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Current state-of-the-art highway traffic flow simulators rely extensively on models using formulas similar to those describing
physical phenomena, such as forces, viscosity, or potential fields. These models have been carefully calibrated to represent
the overall flow of traffic and they can also be extended to account for the cognitive limitations of the driver, such as
reaction times. However, there are some aspects of driver behavior, such as strategic planning, that are difficult to formulate
mathematically. In this article, we describe the YAES-DSIM highway simulator, which integrates virtual physics models with
an agent-based model. The virtual physics component models the physical vehicle and the subconscious aspects of the driver
behavior, while the agent component is responsible for the strategic and tactical decisions, which are difficult to model using
virtual physics. We focus on the lane change decisions of the drivers, with special attention to the optimal lane positioning
for a safe exit. We have used the model to simulate the flow of traffic on Highway 408 in Orlando, Florida, and to study the
impact of various tactical and strategic decisions on the efficiency and safety of the traffic.

Keywords Driver Behavior; Highway Simulation; Multi-Agent Simulation

INTRODUCTION

Many current microscopic traffic simulation models rely on
mathematical formulas similar to those describing various phys-
ical phenomena: forces, viscosity, potential fields, and so on.
We call these virtual physics models. Over the course of the last
50 years there was a gradual shift from formulas relying on fluid
dynamics toward the individual treatment of the vehicle as a par-
ticle subject to a collection of forces. These models have been
proved to predict well the integrative, long-term parameters of
the traffic, such as throughput or average speed in congested
traffic. However, these models are less successful in modeling
the higher level cognition of the human driver and discrete de-
cisions motivated by long-term, strategic considerations.

Our work is centered on improving the accuracy of micro-
scopic highway simulation through agent-based modeling of
the conscious aspect of driver behavior. The conscious part of
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the driver’s behavior can be classified into strategic and tactical
behavior. Strategic behavior involves decisions that are planned
for the overall success of the drive (safe and fast arrival to
the destination). Examples involve route planning, joining or
leaving convoys, and choosing the appropriate highway lanes.
Tactical behavior includes actions taken to achieve short-term
advantages: overtaking a slow-moving vehicle, escaping from a
dangerous situation, increasing the distance from an erratically
moving vehicle, or matching the speed of the next line for easier
lane change.

The majority of agent-based traffic simulator approaches as-
sume that the complete behavior of the vehicle is represented
by the agent. In contrast to this, our model chooses to retain
the virtual physics based model as the best, most natural ap-
proximation of (a) the vehicle’s real physics and (b) the highly
learned driver behavior such as maintaining a constant speed or
a constant distance from the leading vehicle. On the other hand,
we argue that virtual physics-based models cannot conveniently
represent conscious decisions that are discrete in nature, such as
the choice to take a certain exit and the planning of the sequence
of lane changes such that the vehicle reaches the exit lane in
time. However, even if these decisions are taken at a higher
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Figure 1 Overall architecture of the YAES-DSIM simulator.

level, the enactment of these decisions will happen through
combinations of the same highly learned driver skills. Thus,
in our model, the high-level decisions are enacted through the
virtual physics model. At the same time, the low-level model
must also inform the conscious component, for instance, by
marking which decisions can be feasibly executed. In addition
to the driver’s conscious decisions, in modern vehicles, various
automation techniques can also take control of the vehicle by
either replacing or complementing the driver.

SIMULATOR ARCHITECTURE

The contributions of this article were implemented in the
YAES-DSIM driver simulator based on the YAES (Bölöni &
Turgut, 2005) modular simulator framework. The components
of the simulator are divided into three classes as described in
Figure 1.

The virtual physics components model the physics of the
vehicle as well as those aspects of the driver that are either
reflexive (such as emergency braking) or learned to the point of
becoming subconscious (such as lane following and keeping a
constant distance from the car in front).

The agent component models the conscious cognition of the
human driver. This includes both strategic planning (which exit
to take, which lane to prefer for long = distance driving) and tac-
tical (the decision to join a convoy or overtake a slow-moving
car). The agent component will receive input from the envi-
ronment (including sensor data, signaling data, and vehicle-
to-vehicle and vehicle-to-infrastructure communication). The
agent component acts through the virtual physics component,
by temporarily changing its parameters.

The intelligent driving assist components (IDAs) model the
action of various vehicle technologies that provide functional-
ity beyond the basic vehicle control. Sensor augmentation IDAs

improve the flow of information reaching the driver, and include
night vision systems, blind-spot warning systems, surround-
view cameras, and so on. In contrast, the automation IDAs
directly contribute to the control of the vehicle. These com-
ponents replace the virtual physics component with a separate
control system. For instance, when the intelligent cruise control
is turned on, it replaces the human driver’s behavior completely
and introduces its own vehicle-following rules. The transitions
between the virtual physics and the automation component must
model the real-world transition of control between driver control
and automation. It has been shown that the appropriate choice
of various automation technologies such as adaptive cruise con-
trol can improve the overall flow of the traffic (Kesting, Treiber,
Schönhof, & Helbing, 2008); however, the level at which users
are willing to accept these systems is an ongoing concern (Höltl
& Trommer, 2013).

The contributions of this article focus on the model of the
strategic behavior (the shaded area in Figure 1). For the start-
ing point of the contributions described in this article see Luo
and Bölöni (2010). However, we describe the majority of fea-
tures provided by the simulator, albeit at a limited detail level.
We use as our central example the planning for a safe exit
from a congested highway that requires a number of lane
changes. Realistic simulation of the circumstances in which
lane changes occur is a practically important problem. It was
found that about 10% of the crashes occurring on highways are
sideswipe crashes, while about 11% of them are angle crashes
(Pande & Abdel-Aty, 2006). Both types are associated with
lane changes (the remainder of the crashes are mostly rear-end
crashes).

The remainder of this article is organized as follows. The
third section describes the virtual physics models that are the
baseline of the contribution described in this article. The fourth
section describes a number of functionalities provided by the
agent component that complement the virtual physics model.
The fifth section describes the model through which the agent’s
preferences for specific lanes are enacted. The sixth section dis-
cusses various strategies for exiting the highway. In the seventh
section we describe a series of experiments of running YAES-
DSIM to simulate the traffic of Highway 408 in Orlando, FL.
Related work is discussed in the eighth section, and we conclude
in the ninth section.

THE VIRTUAL PHYSICS COMPONENT

The virtual physics component of the YAES-DSIM simulator
consists of a collection of models, selected such that they offer
state-of-the-art accuracy in terms of the simulation dynamics;
they are self contained, work well together, and extend the scope
of virtual physics to as wide a range of behaviors as possible. The
YAES-DSIM virtual physics model has three main components:
a time-continuous car-following model, a lane-change model,
and a human driver model.

intelligent transportation systems vol. 19 no. 1 2015
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The Car-Following Model

Car-following models describe the behavior of a car on a
single-lane highway. Most such models calculate the accelera-
tion or deceleration of the car through a formula of the following
general pattern:

dvi (t)

dt
= f (�xi , vi ,�vi )

where �xi = xi+1 (t) − �xi (t) is the distance between the
vehicle and its immediate leader, and �vi = vi (t) − vi+1 (t) is
the approaching speed. The specific formula we choose to use
is the one introduced by (Treiber, Hennecke, & Helbing, 2000):

dvi (t)

dt
= a

[
1 −

(
vi

v0

)4

−
(

δ(vi, vi)

xi

)2
]

where a is the maximum acceleration of the vehicle, v0 is the
desired speed, and δ (·) is the desired distance from the lead-
ing vehicle. This distance depends on a number of parameters
through the following formula:

δ(vi, vi) = �xmin + viT + vi vi

2
√

ab

where �xmin is the minimum distance in case of congestion
(vi = 0), T is the safe time headway that models the buffering
time of the driver, and b is the comfortable deceleration, which
cannot be less than –9 m/s2 on a dry road.

