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Abstract Multiprocessor task scheduling is an important and computationally diffi-
cult problem. A large number of algorithms were proposed which represent various
tradeoffs between the quality of the solution and the computational complexity and
scalability of the algorithm. Previous comparison studies have frequently operated
with simplifying assumptions, such as independent tasks, artificially generated prob-
lems or the assumption of zero communication delay. In this paper, we propose a
comparison study with realistic assumptions. Our target problems are two well known
problems of linear algebra: LU decomposition and Gauss–Jordan elimination. Both
algorithms are naturally parallelizable but have heavy data dependencies. The com-
munication delay will be explicitly considered in the comparisons. In our study, we
consider nine scheduling algorithms which are frequently used to the best of our
knowledge: min–min, chaining, A∗, genetic algorithms, simulated annealing, tabu
search, HLFET, ISH, and DSH with task duplication. Based on experimental results,
we present a detailed analysis of the scalability, advantages and disadvantages of each
algorithm.

Keywords Task scheduling · Parallel computing · Heuristic algorithms ·
Communication delay

1 Introduction

Scheduling a set of dependent or independent tasks for parallel execution on a set
of processors is an important and computationally complex problem. Parallel pro-
gram can be decomposed into a set of smaller tasks that generally have dependen-
cies. The goal of task scheduling is to assign tasks to available processors such that
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precedence requirements between tasks are satisfied and the overall time required
to execute all tasks, the makespan, is minimized. There are various variants of this
problem, depending on whether we consider communication delays or not, whether
the multiprocessor systems are heterogeneous or homogeneous and other considera-
tions. Various studies have proven that finding an optimal schedule is an NP-complete
problem even in the simplest forms [1–3].

As finding an optimal solution is not feasible, a large number of algorithms were
proposed which attempt to obtain a near-optimal solution for various variants of the
multiprocessor task scheduling problem. These algorithms usually trade the compu-
tational complexity of the scheduling algorithm itself to the quality of the solution.
Algorithms based on complex, iterative search can usually (but not always) outper-
form simple one-pass heuristics, but their computational complexity makes them less
scalable. The comparison of the various approaches is made difficult by the lack of an
agreed benchmark problem, and the variety of assumptions made by the developers.

In this paper, we consider the problem of mapping directed acyclic task graphs
with communication delays onto a homogeneous cluster of processing elements. As
the most frequently used architectures for parallel computation are currently cluster
computers with independent hard drives, this is a realistic model which the user of
a parallel computing system would encounter. Furthermore, we had chosen to use as
our benchmark, two widely used algorithms in linear algebra, the LU decomposition
the and Gauss–Jordan elimination.

We compare the performance of nine typical scheduling algorithms: min–min [4],
chaining [5], A∗ [6], genetic algorithms [1], simulated annealing [7], tabu search [8],
as well as three popular list scheduling heuristics [9]: Highest Level First Known
Execution Times (HLFET) [10], Insertion Scheduling Heuristic (ISH) [11], and Du-
plication Scheduling Heuristic (DSH) [12]. Since some of the heuristics were not
originally designed to solve the problem in the presence of communication delays,
we have adapted the algorithms to take into consideration the communication delays
in these cases.

The rest of the paper is organized as follows. The next section presents related
research work. The structure of the problem and assumptions are described in Sect. 3.
The considered scheduling algorithms and the adaptations which were required to
handle communication delays are discussed in detail in Sect. 4. Section 5 presents
simulation results and analysis. Conclusions are offered in Sect. 6.

2 Related work

The importance of the multiprocessor task scheduling problem led to several compar-
ative studies. Hwok et al. [13] extensively classified, described and compared twenty-
seven scheduling algorithms through a nine-task problem. However, the study did not
consider algorithms such as GA, simulated annealing or tabu search, which are fre-
quently used in scheduling problems. In addition, the small size of the target problem
prevents us from drawing scalability conclusions. Braun et al. [14] present a compar-
ison of eleven heuristics for mapping meta-tasks without communication delays onto
a heterogeneous cluster of processors. This paper simplifies the heuristic scheduling
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by assuming there are no dependencies among tasks. Davidovic et al. [15] reports on
a study focused on the comparison of list scheduling approaches.

The proposed task scheduling algorithms span a wide variety of approaches. Al-
though some scheduling algorithms are based on simple, one-shot heuristics, a signif-
icant research effort was targeted towards more complex, iterative search algorithms
such as genetic algorithms, simulated annealing, tabu search and A∗.

