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Abstract

Background: Polychromatic flow cytometry is a widely used technique for gathering and analyzing cellular

data. The data generated is high-dimensional, and therefore notoriously difficult to visualize by a human

expert. The traditional method of plotting every pair of observables of the original high-dimensional data set

leads to a combinatorial explosion in the number of visualizations. A natural solution is to project the data into

a lower-dimensional space while (approximately) preserving key properties and relationships among data points

with minimal distortion. The expert can then easily visualize this low-dimensional embedding of the original

dataset.

Results: This paper describes our new approach for visualizing high-dimensional flow cytometry datasets that

uses a decision procedure to automatically synthesize two-dimensional and three-dimensional projections of the

(original) high-dimensional data. We compare our visualization approach to the popular multi-dimensional

scaling (MDS) algorithm on a representative set of benchmarks, and shows using a set of randomly selected

data points, that our technique produces distortions that are 1.44 to 4.15 times smaller than those of the MDS

algorithm.

Conclusions: We describe a new algorithmic technique that uses a symbolic decision procedure to

automatically synthesize low-dimensional projections of high-dimensional flow cytometry data. Our algorithm is

the first application of decision procedures for automatically generating highly-accurate (low-dimensional)

visualizations of large, high-dimensional data sets.
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1 Introduction

Polychromatic flow cytometry provides a revolution-

ary tool for analyzing biological samples by identifying
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multiple phenotypic properties of individual cells, in-

cluding DNA content, RNA, intracellular phosphopro-

teins, cytokines, and cell-surface proteins [1]. Besides

its applications in translational research, flow cytom-

etry is routinely used by researchers to gain a deeper

understanding into the fundamental biology of cellu-

lar processes [2]. Unlike traditional techniques that can

only compute statistical measurements of large popu-

lations of cells such as the average concentration of a

protein in a cell sample, flow cytometry is capable of

measuring a number of phenotypic properties of each

cell in a sample [3].

The data generated from such detailed measure-

ments creates new opportunities for the experimen-

tal scientist. The expert can now identify even small

groups of cells that are different from others (repre-

senting an experimental success or a clinical abnor-

mality) whose presence could not have otherwise been

detected by simply observing the average phenotypic

properties of cells. The scientist can also finely charac-

terize temporal changes in the multi-dimensional dis-

tribution of multiple phenotypes of cell populations in

response to experimental evolutionary pressure or a

treatment regimen.

There remain two long-standing barriers to universal

adoption of flow cytometry for disease diagnoses:

• Cognitive processing studies have shown that the

data analysis capacity of human beings is lim-

ited, on average, to about four dimensions that

can be processed in parallel [4, 5]. Therefore,

polychromatic flow cytometry datasets that of-

ten produce data in 10 or more dimensions can-

not be easily visualized. We note that generating

a series of two-dimensional projections of high-

dimensional biomedical data is usually unhelp-

ful because it leads to loss of information about

the multi-dimensional relationships among data

points – hence, defeating the very purpose of col-

lecting multi-parameter cellular data.

• Flow cytometry produces large datasets, typically

with millions of data points per sample, which

is well beyond our cognitive memory limits [6].

Hence, statistical summarization of this data that

causes the loss of small – but biologically signif-

icant – details has been considered a necessary

evil. Not surprisingly, this often leads to an in-

ability to detect rare events and can potentially

cause significant harm to the subject.

We have addressed these problems by designing

a new automated technique for synthesizing low-

dimensional visualizations of flow cytometry data.

This paper makes the following main contributions:

• We describe SANJAY, a new algorithmic ap-

proach for automatically synthesizing 2D and 3D

visualizations of high-dimensional flow cytometry

data. Using our earlier work [7], SANJAY can de-

scribe the dataset using a complex network [8],

and uses community detection algorithms to iden-

tify subpopulations of similar cells in the net-

work [9]. SANJAY’s main contribution is to em-

ploy automated algorithmic synthesis techniques

[10, 11] and symbolic decision procedures [12]

to create low-dimensional projections of high-

dimensional big data that can be easily visualized.