Let us now discuss the intuitions behind this formula. On a
free road, the instant acceleration changes from the maximum
acceleration a (when the vehicle is still, vi = 0) to 0 (when the
vehicle reaches its desired speed vi = v0). If a vehicle follows a
leader with a negligible approaching speed (�vi ≈ 0), the term
viT in dominates such that the vehicle maintains a distance viT
from the leader.

In the situation when the vehicle approaches the leader with a
high speed, the last term vi�vi/2

√
ab dominates and the formula

dictates a deceleration. The most extreme case is when the vehi-
cle moves with its desired speed v0 and observes a still obstacle
at a distance xi. To avoid a collision, the vehicle must brake
with deceleration –b when it reaches a distance �xi = v2

i /2b.
Indeed, this is exactly what the model predicts:

dvi (t)

dt
= a

(
δ

�xi

)2

= −a

(
vi �vi

2
√

ab

)2

�x2
i

= − v4
i

4bx2
i

= −b

The car-following model defined in this way is collision free.

Lane-Changing Models

Lane changing is a discrete, binary choice of the driver. In his
influential paper, Gipps (1986) proposed the following criteria
for lane-changing decisions:

• Whether it is physically possible and safe to change lanes
without an unacceptable risk of collision.

• The location of permanent obstructions.
• The presence of special purpose lanes such as transit lanes.
• The driver’s intended turning movement.
• The presence of heavy vehicles.
• The possibility of gaining a speed advantage.

In later years, to these criteria researchers added the cooper-
ation (or lack of cooperation) of other drivers and the driver’s
consideration toward the other vehicles on the road. This im-
plies that systems must model not only the decisions of the
lane-changing driver, but also the choices of nearby drivers.
These decisions had been modeled through a wide range of
approaches from rules expressed in a flowchart (Gipps, 1986),
neural networks (Hunt & Lyons, 1994), fuzzy sets (Moridpour,
Sarvi, Rose, & Mazloumi, 2012), and game theory (Kita, 1999).

The YAES-DSIM implementation extends the car-following
model with the lane-change model described by Kesting,
Treiber, and Helbing (2007), which models lane-change deci-
sions and collaborative behavior through a calculation of utilities
together with a simple threshold mechanism.

The model assumes that lane changes happen instanta-
neously: For a shift to the left lane, a vehicle that has been
previously in the middle lane at time t disappears from the mid-
dle lane and appears in the left lane. This opens the possibility
that a car coming from behind in the new lane with a higher
speed cannot brake sufficiently quickly and collides with the
lane-changing car. The model assumes that it is the responsibil-
ity of the lane changing car to ensure that the rear left vehicle
j – 1 has sufficient buffer distance such that it can decelerate
before hitting the lane-changing vehicle:

â j−1 (t) ≥ −bmax

If this condition is not satisfied, the vehicle concludes that it
is not safe to change lanes.

The second feature of the lane-changing model is the analysis
of the motivations to change lanes and the “politeness” of the
drivers. We assume that the goal of the drivers is to achieve
their desired speed, which implies a certain desired acceleration
âi . At this point we assume that the only motivation of the
driver to change lanes is to achieve this acceleration (which
is not possible in the current lane). However, the changing of
lanes might also trigger accelerations in the other vehicles: For
instance, it allows the current follower to accelerate, and it might
force the new follower to brake.

Kesting et al. (2007) calls politeness the degree at which
a driver might consider the accelerations of the other vehicles
as well when taking a decision to change the lane. Although
throughout this article we use this parameter for a wider range
of functionality, we retain the original name. The politeness pa-
rameter p specifies how much the driver discounts the other
drivers’ desired acceleration compared to his own. A value
p = 0 indicates an impolite, fully selfish driver who does not
care about other drivers (but still considers the safety criteria).

intelligent transportation systems vol. 19 no. 1 2015
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The vehicle i will decide to change the lane if the following
inequality is verified:

(âi + p · (â j−1 + âi−1)) − (ai + p · (ai−1 + a j−1)) ≥ �pth

where �pth is the politeness threshold. The left-hand side is the
difference between the new accelerations âi , â j−1, and âi−1 if
the vehicle i successfully changes into the target lane and the old
accelerations ai−1 and a j−1 if it doesn’t change into the lane. The
intuition is that the vehicle favors changing the lane only when
the advantage of the action is greater than the disadvantage it
exerts to its neighboring vehicles. However, because the vehicle
i cannot obtain the parameters (T, v0, a, b) for its successors
i – 1 and j – 1, the utility of lane change can only be calculated
by the vehicle i’s own parameters.

Human Driver Model in the Virtual Physics Approach

A human driver is in some aspects “less capable” but in other
aspects “more capable” than the abstract driver envisioned in the
models considered up to this point. State-of-the-art microscopic
traffic models consider some aspects of the human driver, such
as reaction time, fatigue, and cognitive limitations, and integrate
them in the equations of the virtual physics model.

The virtual physics model in YAES-DSIM implements
several human driver features inspired from Treiber, Kesting,
and Helbing (2006). First, we consider the fact that humans
cannot perform an indefinite number of decisions per unit
of time. This is modeled by restricting the driver to a single
decision about acceleration in any given time step �t . Thus, the
driver can only change his mind about the acceleration 1/�t
times per second. This acceleration value will remain constant
for the next interval �t :

vi (t + �t) = vi (t) + vi (t)�t

xi (t + �t) = xi (t) + vi (t) �t + 1

2
vi (t)�t2

Another aspect of the human behavior modeled is the reaction
time T’ necessary to reason about the traffic situation and make
decisions accordingly. This can be achieved by substituting in
the car-following equation the current state (�xi , vi ,�vi ) at
time t – T’. If t – T’ falls between two simulation steps at a
distance β�t from the simulation step, the observation will be
adjusted as:

x(t − T ′) = βxt−n−1 + (1 − β) xt−n

COMPLEMENTING THE VIRTUAL PHYSICS MODEL

The agent component of the YAES-DSIM simulator is a col-
lection of specific functional models that act through the virtual

physics model. As the driving behavior of humans is a com-
plex mix of tactics, strategy, reflex actions, communication, and
sensing, the objective of these functional models is to simu-
late as many aspects of the driving behavior as possible. The
main topic of this article, the strategic behavior, is only one of
these additional functionalities. In the following we succinctly
present some of the functional models that directly interact with
the strategic lane change behavior:

• The visibility model: the way in which the driver becomes
aware of other vehicles and obstacles.

• The communication model: the ways in which the drivers of
the vehicles communicate with each other.

• The reflex action model: the ways in which the drivers take
fast actions that are not covered by the virtual physics model,
which operates more “smoothly.” Examples include the details
of a lane change, including ability to abort a started lane
change, quick swerving to avoid an accident, and so on.

The Visibility Model

Virtual physics models posit forces of attraction and repul-
sion toward the surrounding vehicles and obstacles. In the real
world, these virtual forces are enacted through the actions of the
driver, which implies that only the vehicles of which the driver
is aware will be considered. In fact, the main way in which the
collision-free property of a virtual physics model might break
down is the case when the driver is not aware of a nearby vehicle.

The visibility model of YAES-DSIM allows us to specify the
distance at which the driver considers surrounding vehicles and
takes into consideration the occlusion of visibility by large ve-
hicles. Furthermore, we can model limited visibility conditions,
such as fog and rain.

