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Abstract—In a wireless sensor network, virtual coordinates
provide most of the advantages of geographic routing strategies
without actually relying on the location information of the nodes.
Using a mobile sink provides advantages such as distributing
energy consumption throughout the network. However, nodes
need to be updated about the new virtual coordinate of the
mobile sink as it moves. In this paper, we propose Circular
Update-Directional Virtual Coordinate Routing (CU-DVCR), an
algorithm specialized in routing towards a mobile sink in virtual
coordinates. Through a set of experimental studies we show
that CU-DVCR consumes less energy compared to alternative
algorithms while providing comparable performance.

I. INTRODUCTION

In wireless sensor networks, geographic routing protocols
allow sending of messages without knowledge of the network
topology. However, obtaining geographic information requires
localization techniques such as GPS, which is costly or un-
feasible in some applications. The virtual coordinate system
(VCS) helps to build operational networks without the need
for geographical localization. VCS relies upon the hop-by-hop
distance information from a few anchor nodes [1], [2], [3], [4].
Directional virtual coordinate systems [5] adds directionality
to VCS and provides a routing strategy, comparable to the
geographical routing algorithms.

A simple way to gather data from nodes is to use a single
sink node with fixed position. However, in recent years many
applications utilize mobile sinks with help of technologies
such as autonomous underwater vehicle (AUV) [6], unmanned
aerial vehicle (UAV) [7], [8], and electric vehicles (e.g.,
Segway) [9], [10]. Although in many applications the sink
movement is controlled and predictable [11], [12], [13], we
need a routing strategy for the packets to reach the mobile
sink. There exist strategies for routing towards mobile sinks
in geographical domain [14], [15]. A solution which had been
investigated both in the geographical domain [16] and virtual
coordinate system [17] is to update the nodes in a local area
around the sink instead of broadcasting the location of the sink
to the entire network.

In this paper, we argue that even broadcasting the location
information of the sink in a local area is not always the

most energy efficient strategy. The Circular Update Directional
Virtual Coordinate Routing (CU-DVCR) protocol described in
this paper is basically sending the location information of the
sink only to the nodes on the boundary of the local area. This
allows us to update the packets entering the local area and to
gradually notify all the nodes in the local area.

The remainder of this paper is organized as follows. Sec-
tion II explains the geometrical construction and calculations
underlining a virtual coordinate system and discuss directional
virtual coordinates and the DVCR [5] routing algorithm. The
CU-DVCR algorithm is presented in Section III. We validate
the algorithm using a series of simulation studies in Section IV
and conclude in Section V.

II. VIRTUAL COORDINATES AND DVCR

In virtual coordinates nodes are defined by their hop-count
distance to a set of nodes called anchor nodes. In a sensor
network with N nodes and M anchors, hNiAj

shows the
minimum hop distance between node Ni and anchor Aj . Thus,
the virtual coordinate of node Ni is [hNiA1 , . . . , hNiAM

]. As
hNiAj is the same for all the nodes within a certain distance
from Aj in all directions, it does not provide a sense of
directionality. Thus, we need to use more than one anchor
distance for a node to provide directionality information.

Table I shows a simple one dimensional network with two
anchors in virtual coordinates. hNiA1+hNiA2 does not provide
directionality for the nodes between the anchors since all the
values are the same. On the other hand, hNiA1

−hNiA2
is the

same for all the nodes between the anchors. However, Equa-
tion 1 provides a directional coordinate for a one dimensional
network with two anchors.

f(hNiA1
, hNiA2

) =
1

2hA2A1

(hNiA1−hNiA2)(hNiA1 +hNiA2)

(1)
where 1

2hA2A1
is used for normalization.