• This algorithmic approach avoids statistical sum-

marization and stochastic search and hence pro-

vides an algorithmic method for complete and ac-

curate visualization of massive flow cytometry

datasets in two and three dimensions with min-

imal loss of information.

• We compare our SANJAY to the popular multi-

dimensional scaling (MDS) algorithm and show

that our projections produce distortions that are

on average 2.56 times smaller than those produced

by MDS (see Table 1 on page 3).
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Table 1: Distortions produced by the MDS approach and our method (SANJAY) when 10 randomly chosen high-

dimensional data points from 30 flow cytometry datasets were projected onto two dimensions. The maximum

distortion produced by SANJAY was, on average, 2.56 times less than that produced by MDS.

Dataset ID

Maximum
distortion
for MDS

Maximum
distortion

for SANJAY
Ratio of distortions
(MDS/SANJAY) Dataset ID

Maximum
distortion
for MDS

Maximum
distortion

for SANJAY
Ratio of distortions
(MDS/SANJAY)

1 3197.845 1000 3.197 16 3150.466 1200 2.625

2 2711.12 1200 2.259 17 2497.225 1100 2.270

3 1953.082 1000 1.953 18 2925.544 1400 2.089

4 2917.223 1200 2.431 19 3813.344 1300 2.933

5 3483.532 1400 2.488 20 3700.842 1300 2.846

6 2925.941 1100 2.659 21 3011.87 1200 2.509

7 4233.021 1800 2.351 22 3252.494 1000 3.252

8 2898.038 1300 2.229 23 3381.443 1200 2.817

9 1876.719 1300 1.443 24 2963.938 1100 2.694

10 4314.192 1500 2.876 25 3428.368 1600 2.142

11 3543.691 1400 2.531 26 2712.258 1200 2.260

12 2449.823 1300 1.884 27 3679.701 1500 2.453

13 3835.263 1500 2.556 28 3286.024 1200 2.738

14 4153.369 1000 4.153 29 2449.747 1000 2.449

15 2858.641 1000 2.858 30 4160.04 1400 2.971

2 Background

2.1 Automated Gating of Flow Cytometry Data

Machine learning methods have been deployed for au-

tomatically labeling subpopulations of cells in flow cy-

tometry data sets – a process popularly referred to as

gating. In particular, supervised and semi-supervised

machine learning algorithms [13, 14] have been ex-

tensively investigated for automatically identifying re-

lated cells.

Sequential gating [15] enables two-dimensional visu-

alization of any two colors or dimensions of data from

a polychromatic flow cytometer. The human expert

then attempts to manually identify subsets of cells

that correspond to the same subpopulation. While the

process is computationally simple, the result is highly

subjective and depends on the intuition of the oncol-

ogist. Further, an n-dimensional flow cytometry data

has n × (n − 1)/2 possible two-dimensional visualiza-

tions. Thus, a 20-color polychromatic flow cytometer

will produce 190 different 2-dimensional visualizations

and it is a cognitive challenge for a human expert to

verify clinical or experimental conjectures against all

190 visualizations obtained from a biological sample.

Probability binning [16] is an unsupervised quanti-

tative methodology for analyzing polychromatic flow

cytometry data that identifies the difference between

the distribution of cells in a given sample and a stan-

dard control sample. Frequency difference gating [17]

extends this approach by enabling multidimensional

gating of the bins identified by the probability-binning

algorithm that contain the largest differences between

the given and the control sample.

Cluster analysis methods [18, 19] employ varying lev-

els of expression of antigens to construct subsets of

cells that share the same combination of fluorochromes

markers. While the technique is unsupervised, the re-

sult is only a semi-quantitative two-dimensional visual

description (such as a heat map) of the data set and

still needs to be interpreted subjectively by an expert

for biological correctness. Standard machine learning
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algorithms such as k-means [20] and expectation max-

imization [21] have been applied to perform cluster

analyses of polychromatic flow cytometry data.