Genetic algorithms have received much attention in parallel computing, mainly
because GAs are effective in solving such NP -hard problems. Hou et al. [1] re-
ported that the results of GA were within 10% of the optimal schedules. Their results
are based on task graphs with dependencies but without communication delays. The
method proposed in [16], though very efficient, does not search all of the solution
space. Due to the strict ordering that only the highest priority ready task can be se-
lected for scheduling, there can be many valid schedules omitted from the search.
Correa et al. [2] proposed modifications to the approach in [16] to broaden the search
space to include all the valid solutions. This modified approach was tested on task
graphs that represent well-known parallel programs. Wu et al. [17] proposed a novel
GA which allows both valid and invalid individuals in the population. This GA uses
an incremental fitness function and gradually increases the difficulty of fitness values
until a satisfactory solution is found. This approach is not scalable to large problems
since much time is spent evaluating invalid individuals that may never become valid
ones. Moore [18] applies parallel GA to the scheduling problem and compares its
accuracy with mathematically predicted expected value. More GA approaches are
found in [16, 19–22].

List scheduling techniques are also widely used in task scheduling problems. List
scheduling techniques assign a priority to tasks that are ready to be executed based
on a particular heuristic, then sort the list of tasks in decreasing priority. As a proces-
sor becomes available, the highest priority task in the task list is assigned to that
processor and removed from the list. If more than one task has the same priority,
selection from these candidate tasks is typically random. Ibarra et al. [4] proposed a
heuristic algorithm for scheduling independent tasks onto identical and nonidentical
processors. Djordjevic and Tosic [5] proposed a single pass deterministic algorithm,
chaining, based on list scheduling techniques. In list scheduling heuristics, only the
tasks that are ready are considered for mapping. Chaining overcomes this constraint
by allowing even the nonready tasks for mapping. Therefore, tasks can be selected for
mapping in any order, irrespective of the task dependencies. However, this algorithm
does not allow duplication of tasks.

Some researchers proposed a combination of GAs and list heuristics. Correa et al.
[2] proposed a modified GA by the use of list heuristics in the crossover and mu-
tation in a pure genetic algorithm. This method is said to dramatically improve the
quality of the solutions that can be obtained with both a pure genetic algorithm and a
pure list approach. Unfortunately, the disadvantage is that the running time is much
larger than when running the pure genetic algorithm. Similarly, Auyeung et al. [23]
proposed a genetic algorithm which considers a combination of four list scheduling
heuristics, Highest Level First (HLF), Highest Co-level First (HCF), Largest Number
of Successors First (LNSF), Largest Processing Time First (LPTF), by assigning a
weight to each method, respectively. It outperforms any one of the four list schedul-
ing methods. This paper also addresses the scalability issue by increasing the problem
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size. However, it assumes no communication delay between processors and no task
duplications. Ahmad et al.[24] addressed a different encoding of the chromosomes
based on the list scheduling heuristic. Each task is assigned a priority. These priori-
ties are encoded in the chromosome, instead of the actual mapping of the tasks to the
processors. An actual mapping is then generated for each chromosome by selecting
a ready task with the highest priority and allocating it to the first available proces-
sor. The priorities in one of the initial chromosomes are based on the length of the
path from that task to a task that does not have any successors. The other individu-
als of the initial population are obtained by randomly modifying the priorities of the
first chromosome. The results obtained were consistently better than those obtained
by [1].

Search techniques originating from artificial intelligence have also been applied
in this area. Kwoka et al. [25] proposed A∗ and parallel A∗ based algorithms and
found that the A∗ algorithm outperforms a previously proposed branch-and-bound
algorithm by using considerably less time to generate a solution. The parallel A∗ has
demonstrated an almost linear speedup. Borriello et al. [26] use simulated annealing
to solve scheduling problems. Onbasioglu et al. [27] combine simulated annealing
with hill climbing to solve similar problems. Porto et al. [28] apply the tabu search
algorithm to the static task scheduling problem in a heterogeneous multiprocessor
environment under precedence constraints. More task scheduling algorithms are ad-
dressed in [29–38].

A special class of task scheduling approaches are the ones which allow task dupli-
cation. These approaches allow the execution of the same task on multiple nodes if
the output data is needed by multiple downstream tasks. These approaches are trad-
ing additional computational power for lower communication overhead. Although in
practice, the cost of computation prevents the use of task duplication approaches,
whenever the expense can be justified, these approaches can significantly reduce the
makespan of computation [12, 19, 39–45].