For any two arbitrarily chosen anchors from all the anchors
in the network, say Aj and Ak, let ~f(hNiAj

, hNiAk
) be the

ordinate:

~f(hNiAj
, hNiAk

) = f(hNiAj
, hNiAk

)~uAjAk
(2)



TABLE I
A ONE DIMENSIONAL NETWORK CONSISTING OF CONSECUTIVELY

CONNECTED NODES: N1 , N2 , A1 , N3 , N4 , A2 , N5 , N6

N1 N2 A1 N3 N4 A2 N5 N6

hNiA1
2 1 0 1 2 3 4 5

hNiA2 5 4 3 2 1 0 1 2
hNiA1 −hNiA2 -3 -3 -3 -1 1 3 3 3
hNiA1 +hNiA2 7 5 3 3 3 3 5 7
f(hNiA1

, hNiA2
) -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

where ~uAjAk
is called the virtual direction and is the unit

vector in direction of AjAk. Hence, the virtual distance
between two nodes Np and Nq in this direction would be
defined as:

FAjAk
(Np, Nq) = f(hNpAj

, hNpAk
)− f(hNqAj

, hNqAk
) (3)

Let us now define the distance metric used in DVCR.
Suppose that the transformed ordinates of the source node x
and the sink node y are given as Nx ≡ [nx1 · · ·nxj · · ·nxP ]
and Ny ≡ [ny1 · · ·nyj · · ·nyP ]. Here P is the cardinality of
the transformed coordinates and can be selected from

(
M
2

)
combinations given M randomly selected anchors. Using the
L2 distance between the source node s and the destination d,
we find the distance as

DNxNy
=

√∑
∀j

(nxj − nyj)2; j = 1 : J ≤ CM
2 (4)

We can use this metric to perform greedy forwarding. When
a node needs to transmit a message to the destination, it will
forward the message to the neighbor which is closest to the
destination in terms of the defined distance D.

Although greedy forwarding works fine in many situations,
it is prone to the local minima problem in networks with a
concave shape or networks with holes. To avoid messages
getting stuck in a local minima, DVCR uses the ordinate
difference between the nodes and its neighbors. Let us consider
the ordinate difference set ∆A1A2 with reference to anchor
nodes A1 and A2. Therefore,

∆A1A2 = |(FA1A2(Ni, Nk)|;Nk ∈ K (5)

where |K| is the total number of neighbors of node Ni. Let
the maximum ordinate difference be α12 = max(∆A1A2

) and
the minimum ordinate difference be β12 = min(∆A1A2

). There-
fore, the approximate ordinate difference between current node
and destination is given as:

α12n+ β12m = |FA1A2
(Ni, Nd)| (6)

Similarly using reference anchor nodes A3 and A4 we get,

α34n+ β34m = |FA3A4
(Ni, Nd)| (7)

By solving Equations 6 and 7, we are able to find n + m
which gives us an estimate of minimum number of hops to the
destination. Similar calculations are performed by all of the
neighbors of current node i and the node having the minimum
number of hops is selected for forwarding.

III. THE CU-DVCR ROUTING PROTOCOL

The nodes in a sensor network need to know the location
of the sink to forward the messages to it. In sensor networks
with a static sink, routing is possible once nodes know the
location of the sink. In the case of a mobile sink, however,
nodes need to be continuously updated about the new location
of the sink. By considering the nodes inside a limited local
area around the sink, we can use one of these solutions when
the sink moves:

- Update All-DVCR (UA-DVCR) [17] - Update all the
nodes in the network

- Mobile Sink-DVCR (MS-DVCR) [17] - Update the
nodes in a local area around the sink

- Circular Update-DVCR (CU-DVCR) - Update the
nodes on the boundary of a local area around the sink

The main idea behind MS-DVCR is to limit the radius of
broadcasting to the nodes inside a local area while the sink is
inside the area. CU-DVCR takes a step further by limiting the
broadcasting to the nodes on the boundary of the local area.
This idea comes from the fact that only nodes on the boundary
of the local area are involved in correcting the assumption of
incoming messages to the local area about the current location
of the sink.

Let us assume that at the beginning of the scenario the sink
is at the location Ns = [ns1 . . . nsP ]. The local area of the
sink R is defined as the set of nodes with the L2 distance to
the sink smaller than r:

R =
{
Ni

∣∣ DNiNs
≤ r
}

(8)

The boundary of the local area B is defined as the set of
nodes with an L2 distance to the initial location of the sink
between r and r − c where c is the width of the boundary
area:

B =
{
Ni

∣∣ r − c ≤ DNiNs ≤ r
}

(9)

By this definition of local area R and boundary area B, the
sink can make two different types of moves:

- Local move: the sink stays inside the local area. In this
case, the sink will send a message to one of the nodes in
B and that message will be broadcast to the rest of the
nodes in B.