The most popular clustering algorithm that operates

by building and refining partitions is the k-means algo-

rithm [22, 23]. The popular k-means algorithms have

also been applied to flow cytometry data [21]. The k-

means algorithm requires three inputs from the user:

the number of clusters, an initial cluster assignment,

and a metric to measure distance between data points.

As the k-means algorithms converge only to one of the

local minima, different initializations of the k-means

algorithm can lead to different final clustering of the

data. Such sensitivity to initial conditions is undesir-

able for an objective flow cytometry data exploration

framework.

Principal Component Analysis is a particularly pop-

ular approach for generating two-dimensional visual-

izations of flow cytometry data [19]. However, low-

dimensional visualizations lose a lot of information

because of the low correlation between different flu-

orochromes, and such plots mostly serve as an ex-

ploratory tool in the hands of well-trained experts.

In our recent work [7], we have proposed the use of

complex network models and their topological proper-

ties for discriminating between cancer and normal pa-

tients. In our approach, each node in the complex net-

work corresponds to the measurements obtained from

a single cell and an edge between two nodes exists if

the Euclidean distance between them is smaller than a

threshold. The evolution of the network through time

can be derived by studying periodically acquired pa-

tient samples. By constructing such complex network

models for multiple normal patients, we propose to

develop a stochastic generative model that describes

the flow cytometry data for normal patients. In par-

ticular, topological properties such as number of con-

nected components, edge density, number of clusters,

etc. are studied. The goal of our stochastic genera-

tive modeling is to capture the natural diversity that

occurs in the normal patient population (age, race,

gender, BMI), and thereby compute the probability

that a given flow cytometry sample does not arise from

this stochastic generative model. Rare behavior iden-

tification algorithms, including our own work [24], can

then be employed to compute the probability that a

given flow cytometry sample indicates the presence of

a physiological anomaly in a patient.

2.2 Decision Procedures

This paper is the first effort that we know of to-

wards the application of symbolic decision procedures

for the algorithmic synthesis of projections from high-

dimensional data to low-dimensional visualizations.

We show that our SANJAY approach based on bit-

vector decision procedures outperforms classical multi-

dimensional scaling approach by consistently creating

projections with at least 80% less distortion.

More recently, a number of decision procedures for

verifying various decidable fragments of logic involv-

ing arithmetic and function symbols have been pro-

posed and implemented using the popular SMTLIB

standard [25]. In particular, a number of decision pro-

cedures for bit-vectors involving arithmetic and logi-

cal operations have been successfully implemented [26,

27]. Many of these approaches build upon the foun-

dation work of Martin Davis, Hilary Putnam, George

Logemann and Donald W. Loveland who introduced

the DPLL algorithm for checking the satisfiability of

propositional logic formulas in 1962 [28].

2.3 Some notations and definitions

We now describe some basic ideas relevant to our use

of decision procedures for the automated synthesis of

visualizations.

Definition 1 (Basic bitvector operations) A bit-

vector is a vector of Boolean values of a given length.
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Given two bit-vectors, their bitwise logical operations

are performed by applying the logical operation to the

corresponding bits of the bit-vectors.

¬x = ∀i ∈ {0, 1, . . . , l − 1}¬xi

x ∨ y = ∀i ∈ {0, 1, . . . , l − 1}(xi ∨ yi)

x ∧ y = ∀i ∈ {0, 1, . . . , l − 1}(xi ∧ yi)

The above equations define the formal semantics of

bit-vector NOT, OR, and AND operations. Similarly,

arithmetic operations such as addition and subtraction

can be defined on bit-vectors by extending the stan-

dard definition of these operations from the decimal to

the binary representation.

Definition 2 (Bitvector concatenation) Two bit-

vectors of length l and l′ can be concatenated into

a single bit-vector of length l + l′.

xy = ∀i ∈ {0, 1, . . . , l + l′ − 1}bi where,

bi =

xi if i < l

yi−l otherwise.

