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Abstract—Underwater Sensor Networks (UWSNs) provide
valuable data for research studies and underwater monitoring
and protection. UWSNs need to overcome the handicap that high
data rate wireless transmissions are not available underwater.
Acoustic communications are used as a medium but they are only
good for transmitting e.g. signalling information. Autonomous
Underwater Vehicles (AUVs) can serve as mobile sinks that
gather and deliver larger amounts of data from the underwater
sensor network nodes. Value of Information (VoI) is a data tag
that encodes the importance and time-based-relevance of a data
chunk residing at a sensor node. VoI, therefore, can serve as a
heuristic for path planning and prioritizing data retrieval from
nodes. The novelty of this paper lies in providing algorithms
which schedule multiple mobile sinks (AUVs) for data retrieval
from nodes while maximizing the retrieved VoI. The class of
algorithms discussed are based on greedy heuristics.

I. INTRODUCTION

Time-critical data delivery is crucial for active ocean mon-

itoring of oil plumes. For example, the famous event of

Deepwater Horizon oil spill was tracked after the large oil

slick was visible at a former rig site [9]. The oil plume may

have different direction as compared to the oil slick on the

surface. This is because the movement of plume can take any

direction due to the differential between the surface and the

water currents below it. Thus it is necessary to have an active

ocean monitoring on the rig sites that can provide the precise

sensing of the information of the pollutants at an early stage.
A practical approach for the ocean monitoring is the use of

underwater acoustic sensor network - a network of underwater

sensor nodes that either transmit data on multihop routes or

use a data-mule (autonomous underwater vehicle) for the col-

lection of sensed data via using acoustic communication [3],

[6]. Further, it is impractical to increase the spatial resolution

of the sensor network as is not cost effective to sufficiently

cover large sites with hundreds of these sensors [13], [8].
The use of autonomous underwater vehicles increases the

latency of the data delivery but helps significantly in the

reduction of the energy consumption of nodes that would

otherwise use the multihop forwarding approach for data-

forwarding. To reduce the latency of the data-delivery opti-

mization we must consider resources such as speed of the

AUV, its payload capacity and the path traversed for the

data collection. An optimal path would collect the maximum

amount of information in limited time while using minimum

amount of fuel and other resources.
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Fig. 1. Multiple AUVs collecting information from the acoustic sensor
network

The use of multiple mini-sized AUVs has certain advantages

as compared to the use of a single large AUV. Using multiple

AUVs helps in the scalability of the area coverage and

also provides the advantage for the fault-tolerance ability of

the acoustic sensor network - an AUV can reschedule and

complete the tasks for another AUV that has malfunctioned.

Further, with the use of appropriate scheduling algorithms,

one can use the heterogeneous abilities of different AUVs

as an advantage. For example, a high speed AUV can be

used to collect the information from the regions with time-

sensitive data whereas the low speed AUV can be used for
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the collection of non-sensitive data from the rest of the sensor

nodes. However, the data monitoring missions near the coastal

or reef areas are difficult as there are strong temporal tidal

currents and as we go further deep into the ocean environment,

these currents have greater impact on the trajectories of the

AUVs. In such cases the path of a straight line from the dock

to the sensor node may not be the best path due to tidal current

affecting the AUV motion resistance [16], [11], [12].
For our work, we consider multiple AUVs, as shown in

Figure 1, that are equipped with acoustic communication

devices and can traverse throughout the sensing area. The

AUV can resurface at any point during collection of data

and can communicate using wireless medium to transfer the

accumulated data up till that instant to a base-station. Once

it transmits all the data it returns to resume offloading data

from the underwater sensor nodes. The path planning problem

for multiple AUVs is to schedule paths for data retrieval that

minimizes the cost of operation and increases the value of

information. The traversal cost for the AUVs depends on the

time required to move from one sensor node to the other sensor

node as the value of information depends decreases with time.
Our path planning problem is closely related to the travelling

salesman problem (TSP) with “prizes”. This variant of TSP

has to maximize the total collected prize associate with each

visited point while we return to the starting point within a

give time frame. This problem is known to be NP-hard and a

number of related variants [5] have been proposed depending

upon the constraints on the path. For our work, the Value of
Information (VoI) is a monotonically decreasing function in

time. Each data chunk has a VoI function associated with it,

which describes the initial VoI of the data as well as the way

in which it decreases in time. The key difference between our

problem and regular “TSP with prizes” is:

• The prize value is uncertain due to unreliable channel of

the acoustic model. The value of the information gathered

from different sensors uses a probabilistic model - weak

acoustic channel communication can provide a different

value of information.