In addition, some researchers analyze the task scheduling problems based on the
unique feature of the structure of task graphs. Amoura et al. [46] propose a graph the-
oretical model to the Gaussian elimination method. When scheduling, the proposed
algorithms, namely, GCO (Generalized Column-Oriented Scheduling), MGCO (the
Modified Generalized Column-Oriented Scheduling), and BS (Blocking Scheduling)
take the triangular architecture parameters into consideration. Suruma and Sha [47]
propose an algorithm based on a newly developed framework called collision graph.
The scheduling model is tested in a message scheduling problem in a network envi-
ronment in cases where network traffic is either regular or irregular. Suruma and Sha
[48] build on top of the collision graph concept introduced in [49] to investigate the
compile-time analysis and run-time scheduling of point-to-point message transmis-
sions done to minimize the communication overhead. Liu [50] analyzes worse-case
error bounds on three parallel processing models. The author mathematically ana-
lyzes the differences of performance between nontask duplication and task duplica-
tion, and discusses scheduling policies over “wide” and “narrow” tasks. We believe
greedy task duplication and “wide” and “narrow” task policies discussed in the pa-
per correspond with the task duplication and b-level concept respectively in the list
scheduling algorithms of our paper.
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3 Task scheduling problem

We consider a directed acyclic task graph G = {V,E} of n vertices. Each vertex
v ∈ V = {T1, T2, . . . , Tn} in the graph represents a task. Our aim is to map every
task to a set P = {P1,P2, . . . ,Pp} of p processors. Each task Ti has a weight Wi

associated with it, which is the amount of time the task takes to execute on any one of
the p homogeneous processors. Each directed edge eij ∈ E indicates a dependency
between the two tasks Ti and Tj that it connects. If there is a path from vertex Ti to
vertex Tj in the graph G, then Ti is the predecessor of Tj and Tj is the successor of Ti .
The successor task cannot be executed before all its predecessors have been executed
and their results are available at the processor at which the successor is scheduled to
execute.

Each edge of the graph has a weight Cij associated with it, which is proportional
to the amount of communication delay required for the results of task Ti to reach Tj if
both tasks are allocated to different processors. The communication time is assumed
to be zero when the tasks are allocated to the same processor. We assume a fully
connected cluster in which each processor is connected to every other processor. The
connections are full-duplex meaning that the data communication can take place in
either direction simultaneously. Also, each processor can send and/or receive data to
and from any number of processors simultaneously. A task is “ready” to execute on
a processor if all of its predecessors have completed execution and their results are
available at the processor on which the task is scheduled to execute. If the next task
to be executed on a processor is not yet ready, the processor remains idle until the
task is ready.

We assume that the node and the edge weights within each graph correspond to ex-
ecution times and the communication times respectively, and their values are known
in advance. The input to all of the heuristics consists of n × 1 matrix of execution
times Wi of each task, and an n × n matrix of communication times Cij . If the el-
ement Cij is equal to zero, it means that there is no direct dependency between the
task Ti and Tj . As the graph is acyclic, the following conditions hold: ∀i Cii = 0, and
∀i,j if Cij = 0, then Cji = 0.

Our goal is to find a schedule which is a mapping of tasks to processors that
minimizes the makespan. The makespan of a schedule can be defined as the time it
takes from the instant the first task begins execution to the instant at which the last
task completes execution. A schedule that overlaps computation with communication
to the maximum possible extent shortens the overall makespan.

In the simulation study, we tested two different types of task graphs—the LU and
Gauss–Jordan task graphs. To test scalability, the size of the task graphs increases
from 14 tasks to 35 tasks for LU decomposition and from 15 to 36 tasks for Gauss–
Jordan elimination algorithm. Figures 1 and 2 show the general structure of n tasks for
the Gauss–Jordan elimination and the LU decomposition task graphs, respectively.

4 Scheduling algorithms

In this section, we introduce the nine scheduling algorithms considered in our com-
parison study: min–min, chaining, A∗, genetic algorithms, simulated annealing, tabu
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Fig. 1 A task graph for the
Gauss–Jordan elimination
algorithm

Fig. 2 A task graph for the LU
decomposition algorithm

search, HLFET, ISH, and DSH. When necessary, we also present the adaptations per-
formed on the algorithms such that they take into consideration the communication
delay.
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4.1 Min–min

The min–min heuristic, as presented by Ibarra and Kim [4], can be used to schedule
a set of tasks without dependencies onto a heterogeneous multiprocessor system.
Min–min is a simple heuristic, which selects a task Ti with the minimum completion
time on any processor from U , the set of unmapped tasks, and schedules it onto the
processor on which it has the minimum completion time.