- External move: the sink leaves the current local area.
Hence, it must (a) create a new local area, (b) specify
the new boundary nodes and (c) broadcast the coordinates
of the new local area center to the entire network. See
Figure 1.

Now we can define three types of messages used in CU-
DVCR considering different movements of the sink.

- LOCAL messages are sent by the sink and forwarded to
the boundary of the local area. Once they reach one of
the nodes of B, they will be broadcast to all the nodes
of B. These messages carry the current location of the
sink.

- EXTERNAL messages are broadcast to the entire net-
work. They carry the location of the center of the newly



(a) Regular operation

(b) Network notification after external move

(c) New and previous boundary areas

Fig. 1. (a) Operation of CU-DVCR between the sink moves, (b) Network
update after an external move (c) New and previous boundary areas. (black
nodes: current local area, gray nodes: previous local area, thick circles in the
corner: anchor nodes)

formed local area, and they are sent when the sink
performs an external move.

- SENSING messages are sent by the sensor nodes and
carry sensed data to the sink. When these messages reach
a node of B, they obtain the current location of the
sink, and update all the encountered nodes on their way
towards the sink.

Algorithm 1 describes the event-driven behavior of the sink
in CU-DVCR. When the sink moves, it will calculate its new
coordinates based on the coordinates of its neighbors. Then,
it checks whether the new location is inside the current local
area. If yes, it sends a LOCAL message to one of its random
neighbors to be forwarded to the boundary area. When the
sink leaves the local area, it creates a new local area. The
current location of the sink will be chosen as the center of the
new local area. Then, it broadcasts an EXTERNAL message
containing this location information. The sink also receives
SENSING messages and treats them according to the behavior
specified in the application.

Algorithm 1 Sink behavior in CU-DVCR
when move do

new-location := current location of sink
if (DL2 (new-location, local-area-center)) < r then

send(msg(LOCAL, new-location), random-neighbor)
else

local-area-center := new-location
broadcast(msg(EXTERNAL, local-area-center))

end if
end when
when receives(msg(SENSING, data)) do

update local model with data
end when

Algorithm 2 describes the event-driven behavior of nodes
in CU-DVCR. When a node receives a LOCAL message
containing the new location of the sink, it sets one of its
neighbors as the next hop to the sink based on DVCR
algorithm. Then it checks if it is inside the local area or not
by calculating the distance between current node and the local
area center. If it is inside the local area, it checks whether it
is on the boundary area of the local area or not. If it is inside
the boundary area, it will broadcast the message, otherwise, it
will forward the message to the furthest node from the sink.
All distance calculations are done in virtual coordinates using
Equation 4 presented in Section II.

When a node receives an EXTERNAL message containing
the new local area center, it updates itself, chooses the next
hop to the sink, and broadcasts the message. A sensor node
forwards a SENSING message to the next hop while receiving
an update about the new sink location. It also creates a message
after sensing data and forwards it to the next hop.

Let us now discuss the expected energy consumption of the
UA-DVCR, MS-DVCR and CU-DVCR algorithms. We can
divide energy consumption into three parts:

- EIL: for updating the nodes inside the local area
- EOL: for updating the nodes outside the local area



Algorithm 2 Node behavior in CU-DVCR
when receives(message(LOCAL, new-sink-location)) do

nexthop := closest neighbor to new-sink-location
if (DL2 (local-area-center, nodelocation) < r) then

if (DL2 (local-area-center, nodelocation) > r-c) then
broadcast(msg(LOCAL, new-sink-location))

else
send(msg(LOCAL, new-sink-location), farthest-neighbor-
from-sink)

end if
end if

end when
when receives(message(EXTERNAL, new-local-area-center)) do

local-area-center := new-local-area-center
nexthop := closest neighbor to local-area-center
broadcast(msg(EXTERNAL, local-area-center))