The visibility model interacts with the other components of
the simulator in several ways. The default assumption is that
of sufficient visibility: The driver assumes that consideration of
the currently visible vehicles is sufficient input to the rest of the
simulator (the virtual physics and higher level components).

There are, however, situations when the driver is aware that
his visibility is reduced, and he needs to take this into account
in both the low-level driving and high-level plans. In some situ-
ations, these plans are influenced by changeable message signs
and variable speed limit displays (Hassan, Abdel-Aty, Choi,
& Algadhi, 2012). Although the response to low visibility is
distributed throughout the system, YAES-DSIM deploys the
technique of virtual objects, which allows us to modify only
the visibility model to create the response to low-visibility sit-
uations. Virtual objects are entities not present in the physi-
cal reality, but that are added to the conscious sensing of a
given driver. For instance, if a human driver practices defen-
sive driving the driver will assume the existence of virtual ob-
jects just outside of their current visibility boundaries—for in-
stance, behind large vehicles or at the limit of the visibility
distance.

intelligent transportation systems vol. 19 no. 1 2015



MODELING STRATEGIC BEHAVIOR OF DRIVERS 49

Figure 2 Augmentation of the visibility model for defensive driving under reduced visibility conditions. Solid border gray rectangle: the considered vehicle.
Black rectangle: physically sighted vehicle. Dotted border rectangles: virtual vehicles considered by the driver model.

Figure 2 shows the complex situation of a driver who is
driving in the rain near the highway entrance on the rightmost
lane. The driver is aware of her distance-limited visibility and
the lack of visibility toward the vehicles entering the highway.
The defensive driving strategy of the driver considers the ex-
istence of six virtual objects: three immobile vehicles at the
outer range of her forward visibility, two moving vehicles at the
outer range of her backward visibility, and one moving enter-
ing vehicle. The driver will not need to consider vehicles that
are more than one lane away. Note that defensive driving does
not necessarily imply a low speed—in this particular situation
a sudden brake will be just as bad as an excessive speed. Over-
all, however, this technique correctly models the slowdown of
the overall traffic in the situation when the visibility distance
decreases. Furthermore, as the visibility model can be config-
ured from vehicle to vehicle, we can model the natural mix of
defensive and aggressive drivers.

Communication Model

Vehicles on the highway communicate with each other
through various implicit and explicit means. The importance
of communication from the point of view of the driver is that it
allows him to form a better model of the other vehicles in the
traffic.

The term communication here includes both the traditional
communication models (such as brake lights and turn signals)
and the emergent electronic communication models (vehicle-
to-vehicle [V2V] and vehicle-to-infrastructure [V2I]). Both of
them affect traffic by transmitting information about the obser-
vations, actions, and plans of the vehicles to another vehicle.
Naturally, there can be differences concerning the propagation
range, speed, and the type of information transmitted. For in-
stance, brake lights improve the precision of the driver’s as-
sessment of the lead vehicle’s speed and deceleration. A V2V
collision warning system might transmit exactly the same infor-
mation as the brake lights, but it might do so over the span of
several vehicles. Some communication techniques are enforced
by law (such as signals), while others are informal and some-

times even illegal (such as “pressing” a vehicle from behind to
force it to accelerate).

From the point of view of the main subject of this article,
lane-change behavior, it is important to model the directional
signals. Directional signals affect the overall traffic because
they can significantly decrease the probability of a lane-change
accident due to insufficient knowledge.

To effectively implement the logic of direction signals, we
need to disconnect the decisions of lane change favoring and
lane change safety. In the YAES-DSIM implementation, if the
lane change favoring condition is satisfied, the agent will start
signaling the lane change. After 3 s, the agent will start checking
the lane change safety. If the lane change is perfectly safe, the
agent will perform the lane change, which will take about 2 s to
complete. If the safety condition is not fully satisfied, the agent
might also take a risk action (R), which means initiating the lane
change under the assumption that the vehicles on the new lane
will take appropriate actions to avoid collision. If the agent is
not willing to take a risk, it can continue signaling and maintain
its current speed (O), it can abandon signaling and declare a lane
change failure (S), or it can try to change its speed in the positive
or negative direction (C+ or C–) to obtain a more favorable lane
change safety value.

A signaling vehicle is registered by the visibility model of
the other vehicles and it might change the driving behavior
of these vehicles. In principle, the model uses the same virtual
object model as the reduced visibility models already discussed.
However, the drivers also need to make some discrete choices,
depending on their willingness to give way or their guess on
what the signaling vehicle will do next. A courteous driver will
consider a virtual that which models the signaling vehicle’s
new position as if the lane change already happened. This will
force the other components of the model to give space to the
virtual vehicle, facilitating the safety condition of the signaling
vehicle. A not courteous driver will simply not consider the
virtual vehicle.

A simple situation is presented in Figure 3, where vehicle V2
might or might not consider the signal by vehicle V1. Even in
such a relatively simple situation, a number of discrete choices
exist. A courteous V2 driver would slow down (C–), or take a

intelligent transportation systems vol. 19 no. 1 2015
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Figure 3 Single-vehicle lane change with signaling.

risk (R) of colliding with vehicle V1 if that takes the choice to
change lanes without the safety condition being satisfied. On
the other hand, vehicle V1 has several choices: to take the risk
and move (R), to continue signaling while maintaining speed
(O), to increase speed (C+), or to stop signaling and declare
failed lane change (S). In the case of a failed lane change,
the vehicle will wait for a certain time before trying again.
The justification behind the desire to change lanes might affect
the discrete choices of the vehicles—for instance, if the vehicle
wants to change lane in order to improve its speed, is will be less
likely to take a risk compared to the situation where the lane is
ending (forced lane change).

The combination of various action choices is especially prob-
lematic when two or more vehicles signal lane changes simulta-
neously, such as in the example in Figure 4. The dilemma is es-
pecially difficult for vehicle V2, for whom a decision to increase
the speed (C+) would reduce the risk of its own lane change;
however, courteousness toward V1 would require a decrease in
speed (C–). The current implementation of YAES-DSIM makes
conservative choices in such situations.

Reflex Action Model

The lane-change model (Kesting et al., 2007) used in the
virtual physics component of YAES-DSIM shares with many
similar models the property that lane changes are instantaneous:
a vehicle appears in the neighboring lane and disappears from
the current lane at the same time. The new following car will
need to hit the brakes at the very instant when this movement
happens. In practice, cars change lanes along a diagonal lane,
over a period of time tlane (see Figure 5). At the moment when
the lane change starts, all the following vehicles will know the
intention of the driver, and they will react accordingly. To drive
safely, the followers on the destination lane need to act as if
the lane change has been completed as soon as it starts. On
the other hand, the followers on the source lane act as if the

Figure 4 A more complex lane-change scenario. Two vehicles signal inten-
tions of lane change.

car is still on their lane until the completion of the maneu-
ver. This caution is justified by the fact that the cars can, in-
deed, abandon a lane change in the middle of the maneuver. We
can model this pessimistic reaction by making the assumption
that during the lane-change maneuver the vehicle occupies both
lanes.

This model has implications for the car following and lane-
changing model. In Figure 6, at time t, agent i tries to evaluate the
decision of the left change based on the observation at t − tsense.
Behind itself, the agent observes an accident so it considers no
follower in the original lane. On the left, the agent finds no
vehicle, but a vehicle two lanes left is changing to the right. So
the new follower in the target lane should be vehicle k – 1. There
are several possible new leaders in the target lane: vehicle k +
1, j + 1, or i + 2. In general, the agent should consider all the
vehicles in the target lane, as well as all the vehicles moving
toward the target lane. In this example, the new leader should
be vehicle k + 1 as it is the nearest vehicle in the target lane.