The same algorithm with small modifications can be applied to the problem with
task dependencies. In the presence of task dependencies, all the tasks from U cannot
be compared, as completion times cannot be calculated for a task if all of its predeces-
sors are not yet mapped to some processor. Therefore, only those tasks for which all
the predecessors have already been mapped (i.e., those tasks for which none of their
predecessors are in U ) can be selected for comparison of completion times. Secondly,
calculation of the completion times involves both the execution time of the task and
the time at which the task is ready to execute. The min–min heuristic is very simple,
easy to implement and it was one of the fastest algorithms compared.

4.2 Chaining

Chaining, proposed by Djordjevic and Tosic [5], is a single pass deterministic algo-
rithm based on list scheduling techniques. In list scheduling heuristics, only the tasks
that are ready are considered for mapping. Chaining overcomes this constraint by
allowing even the nonready tasks for mapping. Therefore, tasks can be selected for
mapping in any order, irrespective of the task dependencies.

Chaining tries to partition the task graph among the processors and it does not
allow duplication of the tasks. The algorithm starts with a partially scheduled task
graph which is the original task graph to which two dummy tasks with zero execution
time, s and q are added. Every processor starts by executing the dummy task s and
finishes by executing the dummy task q . All other tasks are executed only once. As
many ρ-edges as the processors are added between s and q . Each ρ-edge from s

to q represents the execution schedule of a single processor. In each iteration of the
algorithm, there are two major stages—selection of a task and selection of a ρ-edge.
In the task selection, first a task and then the ρ-edge is selected. A task that has the
least mobility, i.e., a task with large execution time and large communication delays,
is selected in the task selection step. The task is moved to a ρ-edge by placing in
which the length of the longest path passing through the task that is minimum. The
partially scheduled task graph is updated by removing all the non ρ-edges between
the current task and the tasks which are already on the selected ρ-edge. This process
is continued until all the tasks have been allocated to some processor (moved to a
ρ-edge).

4.3 Genetic algorithms

Genetic algorithms try to mimic the natural evolution process and generally start with
an initial population of individuals, which can either be generated randomly or based
on some other algorithm. Each individual is an encoding of a set of parameters that



84 S. Jin et al.

uniquely identify a potential solution of the problem. In each generation, the popula-
tion goes through the processes of crossover, mutation, fitness evaluation and selec-
tion. During crossover, parts of two individuals of the population are exchanged in
order to create two entirely new individuals which replace the individuals from which
they evolved. Each individual is selected for crossover with a probability of crossover
rate. Mutation alters one or more genes in a chromosome with a probability of mu-
tation rate. For example, if the individual is an encoding of a schedule, two tasks are
picked randomly and their positions are interchanged. A fitness function calculates
the fitness of each individual, i.e., it decides how good a particular solution is. In the
selection process, each individual of the current population is selected into the new
population with a probability proportional to its fitness. The selection process ensures
that individuals with higher fitness values have a higher probability to be carried onto
the next generation, and the individuals with lower fitness values are dropped out.
The new population created in the above manner constitutes the next generation, and
the whole process is terminated either after a fixed number of generations or when a
stopping criteria is met. The population after a large number of generations is very
likely to have individuals with very high fitness values which imply that the solu-
tion represented by the individual is good; it is very likely to achieve an acceptable
solution to the problem.

There are many variations of the general procedure described above. The initial
population may be generated randomly, or through some other algorithm. The search
space, i.e., the domain of the individuals, can be limited to the set of valid individ-
uals, or extended to the set of all possible individuals, including invalid individuals.
The population size, the number of generations, the probabilities of mutation and
crossover are some of the other parameters that can be varied to obtain a different
genetic algorithm.

4.4 A∗ search

The A∗ algorithm is a best-first search algorithm, originally from the area of artificial
intelligence. It is a tree search algorithm that starts with a null solution, and proceeds
to a complete solution through a series of partial solutions. The root, or the null solu-
tion means none of the tasks are allocated to any processor. The tree is expanded by
selecting a task and allocating it to all possible processors. Each allocation is a dif-
ferent partial solution; therefore, each node has p children. At any node, the partial
solution has one more task mapped than its parent node. The total number of nodes
in the tree is limited to a predetermined constant in order to avoid an exponential
execution time. The procedure is explained in detail by Kafil et al. [51], for the prob-
lem without communication delays. The cost function f (n) at any node is given by
f (n) = g(n) + h(n), where g(n) is the maximum of the machine availability times,
and h(n) is a lower bound estimate of time required for the remaining tasks to exe-
cute. In order to limit the size of the tree, the nodes with the largest f (n) are removed,
whenever the number of nodes exceeds the maximum allowable number of nodes.