Relational operations on bitvector are defined sim-

ilarly, using both signed and unsigned interpreta-

tions [25]. As these formulas naturally arise in soft-

ware and hardware verification, several solvers for

bit-vector decision procedures are widely deployed.

The top solvers in the 2015 SMT-COMP competition

for bit-vectors include Boolector, CVC4, STP, Yices,

Mathsat and Z3. Most of these solvers use a combi-

nation of bit-blasting and rewriting to translate the

bitvector decision problem into a combination of lem-

mas that can be discharged using results from number

theory and satisfiability solving [29].

Definition 3 (Distortion) Distortion is defined as

the change of distance between two points when they

are projected from a high dimension space to a lower

dimension space. Let the distance between points x

and y in the original space be d(x, y). Let the projec-

tions of x and y in the lower dimension space be x′

and y′ respectively. Let d(x′, y′) be the distance be-

tween the projected points. The distortion due to this

projection is defined by:

distortion(x, y) = |d(x′, y′)− d(x, y)|

3 Graphical Representation of Flow

Cytometry Data

There is an inherent complex network structure in

polychromatic flow cytometry data arising from the

well-governed biological process of cell differentiation.

Using our earlier approach [7], we build a complex net-

work representation of the observed flow cytometry

data set.

Definition 4 (Flow Cytometry Network) Given N

m-dimensional data points representing N cells, each

representing m observed properties measured by a

polychromatic flow cytometer, the flow cytometry net-

work with threshold T (a T − FCN) is a graph G =

(V,E) where V is the set of nodes and E is the set of

edges, such that:

• a node v ∈ V denotes the m quantities measured

for a single cell, i.e. v = (v0, v1, . . . , vm−1), and

• (v, v′) ∈ E if and only if ||(v0, . . . , vm−1) −
(v′0, . . . , v

′
m−1)|| ≤ T .

The second property above specifies that there’s an

edge between two nodes (i.e. between data points rep-

resenting a pair of cells), when the Manhattan dis-

tance between them is less than threshold T . Note

that the Manhattan distance between vectors v =

(v0, . . . , vm−1) and u = (u0, . . . , um−1) is defined to

be Σm−1i=0 |vi − ui|.

Given flow cytometry data, a T-FCN (flow cytome-

try network) is determined by the threshold T that is
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Figure 1: From flow cytometry data to complex

networks and its structural representation.

used to decide whether two nodes in the flow cytome-

try network are connected by an edge in the T-FCN.

The threshold T is typically learned from experimental

data. As T is varied from∞ to 0, the T-FCN goes from

being a clique of N nodes to being a network with N

components – each node being a component by itself.

The variation in T causes changes in the distribution

of the topological properties.

Using information theoretic arguments [30, 31], we

can compute the value of T that maximizes the infor-

mation content or entropy of the distribution of the

topological properties. Thus, the generated T-FCN is

the most informative network describing the flow cy-

tometry data set.

3.1 Community Detection in Flow Cytometry Data

Several existing algorithms are capable of identifying

communities in large complex networks [32]. Due to

the massive size of the network generated by a typical

flow cytometry dataset, one can readily rule out the

use of matrix and spectral graph theory based meth-

ods. Modularity based methods are known to be biased

against small communities and are hence not a method

of choice for identifying communities in flow cytome-

try networks, where small communities may represent

rare but interesting anomalies [33].

Keeping in mind the our high-assurance requirement

for biomedical applications, and the large size of flow

cytometry datasets, we suggest the use of a parallel

version of the Walktrap algorithm for community de-

tection [7] in our flow cytometry networks [9].

The main idea behind Walktrap approach is based

on the intuition that random walks of a graph must

be trapped in densely connected communities of the

T-FCN that are only sparsely connected to the rest of

the network. As several random walks can be instanti-

ated in parallel on multiple processing nodes, the ap-

proach is readily deployable on large supercomputing

clusters [34].