To model the cognitive limitations of human drivers, we do
not allow a vehicle to decide on a second lane change during
the time it is engaged in the first. During the lane change, the
agent can only control the acceleration of the vehicle. The new
accelerations are calculated based on the predicted leader on the
destination lane.

This behavior is sometimes explicitly recommended by
driver’s manuals. For instance, the official driver’s manual
in California specifies that lane changes must be done “one
at a time.” While aggressive drivers occasionally do perform
multiple-lane changes, such occurrences are rare.

Let us consider a situation when two vehicles, driving in
parallel on the left and right lanes of a three-lane highway, si-
multaneously make the decision to move to the middle lane. This
leads to an accident under all the models discussed previously.
In real life, however, such situations rarely lead to accidents,
because the drivers will become aware of the other driver’s
intentions by observing the other vehicle’s diagonal path. Seeing
the dangerous situation developing, one or both drivers abandon
the lane change and remain in (or return to) their previous lanes.
Thus, the lateral movement of the vehicles acts as an implicit
communication signal. Naturally, if the vehicles are using their
directional signals, the message can be transmitted before the
lane change had started.

The YAES-DSIM simulator implements this communication
model by creating virtual objects for the diagonally moving
vehicles both in the starting lane and in the destination lane.
This allows us to use the virtual physics model unchanged both
for the drivers in the start lane, who consider the lane change
finished only when the lead vehicle has completely moved to the
new lane, and the vehicles in the destination lane, who consider
the lane change as soon as the vehicle starts to move along the
diagonal. With this model, it is possible for the virtual physics
model to indicate a collision, which, however, is only a potential
one. In this case the vehicles can still take a reflex action to avoid
the collision by canceling the lane change.

intelligent transportation systems vol. 19 no. 1 2015
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Figure 5 The sensing and actuation delays for a driver agent making a decision at time t.

STRATEGIC LANE CHANGE BEHAVIOR

Many highway simulation models assume that the lane-
change decision is based on a near-term optimization criterion:
for instance, that the vehicles will change lanes only if they can
get closer to their desired speed. This is a realistic assumption if
there are no exits and entrances nearby, there are no road signs
or obstacles and the drivers have no preferences for specific traf-
fic lanes. In real-world traffic, however, especially for highways
traversing cities, there are a number of additional considerations
affecting lane-change behavior:

• Entrances. The drivers enter the highway on the rightmost
lane, which often serves as a temporary merging lane. The
drivers need to merge into traffic before the lane ends.

• Exits. When drivers exit the highway, they need to position
themselves to the appropriate exit lane (usually one or two
rightmost lanes, but occasionally a leftmost lane). Depending

on the traffic, the approaching maneuver must be started long
before the exit.

• Avoid the rightmost lane. If the highway has more than two
lanes, and there is a zone with many entrances and ex-
its, then most drivers prefer not to drive on the rightmost
lane, to avoid interference with cars entering and exiting the
highway.

• Leftmost lanes as high-speed lanes. The leftmost lane is usu-
ally deemed a high-speed lane and is avoided by vehicles that
drive more slowly by choice or necessity (such as trucks).
Vehicles that are “pushing” the posted speed limits, however,
prefer the leftmost lane.

• Lane number variations. The number of lanes on the roads
changes with the location. Lanes terminate, and new lanes
are added in busy areas. The termination of lanes is usually
signaled ahead.

• High-occupancy vehicle lanes. Some highways designate the
rightmost lane as a high-occupancy vehicle lane. This would

Figure 6 At time t, agent i tries to evaluate the decision of left change.
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naturally be a preference for qualifying vehicles, but it also
requires the traversal of many other lanes for entrance and
exit.

There are also other situations where the lane change must be
performed under special rules, such as at toll plazas (Al-Deek,
Mohamed, & Malone, 2005). Beyond the conditions imposed
by the highway configuration, the lane-change behavior also
depends on the strategies of the individual drivers. Some drivers
might try to reduce the number of lane changes, while others
make them every time it offers a short-term advantage. Some
drivers prefer to position themselves to the correct exit lane a
long time ahead, while others might wait until the last minute
to move toward the exit. Some drivers prefer the leftmost lane,
while others try to avoid it and prefer middle lanes.

The agent-based strategic module of the YAES-DSIM sim-
ulator models the static and dynamic lane preferences of the
drivers. The strategic module operates together with the virtual
physics component and the other functional components. The
strategic preference does not eliminate the optimization for the
desired speed from the sources of driver decision. For instance,
in an open highway with the planned exit far away, speed op-
timization might trump the preferences for certain lanes. When
approaching the desired exit, however, moving to the exit lane
gradually takes priority.

This agent-based strategic module allows us to study aspects
of traffic that are impossible with previous models. Examples
of the kind of questions we can answer are:

• Are highway exits that are close to each other a helping or
hindering factor to the smoothness of traffic?

• How does a left exit change the shape of traffic?
• Do drivers who wait for the last moment to move to the exit

lane help or hinder traffic? What about their performance
(time to destination), their own and the other drivers’ safety,
and the overall driving comfort?

• Do drivers who prefer the inside lane move more quickly?

We start by defining our notion of utility of a lane from the
point of view of a driver. The first idea would be to use the
left-hand side of the formula for lane change utility as the utility
metric. This value, however, can be negative: Its range is [–C,
C] where:

C = (a + bmax ) (1 + p)

We need, however, a strictly positive utility metric for further
definitions. To achieve this, we add C to the formula. Thus, the
utility of the current, left, and right lanes will be defined as:

Uc = �pth + C

Ul = (âi + p · (â j−1 + âi−1)) − (ai + p · (ai−1 + a j−1)) + C

Ul = (âi + p · (âh−1 + âi−1)) − (ai + p · (ai−1 + ah−1)) + C

The preference model modifies the virtual physics model by
assigning the preference weight Wc ∈ [0.0, 1.0] to the lanes of
the road. The preference weights are assigned to the individ-
ual lanes based on a longer term planning process. The virtual
physics model will consider the weighted utilities of the lanes
Uw

c = Wc · Uc and so on.
This way, the vehicle might not move to a low-priority

lane even if that would confer a temporary advantage. Yet the
agent’s behavior would still retain the smoothness associated
with the virtual physics model. When all the lanes have the
same preference, the behavior reverts to the basic virtual physics
model.

The preference weights are directly associated to the lanes
of the highway, yet the vehicle needs to make decisions, one
lane change at a time. Thus, the vehicle occasionally needs to
accept a decrease in utility in order to reach a preferred lane
after more lane changes. To resolve this problem, we define the
lane change preferences as follows. Wc is the preference of
the vehicle’s current lane. Wl and Wr are the maximum
of all the preferences to the left and right of the vehicle,
respectively.

Let’s now consider some examples of the use of the prefer-
ences by the agent:

1. When entering the highway, the agent will set the preference
of its terminating entrance lane to zero. This will cause it to
move to the highway’s continuing lanes as soon as it is safe
(Figure 7a).

2. When driving on the highway, the vehicle will assign higher
preference to the lanes it prefers driving on. The preference
gradients will be, however, milder. This allows the other
components of the simulation to override this behavior, if
significant advantage is to be gained—or if the tactical ma-
neuver requires it (Figure 7b).

3. When the vehicle needs to “give way” to a police car or
emergency vehicle, it will set the specific lane(s) to zero
preference, which will force it to move to one of the non-
zero preference lane as soon as it is safe. Once the emergency
vehicle has passed, the vehicle resets its lane preferences to
the previous ones (Figure 7c).