This algorithm is not directly applicable to the problem with communication de-
lays. Since given a partial solution, the machine availability times cannot be calcu-
lated, unless, all the predecessors of the task have already been allocated, and their
finishing times are known. Therefore, we have modified the algorithm such that, at
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each step, we only select those tasks whose predecessors have already been mapped.
This considerably restricts the search space, but this is the only way in which the
machine availability times of all the processors can be calculated.

4.5 Simulated annealing

Simulated annealing is a Monte Carlo [52] approach for the optimization functions.
This approach derives from the roughly analogous physical process of heating and
then slowly cooling a substance to obtain a strong crystalline structure. The simulated
annealing process lowers the temperature by slow stages until the system “freezes”
and no further changes occur. At each temperature, the simulation must proceed long
enough for the system to reach a steady state or equilibrium. Like GA, simulated
annealing is also a non-deterministic algorithm.

We use a simplified simulated annealing approach to this task scheduling problem.
First, we assume that the tasks are labeled according to the topological order in the
task graph. All the tasks assigned to the same processor are scheduled sequentially
based on their labels. Second, the temperature goes down in every generation during
execution. It differs from the normal SA approach that temperature stays until the
system reaches a steady state. Third, in every generation, a new solution is created by
randomly modifying the current solution (remove a task, or switch the two tasks). The
new solution is evaluated by the fitness function. The accept function decides if the
new solution is acceptable or not, based on the evaluation result. It is accepted only
when its fitness value is higher than the current one, or lower than the current one
within an acceptance threshold. If it is accepted, the new solution replaces the cur-
rent one. Otherwise, it is discarded. Fourth, the algorithm stops after the temperature
reaches a predefined value. The procedure of simulated annealing is as follows:

Step 1: Initialize solution.
Step 2: Estimate initial temperature.
Step 3: Evaluate solution.
Step 4: If the new solution is accepted, update the old one.
Step 5: Adjust temperature.
Step 6: If the temperature reaches a pre-defined value, then stop the search; other-

wise, generate new solution, and go to step 3.

4.6 Tabu search

Tabu search [8, 28] is a neighborhood search technique that tries to avoid local min-
ima and attempts to guide the search towards a global minimum. Tabu search starts
with an initial solution, which can be obtained by applying a simple one-pass heuris-
tic, and scans the neighborhood of the current solution—that is, all the solutions that
differ from the current one by a single move. For the multiprocessor task-scheduling
problem, a move consists of moving a task from one processor to some other proces-
sor, or changing the order of execution of a task within the list of tasks scheduled to
a processor. This technique considers all the moves in the immediate neighborhood,
and accepts the move which results in the best makespan.
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Fig. 3 An example task graph

4.7 Highest level first with estimated times (HLFET)

The Highest Level First with Estimated Times (HLFET) algorithm, proposed by
Adam et al. [10], is a list scheduling algorithm which assigns scheduling priority
on each node based on static b-level [13], which is the length of a longest path from
the node to an exit node without considering the length of the edge (or communica-
tion time). For instance, in Fig. 3, suppose the number on the left side of each circle
represents the task execution time. The longest path from T1 to the exit node T5 is T1,
T3, T5. So, the static b-level of T1 = 1+3+2 = 6; the static b-level of T4 is 3 because
T4 itself is an exit node. Similarly, the b-levels of T2 and T3 are 4 and 5, respectively.

Once all predecessors of this task have been scheduled, the task is put on a ready
list. The ready list is made in a descending order of static b-level. Nodes with the same
static b-level values are selected randomly. To achieve better scheduling, the first task
in the ready list is always scheduled to a processor that allows the earliest execution
using noninsertion approach. The ready list is updated and the scheduling process is
repeated until all tasks are scheduled. Using static b-level simplifies the scheduling
because static b-level is constant throughout the whole scheduling process; however,
it is not optimal since it did not take into an account the communication time as a
factor to task scheduling priority. Moreover, as HLFET uses no-insertion approach,
an idle time slot is not utilized, which affects performance improvement.