• Empirical evidence is required to model the posterior

value of information at the sensor nodes which is de-

pendent upon on the precise value of information of the

neighbouring nodes.

• The information gathered from various locations is asso-

ciated with the decay of the value of information.

• During the path traversal, a sensor node can be skipped

with an additional cost penalty.

We are considering homogeneous AUVs - each AUV has

the same construction, capabilities and resources such as fuel

and sonar sensor. Thus, all of the AUVs have the ability to

move to any sensor location to collect the data chunks of infor-

mation. Scheduling and balancing multiple AUVs introduces

challenges for the path scheduling with the goal of maximum

information collection - not only should the planned paths

maximize the amount of information but should be balanced

for planning swift collection and delivery of the gathered data.

The task of maximizing the value of information can be broken

down as: determining the path with maximum information,

scheduling the path traversal with goal of collaborative task

assignment and reducing the data delivery delay latency.
Our contributions are:

• Formulation of greedy heuristics for the path planning

problem using multiple AUVs

• Modelling of algorithms which can be used for both

single AUV and multiple AUVs

• Modelling scenarios that are affected by the monotoni-

cally decreasing value of information and discussing the

importance of greedy algorithms for those scenarios

• Demonstrating the effectiveness of different greedy algo-

rithms by extensive simulation based evaluation of the

proposed algorithms

The rest of the paper is organized as follows. In Section III,

we introduce the concept of the value of information with the

graphical explanation provided in Figure 2a. In Section III, we

also discuss the problem of maximizing value of information
using multiple AUVs. In Section IV, we discuss the proposi-

tions and the heuristics for modelling the greedy path planners
for maximizing the VoI and finally we discuss our results in

Section V.

II. RELATED WORK

Turgut and Bölöni [14] introduced an information quality

metric on the basis of which a methodology was devised to

retrieve data in a particular priority from different types of sen-

sor networks. The information quality metric was VoI which

essentially makes the user aware of the degradation/decay of

the quality of information of data (pertaining to a set of sensed

stimuli) with respect to time (since the time the stimuli were

first recorded to the present instant). The VoI has been initially

applied to intruder tracking sensor networks [14], [15]. The

transmission scheduling of sensor nodes via acoustic links to

the sink as well as the path planning of an AUV to collect

data from sensor nodes have been also explored [4], [1]. In

either of the application domain, the goal was to maximize

the quality of the gathered data using AUVs [7].
For cooperative path planning, the approaches used to solve

the problem can be divided into two categories - the centralized

approach and non-centralized approach [2]. For a centralized

approach the search space for path planning for multiple AUVs

is combined into one large composite configuration space

and the solution is searched using the composite system. But

the solution using centralized approach has a higher time

complexity growing exponentially in the dimension of the

composite space. For a non-centralized approach, the path

planning of multiple AUVs is handled separately and then

any possible conflicts are resolved in the cooperative planned

paths. Thus, for real world scenarios we have to use heuristics

for the exploration of the increasing search space of the

composite system.