4. If the vehicle prepares to exit, it will modify the lane pref-
erences to prefer the exit lane. Note that this does not mean
that the vehicle will immediately change to the exit lane, as
a number of other safety conditions need to be satisfied for
each lane change (Figure 7d).

5. Avoiding entering lanes. Let us consider a vehicle whose
driver usually prefers the rightmost lanes. These lanes, how-
ever, are extremely busy before and after exits with cars that
are entering and exiting the highway. Thus, many drivers pre-
fer to move away from the rightmost lane when the highway
traverses a city. This situation is shown in Figure 7e. Note
that this preference has a relatively mild gradient, and can be
overwritten by other considerations.
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Figure 7 Lane preferences for various traffic situations and tactical goals of
the agent.

Specific Situations

Although the framework as already discussed is quite
generic, the agent must also consider a series of specific situa-
tions when making strategic decisions. For instance, the agent
must consider whether a lane change is optional or forced. A
lane change dictated by a judgment that in the new lane the driver
can approximate better his own preferred speed is optional (this
is a lane change motivated by the formula of lane change utility).
In this case the current lane will still have a nonzero preference
weight wcurrent . For an optional lane change the vehicle will
still consider the option of staying in the current lane.

The alternative case is a forced lane change, where the pref-
erence weight of the current lane is zero wcurrent = 0. A forced
lane change might happen when the vehicle wants to exit, when
the current lane ends, or when special conditions arise, such
as the necessity to avoid an accident vehicle or to give way to
an ambulance or firefighter. Even in forced lane changes, the
vehicle is not be able to change lanes if the safety conditions are
not satisfied.

If the lane change cannot take place before the critical con-
dition triggering the forced lane change happens, we say that
the lane change failed. A failed lane change can correspond to
a number of different real-world outcomes:

1. The vehicle is forced to move out to the highway shoulder
and comes to a complete stop.

2. The neighboring drivers, noticing the difficult situation of the
vehicle, take exceptional actions to let the vehicle make the
lane change in safety. This requires the drivers to temporarily
ignore their own utility and preferences.

3. The vehicle takes a risk and makes the lane change when
the safety considerations are not fully satisfied. Due to the
reflex evasive actions of the drivers (breaking, acceleration,
swerving), the accident is avoided.

4. The vehicle takes a risk, makes the lane change and gets into
an accident.

5. (If possible) The vehicle changes its plans, for instance, by
taking the next exit.

Simulating which one of these outcomes will happen would
require a completely new level of modeling detail, which in-
cludes the modeling of reflex actions and precision driving skill
of the drivers, as well as their ability to think under pressure.
Thus, our model can only predict the occurrence of a danger-
ous lane change, but cannot decide whether an accident actually
happened or had been narrowly avoided.

Lane Change Tactics

Finally, we need to discuss about the tactical aspects of a
lane change. Once a driver decides on a lane change, he needs
to wait for the moment when the safety conditions are satisfied.
We consider two different tactics that the agent might deploy:
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The source lane speed tactic. The agent continues to move
with the speed calculated according to the virtual physics models
of the source lane, while continuously checking whether the lane
change safety condition is satisfied. Essentially, the agent keeps
driving as before. When the safety condition is satisfied, the ve-
hicle initiates the lane change. A failed lane change is declared if
the safety condition does not become satisfied within a deadline.

The destination lane speed adaptation tactic. The agent tries
to match the speed of the lead vehicle in the destination lane,
while maintaining the safe following distance on the source
lane. Thus, the agent tries to move as if it would already be on
the destination lane, with the hope that this speed adaptation
might make it more likely that the lane change safety condition
will be satisfied. In YAES-DSIM this tactic is implemented by
overriding the virtual physics speed control technique except the
current lane’s safety condition. Note that it is not always possible
to match the speed of the destination lane if the destination
lane moves faster than the source lane. Conversely, the speed
adaptation tactic might require the driver to move more slowly
than what would be possible on the source lane. If the vehicle
needs to cross several lanes (as in the case of the exit) it will
change its desired speed in steps, always adapting it to the
speed of the next destination lane. Once the forced lane change
situation is terminated, the desired speed of the vehicle reverts
to the one dictated by its own preferences. As in the case of the
source lane speed tactic, if the safety condition is not satisfied
within a deadline, a failed lane change is declared.

HIGHWAY EXIT STRATEGIES

Many drivers prefer to spend most of the journey on the faster
lane on the left side of the highway. To finish the journey, how-
ever, they need to exit from the rightmost lane, a maneuver that
requires several consecutive forced lane changes. In situations
of heavy traffic, this can represent a significant safety risk.

Drivers can use a number of different strategies for highway
exits. These strategies impact not only their personal success
rate, but also the general shape of the traffic. A cautious driver
will start moving toward the rightmost lane a long time before
the exit. This, however, increases congestion on the rightmost
lanes. A more aggressive strategy would be to stay on the fast
lanes as long as possible—this, however, requires several suc-
cessive lane changes with very little room for error, and possibly
the need for reflex actions from the other drivers.

The YAES-DSIM simulator builds the model of the high-
way exit strategy on top of the lane change preference model
introduced in the previous section. The driver needs to set the
preference weights on the various lanes in such a way that (a)
it will reach the exit on the rightmost lane and (b) other desired
properties are satisfied, such as safety, politeness, and desired
speed.

We consider two different strategies.
The static schedule exit strategy approach assumes that the

driver changes the preferred lane at fixed distances from the

exit. For instance, the driver might choose to be no farther than
on lane 3 by 600 m from the exit, lane 2 by 400 m and lane 1
when 200 m from the exit. Aggressive and cautious strategies
can be modeled through the variation of these distances and the
relative lane preferences within the sections. The placement of
exit notification signs on the highways often provides anchor
points for these preference segments.

Using the adaptive exit strategy the drivers change their lane
preferences as a function of current traffic situation. They start
their move toward the exit lanes earlier if there is dense traffic
that makes lane changing harder. On the other hand, in light
traffic, an adaptive driver might stay in the fast lanes to locations
much closer to the exit.

YAES-DSIM models the adaptive exit strategy by developing
a probabilistic model of lane change success. Strictly speaking,
traffic is not probabilistic in YAES-DSIM—the validity of the
probabilistic strategy is justified by the specific driver’s uncer-
tainty about the intentions and strategies of other drivers.

We assume that every driver, based on her historical experi-
ence with traffic conditions, can develop a probabilistic model
of the success of the lane changes. The two parameters of this
model are the local density of the vehicles in the target lane
Di and the average speed difference between the vehicle and
the neighboring vehicles in the target lane �Vi . An experi-
enced driver can estimate Pr (t, Di ,�Vi )—the probability that
the driver can successfully change lanes in time t for a spe-
cific value of the density and speed difference. For the purpose
of our simulation, we have collected this data by identifying
lane change events in the simulator logs. The probability was
extracted from the histograms of the time it took to actually
perform the lane change.

If the vehicle is currently n lanes away from the exit lane,
it will need to successfully execute n lane changes before exit.
The driver needs to start exit preparations at such a time/distance
ahead so that the driver can successfully exit with a high prob-
ability. In the rest of this article we use 90% for this probability
value. Note that this does not mean that 10% of the drivers will
miss their exits, but that for about 10% of the exits this will not
be performed in guaranteed safety.