3.2 Structural Representation of Flow Cytometry

Networks

Each flow cytometry data set is represented by a T-

FCN that maximizes the information content of the

network. A flow cytometry network T-FCN is then de-

composed into a number of communities C1, . . . , Cn,

using methods described in Section 3.1 where each

Ci is itself a T-FCN. The centroid of a community

gives the approximate position of all the points in the

community. To preserve the relative position of the

communities, we compute the centroids O1, . . . , On

of the communities and seek to approximately pre-

serve the distance between these centroids. In order

to preserve the geometry of the individual communi-

ties, we also must compute the 3-centroids E1
i , E

2
i , E

3
i

for each community Ci when projecting into two di-

mensions (and 4-centroids when projecting into three

dimensions). To calculate 3−centroids of a commu-

nity Ci we break the community into 3 component

communities C1
i , C

2
i , C

3
i using k-means clustering al-

gorithm where the input k for the k-means algorithm

is equal to 3. We then calculate one centroid for each

of the 3 component communities for a total of 3 com-
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ponent centroids E1
i , E

2
i , E

3
i for each community Ci.

For projecting onto two dimensions the set of points

{O1, E
1
1 , E

2
1 , E

3
1 , O2, E

1
2 , E

2
2 , E

3
2 , . . . , On, E

1
n, E

2
n, E

3
n},

that we will also denote by Q1, . . . , Qd where d = 4n,

and n is the number of communities in the T-FCN,

serves as a structural representation of the flow cy-

tometry network.

4 Automated synthesis of projections

using decision procedures

Given the structure-defining points {Q1, . . . , Qd} =

{O1, E
1
1 , E

2
1 , E

3
1 , O2, E

1
2 , E

2
2 , E

3
2 , . . . , On, E

1
n, E

2
n, E

3
n} in

m dimensions, SANJAY synthesizes an embedding

{R1, . . . , Rd} of the points in two-dimensional or any

other lower dimensional space that approximately pre-

serves the pairwise manhattan distances between these

points up to an error of ε > 0. The following expres-

sion specifies relationship between the original points

Q1, . . . , Qd and the synthesized lower-dimensional pro-

jection R1, . . . , Rd with respect to the distortion ε:

∃R1, R2 . . . , Rd,∀i, j ∈ {1, . . . d},where i 6= j :∧
||Ri −Rj || ≤ ||Qi −Qj ||+ ε,∧
||Ri −Rj || ≥ ||Qi −Qj || − ε

To help in discussing our projection algorithm, we now

state, without proof, a lemma that describes the re-

quirement for the location of a point in 2D or 3D space

to be fixed.

Lemma 1 (Fixing points in two and three dimensions)

For any given point in two-dimensional space, its dis-

tance from three unique points uniquely identify its co-

ordinates. Similarly, for any point in three-dimensional

space, its distance from four unique points uniquely

identify its coordinates [35].

Therefore, the two-dimensional projection of all

points in a community Ci can be obtained using the

2D projections of the 3-centroids E1
i , E

2
i , E

3
i of that

community. Similarly, the three-dimensional projec-

tions of the points in a community can be obtained

from the projections of the 4-centroids E1
i , E

2
i , E

3
i , E

4
i

of the community.

However, a direct translation of the problem to bit-

vector decision procedures involves a tradeoff between

computational tractability and the accuracy of the ob-

tained projections. Large values of ε lead to decision

problems that can be readily solved by decision proce-

dures but correspond to poor projections. Small ε val-

ues represent high-quality distance-preserving projec-

tions but create computationally challenging instances

of the decision problem.

The SANJAY algorithm solves the problem by

using an iterative refinement to derive the points

R1, R2, . . . , Rd in the lower-dimensional space from

the pairwise distances between the points Q1, . . . , Qd

in the higher dimension. The algorithm starts by syn-

thesizing the highest-order bit in the bit-vector rep-

resentation of these points, and then searches for the

other bits.

The SANJAY algorithm is illustrated in Algorithm 1

on page 8. The algorithm accepts the pairwise dis-

tances Di,j(1 ≤ i, j,≤ d) between every pair of d

points as an input. It also accepts two other inputs:

the length LMAX of the bit-vector representing the

projected points to be synthesized and the number of

bits LNUM that should be learned in every iteration

of the projection synthesis loop.

