets.

IV. EVALUATION STUDY

A. Dataset

1) Smart Home Dataset: The iHomeLab RAPT
dataset [27] is a real-world dataset for residential power
traces. Five households in Switzerland have been surveyed for
1.5 to 3.5 years with a sampling frequency of 5 minutes. The
dataset contains residential electricity consumption and PV
energy production, including appliance-level and aggregated
household consumption data. Studies of PV power generation
show recurring patterns with corresponding noises originating
from rain and clouds. Consumption patterns show weekly
trends, but with occasional irregular spikes.

The experiment was conducted on residential house D from
the dataset. Data cleansing was done by choosing days with
full 24-hour records, resulting in 594 days in total. As part of
the training process, electrical load and PV power production
data were downsampled to a resolution of 15 minutes. For the
train and test datasets, a split ratio of 80:20 was adopted.

2) Residential Electric Vehicle Charging Dataset:
Sørensen et al. [28] presented a residential electric vehicle
charging dataset recorded from apartment buildings. From
December 2018 to January 2020, 97 users in Norway reported
real-world EV charging experiences. Each charging session
includes plug-in time, plug-out time, and charged energy.
This dataset provides a synthetic charging load for level-1
charging and level-2 charging assuming 3.6 kW or 7.2 kW
of charging power. In our experiments, we interpolate the
data for a 15-minute resolution. We note that a higher time
scale resolution such as 5-minute will increase the simulation
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running time, while a lower resolution such as 20 minutes
can not capture the environment dynamics. In addition, the
proposed synthetic data generator scheme can adapt to any
time resolution without loss of generality.

Our analysis revealed that the user with the largest number
of available records has only 62 days of 24-hour data. This data
contains only 11 charging sessions, which is insufficient for
the training of a deep learning model. To address this issue we
generated a larger synthetic dataset by combining the charging
data from several users and assuming that the data belonged to
an indoor charging station shared by the building’s residents,
thus accumulating 263 days of historical data, We are thereby
able to have more significant charging events for the model,
resulting in a more efficient training process.

B. Baseline Models and Performance Metrics

In our experiments, we compared the performance of our
VAE-GAN-based approach with two other state-of-the-art
approaches:

• Gaussian Mixture Model (GMM): is a probabilis-
tic approach that partitions data into groups using
soft clustering based on multiple multidimensional
Gaussian probability distributions. The mean and variance
of the distributions are calculated using Expectation-
Maximization. Upon fitting the GMM to some data, a
generative probabilistic model can sample synthetic data,
following the same distribution.

• Vanilla GAN: As described in Section III-C.
• VAE-GAN: As described in Section III-D
In the following, we introduce the metrics that we will

employ to evaluate the quality of the generated synthetic data.
1) Kullback–Leibler (KL) Divergence: The Kullback-

Leibler divergence (KLD) is one of the most often used
measures for evaluating the similarity of two probability
distributions. Equation (18) is the formal definition of KL
divergence, where x and y are sampled data points, and p(x)
and p(y) are their respective probability distributions. The KL
divergence ranges from 0 when two probability distributions
almost match everywhere, to ∞ for completely different
distributions.

DKL(p‖q) =
N∑

i=1

p(xi)log

(
p(xi)

q(yi)

)
(18)

2) Maximum Mean Discrepancy (MMD): The MMD
approach represents the distance between distributions by the
distance between the mean embeddings of features into a
reproducing kernel Hilbert space. Given the distributions p(x)
for {xi}N

i=0 and q(y) for {yj}M
j=0, MMD is calculated as follows:

MMD(p, q)2 = 1

N2

N∑

i=1

N∑

j=1

K
(
xi, xj

)

− 2

MN

N∑

i=1

M∑

j=1

K
(
xi, yj

)

+ 1

M2

M∑

i=1

M∑

j=1

K
(
yi, yj

)
(19)

K(x, y) = exp

(
−‖x − y‖2

2σ 2

)

(20)

3) Wasserstein Distance: Intuitively, the Wasserstein dis-
tance, also called the earth mover’s distance, models a proba-
bility distribution as a pile of soil and computes how much soil
needs to be moved to transform one probability distribution to
the other.

l1(p, q) = inf
π∈�(p,q)

∫

R×R

|x − y|dπ(x, y) (21)

Equation (21) represents the formal definition of
Wasserstein distance, where p(x), q(y) are probability
distributions, �(p, q) is the set of probabilistic distributions
on R×R whose marginals represent p and q on the first and
second moments, respectively.