Let us now analyze how a driver can calculate the prepara-
tion time necessary for a safe exit with 90% certainty. Suppose
Pr (ts, Di ,�Vi ) is the probability of a single lane change that is
finished at time t when the next lane i has density Di and speed
difference �Vi . In general, if the agent tries to change from lane
i to j in time n, the probability that it can succeed is:

Pr(i, j, n)

=

⎧⎪⎪⎨
⎪⎪⎩

∑n−( j−1)+1
t=1 Pr(t, Di+1, �Vi+1) · Pr(i + 1, j, n − 1) i f i < j∑n−( j−1)+1
t=1 Pr(t, Di−1, �Vi−1) · Pr(i + 1, j, n − 1) i f i > j

1 i f i = j

The probability of successful change across multiple lanes
can be calculated through a recursive algorithm. As the
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Figure 8 Map of the first 7.5 km of the modeled highway stretch and its description in the specification language of YAES-DSIM.

probability of successful exit is monotonically (but not linearly)
increasing with the time of exit preparation, we can find the mini-
mum preparation time necessary to achieve any given successful
exit probability through binary search in the space of calculated
probabilities. The driver first observes the relative speeds and
densities in all the lanes that separate the vehicle from the exit
lane. Then, using the calculations just utlined, the driver would
be able to calculate the optimal time when it needs to start his
exit maneuver (for a specific value of safe exit probability).

To put these two strategies in context, we need to mention
that in general, driving schools and manuals recommend a static
schedule exit strategy. For instance, a driving school’s website
recommends a fixed distance ( 1

2 mile) for the exit preparation.
However, the official driver’s manuals are much more vague.
The New York state driver’s manual requires you to get into
the exit lane “well ahead of time,” which allows the possibility
of adaptation. To further complicate this, Web forums show
anecdotal evidence for traffic police stopping people for too late
merging. On the other hand, the Minnesota state driver’s manual
explicitly recommends late merging. Our personal experience

and discussion with traffic experts suggests that many drivers
perform some level of exit optimization.

RESULTS OF EXPERIMENTS

Map Representation

The experiments have been performed on a detailed, lane-by-
lane model of a 22.13-mile stretch of Highway 408 in Orlando,
FL. Figure 8 shows the map of a 7.5-km stretch at the beginning
of Highway 408 and its description in the specification language
of the YAES-DSIM simulator. The language maps the two-
dimensional (2D) geographic coordinates of the highway into a
one-dimensional strip (this information can be converted back
to a 2D map format for visualization purposes). However, the
language allows an exact specification of the configuration of
the highway lanes over every segment of the road, as well as
the ways in which lanes flow into others, are started, merged,
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split, and terminated. Thus, the specification creates an exact
model of the number and location of lane changes a driver must
perform.

Simulation Parameters

The experimental study had been performed using the YAES-
DSIM simulator, implementing the virtual physics models de-
scribed in the third section and the agent-based functionality
described in the fourth, fifth, and sixth sections. The experimen-
tal scenario for the arrival and exit information has been created
as follows. Inflow and outflow information was acquired from
the statistics of the Orange County Expressway Authority.

The vehicle inflow was modeled as a Poisson traffic, match-
ing the specified average inflow rate. The statistical data, how-
ever, do not provide an explicit mapping between the point
where a specific vehicle enters and the point where it leaves
the highway. Thus, for our model, we choose the exit point for
each vehicle stochastically, with the probability that the vehicle
entering at entrance i will have a destination at exit j being:

Pr( j) = Out( j)

Out( j) + ∑
k> j Out(k) − ∑

(l> j) I n(l)

where In (l) is the inflow rate of entrance with label l, and Out(k)
is the outflow rate of exit with label k. The denominator in the
equation is the total number of vehicles that will pass or exit the
location. However, the selection probability is calculated with
the assumption that the vehicle doesn’t exit before j, so we need
to normalize this as:

Pr(i, j) =
∏

i<m< j

(1 − Pr(m)) � Pr( j)

To simulate the highway in the rush hour, we increase the
inflow and outflow rate by the flow ratio. The parameters of the
simulation are summarized in Table 1. For all the graphs that
follow, the simulation was run for a single span of 1 h (36,000
simulation steps) per data point. However, the experimental re-
sults were always computed over all the vehicles in the traffic

Table 1 Default parameters of the simulation.

Parameter Symbol Value

Simulation step �t 0.1 s
Maximum deceleration bmax 5.0 m/s2

Vehicle length xlength 4 m
Minimum distance �xmin 2 m
Acceleration a 1.5 m/s2

Desired acceleration b 2.0 m/s2

Headway time T 1.5 s
Desired speed v0 105 km/h ± 20%
Politeness p 0.5
Politeness threshold �pth 0.2
Visibility range xvisibili t y 400 m
Reaction time T ′ 0.4 s
Lane-change time tlane 2.0 s

for the span of the simulation as either a mean (for lane change
time) or a percentage (for rate of risky exits).

In the following experiments we use two agent types differ-
entiated by their use of the lane-change tactics:

• SIG agents: Implement the virtual physics model as described
by the third section, in combination with the agent based com-
ponents described in the fourth section, and the strategic lane
change behavior and the source lane speed tactic described in
the fifth section. The highway exit strategy used was the static
schedule with 600 m total preparation distance as described
in the sixth section.

• VAR agents: Implement all the functionality of the SIG agents,
but use the destination lane speed adaptation tactic described
in the fifth section.

Rate of Risky Exits Function of the Exit Preparation
Distance

In this experiment, we study the rate of the risky exits (in the
sense discussed in the fifth section) as a function of the distance
where the vehicles start their preparation for exit by changing
their lane preferences to prefer the exit lane (as in Figure 7d).

Figure 9a shows the rate of risky exits for average traffic
density on Highway 408. We find that for both agent types the
risky exit rate decreases with the preparation distance, but in
general the VAR agent has a lower risky exit rate.

Figure 9b shows the same measurements for rush-hour traffic
(with the inflow increased five times). The conclusions from
the normal traffic situation can be applied to this scenario as
well. The rate of risky exits of the VAR agent did not change
significantly; on the other hand, the risky exit rate of the SIG
agents is much higher, and it cannot be reduced below about 20
even with early preparation.

We conclude that the destination lane speed adaptation tactic
is a major contributor to safe driving in dense traffic. While this
might appear as commonsense advice for an experienced driver,
it is an observation that does not appear in the virtual physics
models presented in the third section, yet it emerges naturally
when that model is augmented with an agent-based conscious
behavior simulator.

Average Lane Change Time

In this series of experiments we studied how long it takes for a
SIG or VAR agent to perform a single lane change under various
traffic situations. We assumed a very long preparation distance
(1000 m), and for each lane change forced by the strategic agent
behavior we logged the traffic situation and the time to succeed
ts . Thus, the log does not contain the opportunistic lane changes
dictated by the virtual physics model. To gather all possible
local traffic situations, we run a set of simulations with different
flow ratios.
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Figure 9 The rate of risky exits function of the preparation distance (a) with
normal inflow and outflow rate and (b) during rush hour.

In Figure 10a (SIG) and Figure 10b (VAR), we divided
the density and speed difference into small ranges and plot-
ted the average time to succeed function of density and speed
difference.

The first conclusion we can reach from these graphs is that
both the speed difference and the density affect the time to
change lanes. As expected, the time for the VAR agent is con-
sistently shorter than for the SIG agent, reconfirming the valid-
ity of the destination lane speed adaptation tactic. For example,
when the density is 30 vehicles/km, and the speed difference is
20 km/h, the SIG agent takes 17.49 s to do a lane change, while
the same value for a VAR agent is only 6.94 s.

Another insight is that if the vehicle density is low, the speed
difference has little effect on the lane-change time, because the
agent can simply let the high-speed vehicle pass and change
into the next lane before the new one comes. In the case of high
traffic density, however, as the speed difference increases, the
vehicle needs to wait a longer time before the safety condition is

satisfied. Similarly, for a given speed difference, the more dense
the traffic, the longer it takes to change the lane.