In Algorithm 1, a point Qi is represented by the

bit vector representation (P
LCURR
xi

aLREM ,P
LCURR
yi

bLREM )

where P
LCURR
xi

aLREM is the x-coordinate and P
LCURR
yi

bLREM

is the y-coordinate. The PLCURR
xi

and PLCURR
yi is the

part of the vector that has been calculated by the algo-

rithm, the aLREM and bLREM is the part of the vector
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Algorithm 1 The SANJAY algorithm for automated

synthesis of two dimensional visualizations for flow cy-

tometry data.

Require:

Pairwise distances Di,j , 1 ≤ i, j ≤ d, i 6= j between every

pair of d points {Q1, . . . Qd} to be projected in the higher-

dimensional space

Maximum distortion ε

The maximum length LMAX of the bitvectors used to store

points

The number of bits LNUM to be learned in each iteration of

the refinement process

Ensure:

Synthesized points {R1, . . . , Rd} in the lower dimension

1: LCURR ← 0 {Current no. of bits in synth. points}
2: LREM ← LMAX {Remaining bits to be synthesized}
3: For all i, P 0

xi
← φ

4: For all i, P 0
yi
← φ

5: repeat

6: For all i, compute A
LNUM
xi

and A
LNUM
yi such that

(1− ε)D2
i,j ≤ max

a,b,c,d∈{0,1}
||(PLCURR

xi
A

LNUM
xi

a
LREM ,

P
LCURR
yi

A
LNUM
yi

b
LREM )

−(PLCURR
xj

A
LNUM
xj

cLREM , P
LCURR
yj

A
LNUM
yj

dLREM )||2

≤ (1 + ε)D2
i,j

7: For all i, P
LCURR+LNUM
xi

← P
LCURR
xi

.A
LNUM
xi

8: For all i, P
LCURR+LNUM
yi ← P

LCURR
yi .A

LNUM
yi

9: LCURR ← LCURR + LNUM

10: LREM ← LREM − LNUM

11: until LREM = 0

12: For all i, Ri ← (P
LMAX
xi

, P
LMAX
yi )

13: return {R1, . . . Rd}

that has still not been calculated. When all the bits

of any vector aLREM is 1 then we denote it by 1LREM

similarly when all the bits of the vector is 0 we de-

note it by 0LREM . The bit vector aLREM has the prop-

erty that 0LREM ≤ aLREM ≤ 1LREM . So, any point

Qi with representation (P
LCURR
xi

aLREM ,P
LCURR
yi

bLREM )

can take all the values within the square with corners

(P
LCURR
xi

0LREM ,P
LCURR
yi

0LREM ),(P
LCURR
xi

0LREM ,

P
LCURR
yi

1LREM ),(P
LCURR
xi

1LREM ,P
LCURR
yi

0LREM ),

(P
LCURR
xi

1LREM ,P
LCURR
yi

1LREM ).

Algorithm 1 initializes the length LCURR of the pro-

jected points to 0. The algorithm also initializes the

length LREM of the remaining bit-vectors to be syn-

thesized with the value LMAX . This means that the

point Pi can take all the values within the square de-

noted by the points (1LMAX , 1LMAX ), (1LMAX , 0LMAX ),

(0LMAX , 1LMAX ), (0LMAX , 0LMAX ). This square spans the

whole search space, which implies that at the start of

the first iteration, the point Pi can be found anywhere

in this search space.