end when
when receives(message(SENSING, data)) do

send(msg(SENSING, data), nexthop)
end when
when sensor-captures(observation) do

data = report-formation(observation)
send(msg(SENSING, data), nexthop)

end when

- ES : for forwarding the sensed data to the sink

Since both MS-DVCR and CU-DVCR update the nodes
outside the local area only when the sink does an external
move, they are expected to have the value EOL smaller
compared to UA-DVCR. CU-DVCR is expected to have a
lower value for EIL than MS-DVCR and UA-DVCR since
it is not using broadcasting to update all the nodes inside the
local area. However, the events created at the nodes inside
the local area may traverse a lengthier path due to lack of
awareness about the exact location of the sink. These packets
will be first forwarded to the previous location of the sink,
and then forwarded to the new location. We expect the effect
of increase in path length to be small on the total energy
consumption due to two reasons: (a) the nodes which are not
updated when the sink does a local move constitute a small
portion of all the nodes in the network (b) these nodes will
gradually receive the updated location of the sink as soon as
a packet that has passed the boundary of the local area passes
through them.

IV. EXPERIMENTAL STUDY

A. Experimental setup

In order to demonstrate different aspects of CU-DVCR,
we compare it with MS-DVCR and UA-DVCR which are
the state-of-art algorithms with the same goal in virtual co-
ordinates. The algorithms are implemented in the Java-based
extensible simulator YAES [18]. Table II lists the parameters
of the simulated scenarios. The parameters are set based
on the constant values column of the table unless explicitly
mentioned. In each experiment we vary one of the parameters
in the range shown in the varying range column to see its
effect on the desired metrics.

TABLE II
EXPERIMENTAL PARAMETERS

Parameter constant values varying range
General

Sensor network area L (m) 800 400-1000
Node deployment random uniform -
Density (nodes / m2) 0.005 0.002-0.006
Number of sensor nodes 5000 800-5000
Transmission range (m) 30 -
Sink movement random waypoint [19] -
Sink speed (m/s) 4 1-7
Experiment length 4000 messages -
Number of runs 20 -

Protocols
Coordinates directed virtual -
Anchors 4, extreme corners -
local area radius r 10 5-17
boundary area width c 4 -

The sensor network in the experiments is a square area of
L×L meters with sensor nodes randomly and uniformly dis-
tributed throughout the network. The virtual coordinates used 4
dimensions, with the sensor nodes at each corner of the square
area serving as the anchor points. A single sink is moving
in the area using a random waypoint movement model [19]
at a constant speed. We used the energy consumption model
of wireless communication as described by Rappaport [20].
For all the experiments described here, the results had been
averaged over 20 different runs with different random seeds
for the deployment of the nodes and the movement of the sink.

B. Energy consumption function of the size of the sensor
network

In this section, we set up the experiments to compare
the energy consumption function of the width of the sensor
network. The sensor network width varies between 400 and
1000 meters with a constant deployment density to create
networks with the number of sensor nodes between 800 and
5000. The sink was moving at 4m/s in a local area with the
radius of 15 hops.

Figure 2 shows the overall energy consumption of the
compared protocols. The energy consumption of UA-DVCR is
higher than the other algorithms especially in larger networks
due to higher number of messages required to update the entire
network. CU-DVCR is more energy efficient than MS-DVCR
in all network sizes. This is because the number of messages
required to update the entire local area in MS-DVCR is larger
than the number of messages to only update the boundary of
local area in CU-DVCR. As explained in the previous section,
the lenghthier path traversed by the messages in CU-DVCR
has less impact on total energy consumption compared to EIL,
the energy used to update the nodes inside the local area.

C. Routability function of network density

The number of successfully delivered messages to the
sink is an important factor in comparing routing algorithms.
Figure 3 shows the number of successfully delivered messages
as a function of network density. All the parameters are set
according to Table II except sensor node deployment density
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Fig. 2. Overall energy consumption for UA-DVCR, MS-DVCR and CU-
DVCR function of area size.

which varies between 0.002 and 0.006 nodes/m2. As expected,
the higher node density causes an increase in the number
of successfully delivered messages. In densities higher than
0.0055 nodes/m2, 100% of the messages were successfully
delivered to the sink. The three algorithms behaved essentially
identical in this experiment.
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Fig. 3. Number of successfully routed messages for UA-DVCR, MS-DVCR
and CU-DVCR function of network density.