4.8 Insertion scheduling heuristic (ISH)

The Insertion Scheduling Heuristic (ISH) algorithm, proposed by Kruatrachue and
Lewis [11], improves the HLFET algorithm by utilizing the idle time slots in the
scheduling. Initially, it uses the same approach as HLFET to make a ready list based
on static b-level and schedule the first node in the ready list using the non-insertion
approach. The difference is that, once the scheduling of this node creates an idle slot,
ISH checks if any task in the ready list can be inserted into the idle slot but cannot be
scheduled earlier on the other processors. Schedule such tasks as many as possible
into the idle slot.
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4.9 Duplication scheduling heuristic (DSH)

Duplication Scheduling Heuristic (DSH), proposed by Kruatrachue and Lewis [12],
differs from the HLFET and ISH algorithms that allow no task cloning or duplication.
DSH algorithm duplicates some predecessors in different processors so that each
child can start as earlier as possible by eliminating communication delay. Once a
node creates an idle slot, the algorithm tries to duplicate as many predecessors as
possible into the slot only if the duplicated predecessors can improve the start time
of this node. Initially, the static b-level of each node based on the DAG diagram is
calculated and all nodes placed in a descending order based on the static b-level. The
ready node ni with the highest static b-level is selected as a candidate and scheduled
first and tested on every processor. If node ni creates an idle time slot in one processor,
the parent np of this node which is not scheduled in this processor and makes the
longest waiting time is considered to be duplicated. If successful, the start-time of
node ni is adjusted and np is considered as a candidate. np’s parents are tracked back
and this process is recursively repeated until either no duplication is allowed or an
entry node is encountered. The selected task ni should be scheduled in the processor
that offers the minimum start time.

Ahmad and Kwok [53] extend DSH into a new algorithm called Bottom-Up Top-
Down Duplication Heuristic (BTDH). The major improvement of the BTDH algo-
rithm over the DSH algorithm is that the BTDH keeps on duplicating the predeces-
sors of a node even if the duplication time slot is completely used up in the hope that
the start time will eventually be minimized. However, the authors pointed out that the
performance of BTDH and DSH is close.

5 Performance evaluation

5.1 Experimental setup

We have run all the nine algorithms on five instances of various sizes of both the
Gauss–Jordan elimination problem and the LU factorization problem. In our simula-
tion, we assume the number of processors is four. The problem sizes, the computation
and communication time considered were summarized in Table 1. For the nondeter-
ministic scheduling algorithms, the simulations were run 100 times and the average
values reported.

The number of tasks we choose for LU and GJ algorithms is based on their “lay-
ered” structure diagrams shown in Figs. 4 and 5, respectively. Let us explain the

Table 1 Experimental setup

Problem No. of tasks Computation
time

Communication
time

Gauss–Jordan elimination 15, 21, 28, 36 40 s/task 100 s

LU factorization 14, 20, 27, 35 10 s bottom layer
task, plus 10 s for
every layer

80 s
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Fig. 4 A task graph for LU
decomposition algorithm with
35 tasks

reasoning behind the number of tasks chosen for our performance study. We use a
number of dashed lines to help explain the chosen tasks’ numbers.

Figure 4 is an example of LU algorithm with 35 tasks. Each layer starts with one
task followed by a number of tasks. This LU diagram increments from Layer L1 into
L2, L3, L4, L5, and L6, thus the number of task increasing from 9 into 14, 20, 27,
and 35, respectively.

Figure 5 shows an example of GJ algorithm with 36 tasks. The numbers of tasks
we choose in GJ algorithm is more straightforward. Layers L0, L1, L2, L3, L4, L5,
L6, L7 contain 3, 6, 10, 15, 21, 28,and 36 tasks, respectively. Therefore, the total
numbers of tasks between layer L0 and L1, L2, L3, L4, L5, L6, and L7 are 3, 10, 15,
21, 28, and 36.

Considering our assumption of four processors, a number of tasks longer than
35 would not yield qualitative differences, especially considering that the additional
tasks are the same type as the previous ones.

As discussed thus far, task duplication is an effective way to decrease a makespan.
Therefore, we implemented a general GA approach that allows task duplication in
scheduling LU and GJ problems. We use elitist selection, meaning that the best indi-
vidual always survives in one generation, to keep the best result into the next genera-
tion. All GA parameters of this simulation are shown in Table 2.
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Fig. 5 A task graph for GJ
algorithm with 36 tasks

Table 2 GA implementation
parameters Parameters Value

Population size 30

Mutation rate 0.01

Crossover rate 0.7

Stopping criteria Stops when it converges within a predefined
threshold or when the max. no. of generation ex-
ceeds 6,000