A bit-vector decision procedure then searches for

a better approximation of the projected point by

searching for the next LNUM higher order bits

A1
1, A

1
2, . . . , A

1
LNUM

in the binary representation of the

projection of the points by solving the following deci-

sion problem:

Bi = ‖(PLCURR
xi

A
LNUM
xi

a
LREM , P

LCURR
yi

A
LNUM
yi

b
LREM )

−(P
LCURR
xj

A
LNUM
xj

c
LREM , P

LCURR
yj

A
LNUM
yj

d
LREM )‖2

(1)

(1− ε)D2
i,j ≤ max

a,b,c,d∈{0,1}
Bi ≤ (1 + ε)D

2
i,j (2)

Each iteration of the algorithm breaks down the pre-

vious square into 22LNUM sub-squares in which the

point Pi can be found and Equation 2 using bit vector

decision procedure selects the best possible sub-square

for the point Pi. At the end of the iteration, each of the

points is projected to a sub-square with the diagonal

(P
LCURR
xi

A
LNUM
xi

0LREM−LNUM ,P
LCURR
yi

A
LNUM
yi

0LREM−LNUM )

and (P
LCURR
xi

A
LNUM
xi

1LREM−LNUM ,P
LCURR
yi

A
LNUM
yi

1LREM−LNUM ),where PLCURR
xi

and PLCURR
yi denote bit

vectors of LCURR bits, ALNUM
xi

and ALNUM
yi denote bit

vectors of LNUM bits, and 0LREM−LNUM is a zero bit

vector of LREM − LNUM bits.

As the algorithm iterates, it builds finer abstractions

of the bit-vector representation of the points being

projected. When the algorithm has computed LMAX

number of bits in the bit-vector representation of the

projected points, it assigns the generated bit-vectors

to the output R1, . . . , Rd.
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Table 2: Average distortions produced by the MDS approach and our method (SANJAY) when 10 randomly

chosen high-dimensional data points from 30 flow cytometry datasets were projected onto two dimensions.

Dataset
ID

Maximum
distortion
for MDS

Maximum
distortion

for
SANJAY

Average

distortion
for MDS

Average

distortions
for

SANJAY
Dataset

ID

Maximum
distortion
for MDS

Maximum
distortion

for
SANJAY

Average

distortion
for MDS

Average

distortions
for

SANJAY

1 3197.845 1000 1042.49 540.81 16 3150.466 1200 1034.49 733.81

2 2711.12 1200 1024.41 653.32 17 2497.225 1100 919.57 623.09

3 1953.082 1000 649.25 537.57 18 2925.544 1400 1056.84 822.47

4 2917.223 1200 897.46 765.38 19 3813.344 1300 1117.45 757.51

5 3483.532 1400 1089.60 806.36 20 3700.842 1300 989.50 773.67

6 2925.941 1100 1069.45 634.07 21 3011.87 1200 1057.58 684.83

7 4233.021 1800 1374.40 1010.73 22 3252.494 1000 1412.67 605.78

8 2898.038 1300 949.88 709.49 23 3381.443 1200 915.02 712.82

9 1876.719 1300 765.93 752.59 24 2963.938 1100 824.36 741.10

10 4314.192 1500 1011.76 892.91 25 3428.368 1600 1178.13 1033.5

11 3543.691 1400 1050.42 882.83 26 2712.258 1200 949.24 713.37

12 2449.823 1300 1050.39 760.07 27 3679.701 1500 1114.25 833.66

13 3835.263 1500 1241.76 849.70 28 3286.024 1200 935.43 611.76

14 4153.369 1000 985.72 613.44 29 2449.747 1000 1004.84 561.34

15 2858.641 1000 1249.67 612.48 30 4160.04 1400 1178.41 874.19

Table 3: Distortions produced by our method (SANJAY) and Random Projections when 10 randomly chosen

high-dimensional data points from 30 flow cytometry datasets were projected onto two dimensions.