D. Energy consumption function of the sink speed

In this section, we investigate the effect of varying the speed
of sink movement on energy consumption. The parameters
are set as explained in Table II. The sink speed varies from
1m/s to 7m/s. Figure 4 shows the results. The faster the sink
moves, the more updates are occurring in all the protocols,
thus the energy consumption always increases with the sink
speed. However, the area covered by the updates is largest for
UA-DVCR (the whole network), smaller for MS-DVCR (the
local area) and smallest for CU-DVCR (a circular area around
the local area). While for a slowly moving sink this difference
is minimal, as the sink moves faster, the updates represent a
larger fraction of the total energy consumption of the network.
For 7m/s the energy consumption of CU-DVCR is about 35%
of UA-DVCR and about 60% of MS-DVCR.

1 2 3 4 5 6 7
0

100

200

300

400

500

Sink speed (m/s)

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

 

UA−DVCR
MS−DVCR
CU−DVCR

Fig. 4. Energy consumption for UA-DVCR, MS-DVCR and CU-DVCR
function of sink speed.

E. Energy consumption and average path length function of
the size of local area

In this section, we investigate the effect of varying the size
of local area r on energy consumption and average path length.
The average path length was calculated as the average number
of hops that successfully routed messages traversed to reach
the sink. The parameters are set as explained in Table II. In this
experiment, the radius of local area radius r varies between 5
to 17 hops.

Figures 5 and 6 show the results. Choosing a small value
for the radius of local area causes an increase in energy
consumption in both MS-DVCR and CU-DVCR. This is
because the sink leaves a smaller local area more frequently
than a larger one. On the other hand, making the local area
larger requires more number of packets to update it in MS-
DVCR. Therefore, we can see that the energy consumption of
MS-DVCR increases for the local areas larger than 9 hops.
In CU-DVCR, the energy consumption decreases when the
local area becomes larger. This is because the sink leaves the
local area less often and also there is no broadcasting to the
entire local area as in huMS-DVCR. However, this energy
conservation is achieved at the expense of longer average
path length towards the sink for the SENSING messages (see
Figure 6).

One of the limitations of MS-DVCR is that we cannot
conserve energy more than a certain limit by changing the
radius of local area. However, in CU-DVCR this is possible
at the expense of longer average path length. Therefore, in
applications where the life-time of the network is critical, using
a large r in CU-DVCR can be helpful. On the other hand, in
time-sensitive applications where extra energy consumption
can be tolerated, we can use a small r in CU-DVCR or even
use MS-DVC with a large r to achieve shorter average path
length.

V. CONCLUSIONS

In this paper, we introduced CU-DVCR, a routing algorithm
towards a mobile sink in virtual coordinates. The main idea
is to update the nodes on the boundary of a local area around
the sink as the sink moves. We have compared this algorithm



4 6 8 10 12 14 16 18
100

150

200

250

300

350

400

Local area radius r

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

 

 

MS−DVCR
CU−DVCR

Fig. 5. Energy consumption in MS-DVCR and CU-DVCR function of the
radius of local area r

4 6 8 10 12 14 16 18
14

15

16

17

18

19

20

21

22

Local area radius r

A
ve

ra
ge

 p
at

h 
le

ng
th

 

 
MS−DVCR
CU−DVCR

Fig. 6. Average path length in MS-DVCR and CU-DVCR function of the
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with the state-of-art algorithms designed for the same purpose.
Experimental studies show that CU-DVCR is more efficient
in terms of energy consumption compared to other algorithms
while maintaining comparable performance in the number of
successfully routed messages. However, this result is achieved
at the expense of somewhat longer average path length for
the messages containing sensed data. We also showed that
when the sensor node deployment density is enough, CU-
DVCR guarantees 100% successful delivery of packets. The
simulation results also indicate that the energy conservation in
CU-DVCR is more pronounced for larger networks and faster
sink movement.
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