4) HEMS Models: The previous techniques measured the
quality of the generated data based on its distance from the
probability distribution of the real data. In this technique, we
measure the quality of the synthetic data by its ability to
be used in the training of a Q-learning-based smart home
energy management system (HEMS). We implemented the
Q-learning model in the MATLAB platform. The ESS fixed
charging/discharging power is 4 kW, and the ESS capacity is
16 kW · h. The learning rate is 0.8, the discount factor is 0.7,
and the initial ε value for the ε-greedy exploration algorithm
is 0.05. The energy trading price follows a fixed pattern as
in [5]. We recorded the average results over 10 randomized
runs.

C. Distance Metrics Evaluation Results

We used the KL-divergence, MMD, and Wasserstein dis-
tance metrics to measure how close is the distribution of
synthetic data to the real data. Table I shows these statisti-
cal metrics for smart home electrical load consumption, PV
production, and EV charging load consumption synthetic data
generated by the GMM, GAN, and VAE-GAN generative
models. For all metrics, the lower the errors are the better,
corresponding to a closer match between the synthetic and
real data.

The results allow us to draw several conclusions. First, we
find that all three models have relatively close errors for syn-
thetic EV charging datasets, which can be explained by the
comparative regularity of EV charging datasets versus PV gen-
eration, which is influenced by the weather or load, depending
on many personal choices. Another possible explanation is that
PV generation and load consumption training data were almost
twice the size of EV charging data, suggesting that rich his-
torical training data could have a positive impact on accuracy.
Second, we find that for the KL-divergence and Wasserstein
distance, our VAE-GAN-based approach almost always pro-
vides the best performance. For the MMD, in contrast, the best
performance is provided by the GAN approach. This reversal
in the relative order of the generator approaches for MMD
is likely a result of the choice of mean embedding features.
Understanding the exact mechanism of this difference requires
future work.
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TABLE I
DISTANCE BETWEEN REAL AND SYNTHETIC SMART GRID DATA DISTRIBUTION USING KL-DIVERGENCE, WASSERSTEIN DISTANCE,

AND MMD. BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 6. Electrical load consumption real and synthetic data probability density for (a) GMM, (b) GAN, and (c) VAE-GAN generative models. The orange
line shows the real data PDF, the blue line shows the synthetic data PDF.

Fig. 7. PV power production real and synthetic data probability density for (a) GMM, (b) GAN, and (c) VAE-GAN generative models. The orange line
shows the real data PDF, the blue line shows the synthetic data PDF.

Fig. 8. EV charging load consumption real and synthetic data probability density function for (a) GMM, (b) GAN, and (c) VAE-GAN generative models.
The orange line shows the real data PDF, the blue line shows the synthetic data PDF.

While single numerical metrics quantifying the distance
between the probability density functions are useful, exam-
ining the distributions as a whole provides us with a better
understanding of the quality of the generated data. Figs. 6–8
show the Probability Density Functions (PDF) for real and
synthetic smart home data.

Fig. 6(d) shows the PDF for normalized real and synthetic
electrical load consumption for each generative model. While
both the GMM and VAE-GAN distributions are relatively
close to the real data, the synthetic data generated by VAE-
GAN provides the best matches with the real data distribution
in terms of the standard deviation from the mean value, as
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Fig. 9. A sample of 10 days of synthetic data generated from GAN, GMM, and VAE-GAN models compared with the real test data.

supported by the distance metrics. Fig. 9(a) represents the pat-
tern of real and synthetic electrical load consumption during
the test data. It is evident from the close similarity of these
patterns that the VAE-GAN network is capable of learning
the distribution and patterns of smart home aggregated load

consumption data and producing samples that reflect the same
characteristics.

Fig. 7(c) illustrates that the VAE-GAN model performs
better compared to two other generative models in generating
synthetic PV production data, a conclusion that is supported
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Fig. 10. HEMS test performance comparison in 40 days by using real-world data (16 kWh ESS Capacity) The the total profit of optimal based, VAE-GAN,
GAN, and GMM based methods are 97.54$, 86.31$, 85.18$, and 79.36$, respectively.

Fig. 11. Smart home HEMS performance analyses.

by Fig. 9(b), where the pattern of synthetic PV production
data generated by VAE-GAN is reasonably close to the pat-
tern of real PV production data. We note that although PV
production follows sunrise and sunset patterns, it is also highly
affected by unpredictable environmental factors, therefore it is
not expected for them to be the same equivalent.