Although it appears that the time to change shows a drop for
values of high traffic density and high speed difference, what
actually happens here is that under these circumstances many
lane change events fail (i.e., they could not be accomplished in
1000 m). The failed events are not counted in these graphs.

Impact of the Adaptive Highway Exit Strategy

In the next series of experiments, we studied the impact
of the adaptive highway exit strategy as discussed in the sixth
section. We compared four strategies: SIG and VAR with a static
schedule exit strategy of 600 m, and their variants with adaptive
exit strategy ADPT-SIG and ADPT-VAR. For both adaptive
strategies, we used an identical probability database. Figure 11
plots the risky exit rate as well as the average speed as a function
of the inflow ratio.

One of the immediate conclusions is that the adaptive strategy
“works” in the sense that it maintains a flat risk probability
for different traffic densities. For the ADPT-VAR algorithm,
this is very close to the target value of 10%. For the ADPT-
SIG algorithm, this is slightly higher at around 14–16%, due to
the fact that the algorithm uses the same probability database
as ADPT-VAR, which had been collected from histograms of
VAR-type drivers. However, both values are much higher than
the VAR value with a 600-m preparation distance. For the SIG
model, the risky exit percentage is highly dependent on the
traffic density—we find that the chosen value of 600 m is too
small for high traffic densities.

As a note, we see an outlier experiment for VAR at flow
ratio 4.5. This happens if, for some reason, there is an unusual
number of accidents happening in sensitive locations (e.g., in
both lanes at a location where the highway is only two lanes).

Let us now check the average speed achieved with these
strategies, shown in Figure 11b. Contrary to our expectations,
there is no clear speed benefit for the adaptive strategy. The
SIG agent is clearly faster than ADPT-SIG, while the difference
between VAR and ADPT-VAR is minimal (except in a single
point that is the artifact of a special traffic event).

There are several reasons for this lack of speed advantage.
First, in the American highways modeled in our simulator, there
is rarely any speed difference between the highway lanes—the
slowdown due to exiting and entering vehicles only affects the
rightmost lane. Thus, the aggressive stand of the ADPT strate-
gies to stay on the leftmost lane as long as possible is reflected
in very little actual speed gain. On the other hand, by delaying
the lane change to the last moment, ADPT vehicles will need
to do lane change under much more difficult conditions, which
negates the advantage of faster lanes.

Overall, the results show that the choice of driving schools
to recommend fixed preparation distances and not to encourage
adaptive strategies is a correct one: If adopted by all vehicles, the
VAR strategy appears to be the safest and overall fastest choice.
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Figure 10 Average lane-change time for the SIG and VAR agent in various
traffic situations.

Note that in our experiments, all vehicles used the same strategy;
it is possible that having a single vehicle performing an adaptive
strategy would obtain a more significant speed advantage if the
other traffic vehicles perform a nonadaptive strategy.

RELATED WORK

The Terminological Problem: Modeling and Architectural
Definition of Agents

In the following we review work related to agent-based sys-
tems in traffic simulation. To do this, we need to clarify our
use of the term “agent.” After the terminological disputes of
the 1990s (Franklin & Graesser, 1997), the autonomous agents
community had settled on a definition of an agent as an entity

Figure 11 The rate of risky exits and average speed in the function of flow
ratio on Highway 408.

that senses its environment and performs actions in the pursuit
of its own agenda.

Of course, almost any system can be modeled as an agent-
based system, by hypothesizing the existence of an internal
agenda that matches the external behavior. This modeling def-
inition is sometimes helpful in analyzing existing systems, but
provides no guidance in system building. In this article we pre-
fer the use a more restrictive, architectural definition, where we
require that the sensing, agenda, and the process of choosing
actions be present explicitly in the system.

Vehicular traffic has the natural aspect of a multi-agent-based
system: It represents the interaction between large numbers of
vehicles, driven by human agents. Each human agent has her
own goals, and proceeds by sensing her own environment, mak-
ing decisions, taking actions, and interacting, explicitly or im-
plicitly, with other drivers. Thus, any traffic simulation detailed
enough to consider individual vehicles will verify the modeling
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definition of agents. Thus, all the microsimulation models can
be perceived as agent models, a view taken, for instance, in
Kesting et al. (2008).

Models such as the MOBIL lane changing model (Kesting
et al. 2007) and the intelligent driver model (Treiber et al., 2000),
which use differential equations to model behavior, can be seen
as agents according to the modeling definition but not according
to the architectural definition.

Another example includes cellular automata-based models
(Nagel & Schreckenberg, 1992), which sometimes are posi-
tioned as agent models, for instance, in the NetLogo (Tisue
& Wilensky, 2004). Again, we consider these as agents only
according to the modeling definition.

In the following, we review some of the contributions to the
field of traffic simulation of systems. We follow a recent review
paper by (Bazzan & Klügl, 2013) by classifying the agent-based
traffic modeling and simulation techniques into (a) agent-based
demand simulation, (b) agent-based choice, and (c) agent-based
traffic flow simulation.

Agent-Based Demand Simulation

Before we start simulating what happens on the road, we need
to first determine how many cars are present, where they entered
the road system, and where are they going. These questions are
the topic of traffic demand simulation. While early work was
modeling directly the distribution of trips, modern approaches
to this problem are trying to model the activities performed by
humans (such as work, entertainment, shopping, and rest), and
then to model the trips that must be taken to perform these
activities, possibly also taking into account expert guidance
(Seyedabrishami, 2011). Activity-based traffic demand mod-
eling is a natural fit for agent-based systems.

The ADAPTS model (Auld & Mohammadian, 2009) sep-
arates the activity generation from the activity planning and
scheduling. A similar approach, with emphasis on the uncer-
tainties of decision making, is taken by Sun, Arentze, and Tim-
mermans (2012). The different planning processes of private
and commercial vehicles are modeled in Joubert, Fourie, and
Axhausen (2010). Another research direction involves the mod-
eling of the cognitive and psychological aspects of the travel
planning (Arentze & Timmermans, 2005a, 2005b).

Modeling the full planning process is a significant computa-
tional expense. As the daily routines of most travelers are largely
repetitive, the approach can be scaled up if a set of fully elabo-
rated daily plans are precomputed, and then iteratively adapted
by the agents. This is the approach taken by the MATSim-T
module (Balmer et al., 2009).

Finally, the overall focus on social networks in the last 5 years
was echoed in agent-based demand simulation by focusing on
the role of the social interactions and social networks on travel
planning in works such as Ettema, Arentze, and Timmermans
(2011), Han, Arentze, Timmermans, Janssens, and Wets (2011),
and Hackney and Marchal (2011).

Agent-Based Choice Simulation

Once we determined the goals of the agents participating
in the traffic, we need to model the various choices the agents
can make with regard to their transportation. The choices might
involve the mode of transportation (e.g., the agent might take
a train, bus, or a car) as well as the route followed (Lee, Ran,
Yang, & Loh, 2010). In the choice of the route, the agent might
consider aspects such as length, congestion, tolls, and familiarity
with the road. A particularly challenging aspect is represented
by the problem of congestion, as this depends on the interaction
between the decisions of multiple agents.

One way in which the choice of the agents can be mod-
eled is a game-theoretical approach. In particular, in congestion
games, agents that pick the less popular alternative route re-
ceive a higher reward. The participating agents might deploy a
mix of strategies—for instance, some agents might make deci-
sions ignoring the current congestion, while others might use
strategies taking into account the current congestion and the de-
cisions of other agents. One approach to implement agent-based
choice simulation is to learn the decision model of humans, for
instance, through reinforcement learning as shown in Chmura
and Pitz (2007) and Klügl and Bazzan (2004).