5.2 Simulation metrics

The quality of results is measured by two metrics: makespan and computational cost.
The makespan is represented by the time required to execute all tasks; the computa-
tional cost is the execution time of an algorithm. A good scheduling algorithm should
yield short makespan and low computational cost. In our simulation, we evaluate
Gauss–Jordan elimination and LU factorization algorithms based on different num-
ber of tasks, with the former increasing from 15, 21, 28 to 36 and the latter from 14,
20, 27 to 35. Other parameters such as task computation time and intercommunica-
tion delays are given in Table 1. An ideal algorithm must perform well on different
problems with different sizes.
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Fig. 6 Makespans for Gauss–Jordan elimination problem for variable task sizes and the nine scheduling
algorithms

5.3 Simulation results

The makespan of the obtained solutions are represented on Fig. 6 for the Gauss–
Jordan elimination and on Fig. 7 for the LU factorization. The execution time of the
algorithms is presented in Fig. 8 for the Gauss–Jordan elimination and in Fig. 9 for
the LU factorization. In addition, we analyze the effect of our tabu search results by
varying the length of tabu list and the maximum number of moves allowed.

We will present our results centered around a number of observations.

5.3.1 One-shot heuristics vs. iterative search

A cursory look at the graphs of the execution time (Figs. 8 and 9) tells us that the
scheduling algorithms can be clearly separated into two classes: one-shot heuristics
with very short execution times (min–min, chaining, HLFET, ISH and DSH) and
iterative search algorithms with significant execution times (genetic algorithms, sim-
ulated annealing, tabu search and A∗). One-shot heuristics create a solution based
on various criteria, without searching through a subset of the solution space. Itera-
tive search algorithms however, are considering a larger number of possible solutions
before returning a preferred solution, therefore they can take a significant amount
of time. On the other hand, most iterative search algorithms can return “current best”
solutions, if stopped at any given moment of time. Depending on the implementation,
A∗ might be an exception to this, as it might potentially search through incomplete
solutions.

GA has been shown to be an effective algorithm in solving NP-complete problems.
For such problems, however, it is a challenge to predict when the algorithm converges
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Fig. 7 Makespans for LU factorization problem for variable task sizes and the nine scheduling algorithms

Fig. 8 Execution time of the nine scheduling algorithms for the Gauss–Jordan elimination problem of
variable task sizes

and what the optimal solution is, since the best solution is unknown. A number of
researchers have analyzed GA convergence issues theoretically. Gao [54] indicated
that there is a tradeoff between the convergence and the long-time performance in
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Fig. 9 Execution time of the nine scheduling algorithms for the LU factorization problem of variable task
sizes

genetic algorithms. Rudolph [55] considered that a CGA (Canonical Genetic Algo-
rithm) would never converge to the global optimum, while the variants of CGAs that
always maintain the best solution are shown to converge to the global optimum. How-
ever, in [55], only the probability that a global solution being generated by mutation
was discussed, which has a little or no practical use for real-world applications. In
addition, all these existing literature assume a fixed length of individual when an-
alyzing convergence; however, our GA uses varied length of individual due to an
unexpected number of tasks duplicated. Through literature reviews, we found that
many current theoretical research on GA convergences are not applicable to the real-
world problems that need to be solved in a reasonable time. Therefore, we terminate
our GA algorithm when the best result is converged within a predefined threshold.
Otherwise, we stop the algorithm when the maximum number of generation exceeds
6,000.

The deciding factor between one-shot heuristics and iterative search algorithms is
whether the improved quality of solutions justifies the computational expense of the
iterative search algorithm. Our results show that genetic algorithms, tabu search and
A∗ had outperformed all the one-shot heuristics without task duplication. Simulated
annealing on the other hand, had the worst performance among all the scheduling
algorithms tested. The makespan difference between the best performing iterative
search (genetic algorithm) and the best performing one-shot heuristic without du-
plication (ISH) was about 60–80 s depending on the problem type and size. As the
execution time of the genetic algorithm was of the same magnitude, for our target
problems, executed only once, the choice is undecided. However, whenever the exe-
cution time of the target problem is larger, or a schedule can be reused multiple times,
the investment in the iterative search algorithm will yield overall better results.



A performance study of multiprocessor task scheduling algorithms 93

We conclude that the expense of the iterative search algorithms are justified for
large problems and/or problems where the schedule can be reused multiple times.
The best iterative search algorithms were found to be the genetic algorithms and tabu
search.

5.3.2 One-shot heuristics without task duplication

We found a consistent ordering between the performance of the one-shot heuristics,
with ISH being the best, followed in order by HLFET, min–min and chaining. The
improvement of ISH over HLFET is justified by the fact that ISH is able to take
advantage of idle time slots, HLFET only appends tasks without insertion, which can
result in some idle time slots.