Finally, Fig. 9(c) presents the EV charging load consump-
tion real and synthetic data PDF for GMM, GAN, and
VAE-GAN generative models. In Fig. 8 it is shown that syn-
thetic EV charging load consumption generated by the GMM
model is larger in power range compared to the real EV
charging load consumption. On the other hand, the GAN
model in Fig. 8(b), generates data centered around the aver-
age. Although the VAE-GAN model, Fig. 8(c), generates a
slightly smaller power consumption than actual EV charging
data, the distribution of load consumption is comparable to
that of real data. Accordingly, each generative model shows
the same characteristics in the sample EV data presented in
Fig. 9(c).

D. HEMS Performance Evaluation Results

In this section, we investigate the performance of the
Q-learning-based HEMS. For each type of synthetic data, we
trained a corresponding policy, which was then evaluated using
real-world data (see Algorithm 1). We compare these poli-
cies against an optimal baseline that uses real-world data for
both offline training and online operation testing, indicating
that the Q-learning agent can best learn the hidden data pat-
terns and prepare for the test. The optimal baseline is expected
to achieve the best overall performance by using the same
real-world dataset for both training and testing, but it cannot
guarantee that the optimal baseline can obtain higher profit
every single day.

Fig. 10 shows the 40 days HEMS profit of different data
generation methods. While the profit varies with the envi-
ronmental conditions each day, as expected, the strategy
trained on real-world data achieves the highest profit on most
days. However, we found that the HEMS trained on the
data generated by the proposed VAE-GAN model achieves
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a comparable performance. The GAN-based model achieves a
somewhat lower performance, while the HEMS trained on the
GMM-generated data shows the least profit.

The performance of the HEMS also depends on the capacity
of the energy storage system (ESS) of the smart home. The
average profit of the differently trained HEMS systems for
various ESS capacities is shown in Fig. 11(a). As expected,
a larger ESS improves the profit of the HEMS, as the agent
has higher flexibility in making decisions. We found that for
all ESS values, the VAE-GAN-based HEMS performs best,
followed by the GAN and GMM-based methods. The higher
the ESS capacity increases the advantage of the VAE-GAN
compared to the other methods.

Finally, for practical applications, it is essential to establish
that the learning process is stable. Fig. 11(b) shows the reward
of the Q-learning process function of the learning iterations.
The figure shows that the agent has a stable convergence after
the exploration phase.

E. Complexity and Feasibility Analysis

Based on the simulation results, this section will discuss the
complexity and feasibility of the proposed scheme, including
a) feasibility and scalability, b) implementation complexity,
c) management costs, and d) economic benefits.

• Feasibility and scalability: Compared with conventional
model-based methods such as Markov chain and simula-
tors, the applied data-driven method has higher scalability
and can be easily generalized to other scenarios. In the
experiment, note that the only requirement for applying
the proposed methods is the dataset, indicating that it
can be easily generalized from smart homes to smart
builds and communities with proper datasets. By con-
trast, it is impractical to build very huge simulators or
Markov chains to describe all the detailed behaviors of a
large area.

• Organizational complexity: The main complexity of the
proposed method is the neural network architecture and
design, which is a well-known issue for ML-based
methods. However, in this work, note that no dedi-
cated models are designed for any household devices or
energy consumption behaviors, significantly reducing the
organizational complexity.

• Management costs: As above-analyzed, the dataset is
the only requirement of the proposed method. When the
physical system changes, e.g., adding or removing new
devices, our model can be easily updated by feeding new
datasets to the neural networks, which means a very low
system management cost.

• Economic benefits: The simulation results in Fig. 10
and 11(a) have demonstrated that the proposed method can
obtain satisfying profit for the smart home operation. The
benefit can be greater when considering larger application
scenarios such as smart buildings and communities.

V. CONCLUSION

In recent years, smart home management increasingly
takes advantage of advanced data-demanding machine learning

approaches, but the availability of find-grained data sets may
prevent the applications. Therefore, synthetic data generation
has become a critical enabler for smart home management.
In this paper, we present a variational autoencoder GAN
(VAE-GAN) approach for the synthetic data generation of
smart home datasets. We have shown that the proposed
VAE-GAN method can generate high-quality data that better
matches the statistical properties of real-world data compared
to benchmarks. In addition, we use the synthetic data to train
a Q-learning-based smart home energy management system
(HEMS), achieving a higher profit than other data-generation
methods. The simulations prove that the generated synthetic
data can be used for HEMS offline training, and the agent
obtains a satisfying real-world online performance without
touching the real-world data.
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