The amount and quality of information affect the choices
of the agents. Paradoxically, more information might not nec-
essarily lead to better choices, as uncoordinated agents might
overcrowd routes that appeared better at the moment of their
decision making. The decision making under various informa-
tion propagation models had been studied by Rossetti et al.
(2002), Klügl and Rindsfüser (2011), and Panwei and Dia
(2006).

Agent-Based Traffic Flow Simulation

Finally, after the travel decisions and the route to be followed
have been modeled, the simulator needs to model the decisions
taken by the agent during driving in the traffic. In general, the
types of actions taken by the agent depend on the driving envi-
ronment. In the case of highway driving, the challenges involve
the car-following models and the lane-change models. In the
case of a single carriageway road, to this we need to add the
decisions concerning overtaking. Finally, in urban driving, de-
cisions involve interactions with pedestrians, decision to pass
on the amber light, and driving in intersections.

There have been relatively few papers that implement high-
way simulation with agent-based models. If we extend our defi-
nitions to the modeling definition of agents, we can consider here
the early work of Burmeister, Doormann, and Matylis (1997), or
the cellular automata-based work of Nagel and Schreckenberg
(1992). There is a significant amount of work based on contin-
uous car-following models, which sometimes are extended to
cover lane changes. These models are sometimes presented as
agent-based models (e.g., the models surveyed in Kesting et al.,
2008, 2009). As the majority of these models are expressed
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in form of differential equations, we classify them as virtual
physics models.

Some elements of single carriageway road simulation, such
as overtaking, are considered in Paruchuri, Pullalarevu, and Kar-
lapalem (2002).

The majority of the agent-based traffic simulation work has
been done under the assumption of urban driving. For instance,
Ehlert and Rothkrantz (2001) describe the architecture of an
agent-based simulator prototype for urban driving. This system
matches well the architectural definition of the agent, as the
different decisions are explicitly reasoned about.

Doniec, Mandiau, Piechowiak, and Espié (2008) describe a
behavioral traffic simulation model and apply it to the problem
of realistic simulation of road junctions, presenting it as a multi-
agent coordination problem. The system models the traffic rules
of priority giving and the psychology (impatience levels) of the
driver agents.

Another research project concerns the ARCHISIM simu-
lator (Espié & Auberlet, 2007), which models in a realistic
way the perception and reasoning process of human drivers,
which includes their model of the behavior of surrounding ve-
hicles. More recent work extends this model to the way hu-
man drivers anticipate special situations, such as the move-
ment of emergency vehicles, motorcycles, improperly parked
vehicles, and so on (Ksontini, Espié, Guessoum, & Mandiau,
2012).

Benenson, Martens, and Birfir (2008) describe an agent-
based model of parking in the city, which includes both physical
models of speed and cognitive models of the agent, which in-
volve decision making about high-level factors such as the cost
of parking, the distance to home, and the time spent in looking
for parking spots.

Fiosins, Fiosina, Müller, and Görmer (2011) explore the
challenge of integrating the tactical and strategic behavior of
drivers in an urban setting. In this setting, strategic planning
involves the planning of the route within a city, while tacti-
cal planning is the planning of the speed and the lane within
a single route segment, including behavior with regards to the
traffic lights. The proposed approaches are stochastic short-
est path calculation R-SSPPR with Bayes posterior proba-
bilities for historical information for the strategic part, and
distributed multiagent reinforcement learning for the tactical
part, where the driver agents learn the optimal cooperative
actions.

A special case of traffic flow simulation is the acquisition of
driver models from a human subject’s behavior in simulated
driving environment. Tanaka, Nakajima, Hattori, and Ishida
(2009) describe a method through which the driving models
of different humans (e.g., old versus young) can be extracted
from the driving logs recorded from a human driver in a three-
dimensional (3D) driving simulator. The model is described
using predicate logic rules. The authors use interviews to elicit
the reasoning behind the driver’s decisions. To reduce the com-
plexity of the data, the system incorporates certain a priori as-
sumptions about the human driver; for instance, it assumes that

the human drivers cannot perform intentional operations at a
rate higher than one every 2 s, and filters out faster operations as
unintentional. This is similar to the cognitive limitations model
we deployed.

Positioning of YAES-DSIM in the Context of Agent-Based
Simulation Approaches

The YAES-DSIM simulator, with both the contributions de-
scribed in this article and previous contributions (Luo & Bölöni,
2010), falls in the category of an agent-based highway simula-
tion. YAES-DSIM agents follow the stricter, architectural def-
inition of an agent. However, for the experiments described in
this article, we do not use an agent-based simulation of traffic
demand; rather, we rely on real-world demand data measured
on a toll highway.

Overall, there are relatively few directly comparable projects,
if we are restricting ourselves to highway simulation. There are
projects that use the cellular automata definition of agents, such
as Nagel and Schreckenberg (1992) and the simulator exper-
iments based on NetLogo. Another large group of highway
simulators uses the term agent for systems described with dif-
ferential equations (Kesting et al., 2008). The latter ones we
call virtual physics models, and our work can be considered an
extension of these types of systems with higher level decision
models, modeling conscious decision.

If we extend our sight to a larger set of systems, we can
also compare our approach with urban traffic simulators. Di-
rect comparisons are difficult to make, because the simulators
of urban traffic consider different scenarios - for instance inter-
sections and stop lights instead of highway lane changes and
entrance/exit scenarios. Nevertheless we can compare the over-
all architecture of the systems. In this category, we can find many
systems which meet our architectural definition, such as Ehlert
and Rothkrantz (2001), Doniec et al. (2008), Espié and Auberlet
(2007), Benenson et al. (2008), and Fiosins et al. (2011). The
majority of these systems, however, focus on the high-level de-
cisions on the agent system coupled with simplified models of
the low-level vehicle control. This is justified by the fact that in
the stop-and-go traffic of a dense urban environment the vehicle
physics has a lower importance.

In conclusion, we find that the agent model of our system has
close relatives in the general field of agent-based traffic simu-
lation projects—especially if we include simulators for urban
traffic. On the other hand, our system is unique in the applica-
tion of agents (in the architectural definition of the world) for
the challenges of highway traffic simulation, as well as in the
integration between high-level agent models and virtual-physics
type equations.

CONCLUSIONS

This article described a microscopic highway simulator
where an agent-based model of the conscious driver is integrated
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with a virtual physics model of highway driving. In situations
when the driver uses highly learned driving skills, such as on
highway stretches far away from exits, the model will fall back
on the finely tuned virtual physics-type microscopic models. On
the other hand, the agent-based component is able to model the
tactical and strategic decisions of the agent, such as the tactic
of aligning the speed with the destination lane when changing
lanes, or the strategy to adaptively plan for a highway exit func-
tion of the traffic and speed differences between lanes. As the
agent-based component operates through rather than instead of
the virtual physics models, the approach ensures that there are no
abrupt driving style changes, and the constraints enforced at the
lower levels, such as the safety conditions, will still be verified.

We find that this architecture successfully merges the bene-
fits of virtual-physics-based microscopic traffic simulation and
agent-based driver models. Our ongoing and future work in-
volves the application of the architecture to a number of new
applications, such as the study of the impact of variable speed
limits, intelligent cruise control systems, and blind-spot warn-
ing systems. We also believe that similar architectural solutions
of integrating virtual physics and agent based systems could be
beneficial for other simulators, such as those modeling urban
traffic.
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