Dataset
ID

Maximum
distortion

for
SANJAY

Maximum
distortion

for Random
Projections

Average

Distortion
SANJAY

Average

Distortion
Random

Projections
Dataset

ID

Maximum
distortion

for
SANJAY

Maximum
distortion

for Random
Projections

Average

Distortion
SANJAY

Average

Distortion
Random

Projections

1 1000 4069 540.81 1289.22 16 1200 6732 733.81 1791.50

2 1200 4179 653.32 1226.57 17 1100 4298 623.09 1361.34

3 1000 3982 537.57 1095.53 18 1400 4922 822.47 1480.31

4 1200 5289 765.38 1637.11 19 1300 6719 757.51 1912.72

5 1400 5045 806.36 1654.74 20 1300 5583 773.67 1806.02

6 1100 5092 634.07 1555.50 21 1200 5311 684.83 1535.20

7 1800 5364 1010.73 1608.83 22 1000 4447 605.78 1440.14

8 1300 3566 709.49 1111.89 23 1200 4731 712.82 1355.46

9 1300 4357 752.59 1439.54 24 1100 6251 741.10 1944.26

10 1500 4262 892.91 1376.79 25 1600 5919 1033.55 1943.44

11 1400 4945 882.83 1578.53 26 1200 5385 713.37 1762.98

12 1300 4370 760.07 1395.63 27 1500 4886 833.66 1519.03

13 1500 4747 849.70 1363.12 28 1200 5884 611.76 1648.05

14 1000 7029 613.44 2084.72 29 1000 5398 561.34 1513.42

15 1000 6161 612.48 1916.68 30 1400 3900 874.19 1047.50
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5 Experimental Results

We performed our experimental evaluation on a 64-

core 1.40GHz AMD Opteron(tm) Processor 6376 pro-

cessor with 64 GB of RAM. We analyzed 30 flow cy-

tometry data sets, each of them having 12 dimensions

each. For each data set, we used MDS , random pro-

jections [36] and our SANJAY technique to search for

two-dimensional projections of 10 randomly selected

data points from the original (high-dimensional) data,

while attempting to maintain the original inter-point

distances. We then computed the maximum and the

average error (distortion) of the projections produced

by all three techniques. The comparison between SAN-

JAY and MDS is presented in Table 1 on page 3 and

Table 2 on page 9. The comparison between SANJAY

and random projections is presented in Table 3 on

page 9.

Our approach performed at least 1.44 times better

and sometimes as much as 4.15 times better than MDS

in terms of minimizing the maximum distance distor-

tion among all the projected points. The average dis-

tortion produced by SANJAY algorithm were as much

as 2.33 times better than those produced by MDS algo-

rithm. When compared with random projections our

approach performed 7.02 times better at minimizing

maximum distortion between the points.

Figure 2 on page 12 shows the results of using SAN-

JAY to project 1000 randomly chosen points from 6 of

the 30 flow cytometry datasets discussed above. One

can visually verify that in most of the figures there is

only one large cluster – ostensibly representing cells ex-

hibiting normal or expected behavior. We can attempt

to use such automatically generated visualizations to

identify patients whose flow cytometry data indicates

a significant number of cells showing abnormal behav-

ior.

6 Conclusion and Future Work

In this paper, we described a new algorithmic tech-

nique for automatically generating low dimensional vi-

sualizations of high-dimensional flow cytometry data.

We used symbolic decision procedures to exhaustively

search for low-dimensional projections in a finite, dis-

cretized search space where the user is allowed to de-

fine the size of search space. Our results show that

visualizations synthsized using our technique (SAN-

JAY) were better than those produced by the multi-

dimensional scaling (MDS) algorithm and random pro-

jections in terms the maximum distortion in the pair-

wise distances.

The results themselves are not surprising as sym-

bolic decision procedures are often used for solving

optimization and search problems. However, their use

in generating such high-fidelity visualizations has not

been reported before. Building upon our current and

earlier work [7], we are developing a web-enabled cy-

berinfrastructure that allows users to access our de-

cision procedure based flow cytometry data analysis

framework.
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Figure 2: Figures (a), (b), (c), (d), (e), and (f), show plots of the two dimensional projections synthesized by

the SANJAY algorithm for 1000 randomly chosen data points from 6 flow cytometry datasets (dataset IDs 9,

24, 11, 14, 17, and 5 respectively in Table 1 on page 3). For these and 24 other flow cytometry datasets, Table 1

lists the maximum distance distortion when 12-dimensional flow cytometry data is projected onto 2 dimensions.
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