5.3.3 One-shot heuristics with task duplication

Duplication Scheduling Heuristic (DSH) was the clear winner of our comparison
study, providing a very low scheduling time (characteristic to one-shot heuristic al-
gorithms) and the solutions with the shortest makespan. This, of course, is obtained
at a cost of higher utilization of the available computational resources, by duplicate
execution of the tasks.

Depending on the organizational or administrative setting in which the computa-
tion takes place, this might or might not be justifiable. If the user has exclusive access
to a cluster computer, the use of the duplication scheduling is clearly justified. If the
user is charged by the computation capacity used, duplication scheduling leads to
extra cost which needs to be balanced against its benefits.

5.3.4 Extended study of tabu search

There are two constants in the tabu search algorithm that can be varied. The con-
stant nitertabu specifies the size of the tabu list (i.e., for how many iterations a move
must be considered tabu). If the best move at any point is in the tabu list, the tabu
search does not accept it, but proceeds to the next best move. The moves continue
to get rejected until a move, which is not already in the tabu list, is found. If there
is any such move, the move is accepted. If there is no such move, the algorithm up-
dates its tabu list and goes to the next iteration without changing the current solution.
The algorithm halts when the number of moves in the immediate history without
improvement exceeds a certain level, given by a constant nmaxmoves. The constant
nmaxmoves specifies the maximum number of moves without improvement in the
makespan that can be allowed. Clearly, nitertabu should be less than nmaxmoves.
Varying nitertabu did not have any considerable effect on the quality of the results.
The values of 100 and 200 were used, but the results were identical in both cases as
well as the execution times.

A detailed description of the technique is presented by Porto et al. [28]. The paper
makes observations that the quality of solutions obtained is not affected much by the
different choices of parameters. Varying nmaxmoves, however, affects the amount of
time it takes by the tabu search. We used three different values (200, 500, and 1,000)
for nmaxmoves. The results showed that increasing nmaxmoves does not guarantee a
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Table 3 Results of tabu search by varying nmaxmoves (M: Makespan; Time: Execution time)

Problem nmaxmoves

50 100 200 500 1000

Time M Time M Time M Time M Time M

Lu14 0.46 350 0.74 350 1.35 350 2.13 350 6.71 350

Gj15 0.6 420 1.03 420 1.98 420 2.96 420 8.35 420

Lu20 1.53 510 2.54 510 4.54 510 9.36 510 21.30 510

Gj21 2.05 540 3.61 540 6.48 540 13.80 540 29.00 540

Lu27 4.6 760 12.41 700 18.35 700 32.16 700 167.34 700

Gj28 10.55 640 14.11 640 22.38 640 64.10 640 86.57 640

Lu35 15.54 930 23.26 930 38.63 930 122 920 384.57 900

Gj36 14.37 840 39.48 760 59.96 760 115.97 760 207.74 760

better solution. Even in the case when the solutions were better, it could be seen that
the improvement in the solution was not comparable to the increase in the execution
time. For example, increasing nmaxmoves from 200 to 1000 increased the execution
time by 1,000%; however, the improvement was a mere 3.33%. On the other hand,
nmaxmoves should be large enough to obtain a good solution for large task graphs. We
focus on how the results varied with the parameters of the algorithms. The detailed
results are presented in Table 3.

6 Conclusions

In this paper, we compared nine scheduling algorithms for multiprocessor task
scheduling with communication delays. Duplication Scheduling Heuristic (DSH) had
provided short scheduling time and schedules with the shortest makespan, with the
additional expense occurring by duplication of tasks on multiple processors. We con-
clude that from a purely performance point of view, DSH (ones-shot heuristic algo-
rithm) is the best solution, but its deployment needs to be subject of a careful cost-
benefit analysis. One-shot heuristic algorithms without task duplication can provide
adequate performance and fast scheduling time: Insertion Scheduling Heuristic (ISH)
had proven to be the best of this group. The next group, scheduling algorithms based
on iterative search such as genetic algorithms, simulated annealing, tabu search, and
A∗ require an order of magnitude longer computation time, but (with the exception
of simulated annealing) had yielded better solutions with a shorter makespan than the
one-shot heuristic algorithms without task duplication. In this group, the best solu-
tions were obtained by genetic algorithms and tabu search.

We conclude that the use of these algorithms are justified whenever the scheduling
can be done off-line, there is a need for repeated execution of the schedules or the
makespan of the application is significantly longer than the scheduling time.
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