III. VALUE OF INFORMATION (VOI)

We define the VoI as a function that assigns to a data

packet a value that is monotonically decreasing in time. These

functions can be designed in a variety of different ways so as to
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suit one’s narrative of an application scenario. The functions

have two types of parameters as shown in Figure 2a. The

parameters are Ax and By . The parameter Ax assigns a value

to the ’initial importance’ of the information associated with a

data packet while the parameter By controls the ‘decrease of

relevance’ of information with time. Figure 2a shows three

different types of monotonically decreasing VoI functions

(fV oI(t)) ; Step, Ramp and Exponential. The Step function

uses parameters B1 and B2 to control the decrease in step size

for the VoI while the Ramp function uses B4 to control the

slope B3 for a continuously degrading VoI. In both of these

functions the fV oI(t) value ends up at zero value (fV oI(t)
can be designed to end up at any other constant value) i.e.

after a particular length of time each data packet will have

the same VoI value, thus any information of time precedence

i.e. when the packet was acquired, will be lost. This way, the

VoI value can also be used to detect which old packets can be

discarded. But if the goal is to always retain the information

retain the information precedence then Exponential functions

serve the purpose better. In exponential functions Ax controls

the initial value of the information while By control the decay

in the VoI. The two exponential functions could be thought

of being applied to an application scenario as follows. The

bottom left exponential in Figure 2a can be understood to

be assigned to a data packet that has a higher importance

(e.g. reporting a hazard or abnormal activity) as it has a larger

initial value. In contrast the bottom right exponential can be

assigned to data pertaining to normal events as it has a lower

initial value. Moreover, the exponential assigned to the more

important events has a faster decay implying that their worth

will become irrelevant soon if not retrieved quickly by the end

user while a slower decay implies data still being relevant after

longer periods of time. If it is required that the more important

data always has a more VoI than the normal data then it could

be designed by setting A2 > A3 and B5 > B6.

For a single AUV, planning the path is to find a priority

path for visiting the nodes for data collection for maximizing

the data collection. For each chunk of data, the sensing nodes

attribute a value, decaying in time. The more urgent the data,

the faster the decay of the value of information.

The case of cooperative planning for multiple AUVs is a

difficult problem and the spatial and temporal domain overlap

for the multiple AUVs. For the spatial problem, we require that

all AUVs collect the data from distinct nodes - the nodes that

are not visited by other AUVs. For the temporal overlap, we

require the time to be scheduled to maximize the aggregate

value of information collected by all AUVs. Thus, we not

only want to schedule the path of the individual AUVs but

we should also ensure the fair job division between the AUVs

- each AUV should visit the same number of nodes or at

least spend a similar amount of time traversing the sensor

network region. Also, the AUVs should plan a path that would

cover the maximum area of the sensor node deployment while

decreasing the cost of traversal between the sensor nodes.

IV. GREEDY HEURISTICS

In these section we propose a series of greedy heuristics for

the path planning of AUVs. These heuristics are formulated

around a series of propositions which we abbreviate as PNM ,

PMT , PNMV , PLB , PV PA & PMP . Propositions PLB , PV PA

& PMP specifically address the scheduling of multiple AUVs

while propositions PNM , PMT & PNMV are more founda-

tional and generic. The intuition behind PNM , PMT & PNMV

are explained through scenarios shown in Figure 2.

A. The Propositions
1) Next Node Visit is based on Maximum VoI(PNM ):

This proposition suggests that the AUV (mobile sink) should

visit nodes in a prioritized sequence based upon the amount

of VoI at offer from the sensor nodes. Consider the scenario

in shown in Figure 2b. Let the value of information at sensor

node x be fV oIx(t) and the value of information at sensor

node y be fV oIy(t)

fV oIx(t) = Axe
−Bxt

fV oIy(t) = Aye
−Byt

Then,

V oI(Pathmxy) = fV oIx(tmx) + fV oIy(tmx + txy)

V oI(Pathmyx) = fV oIx(tmy) + fV oIy(tmy + tyx)

Scenario A Let the constraints be:

Ax > Ay and Bx = By = B

tmx = tmy = t1 > 0,

txy = tyx = t2 > 0

Then we hypothesize,

V oIS1A(Pathmxy) > V oIS1A(Pathmyx) (1)

Substituting values,

Axe
−B(tmx) +Aye

−B(tmx+txy) ≥
Axe

−B(tmy+tyx) +Aye
−B(tmy)

Implies,

Axe
−B(t1) +Aye

−B(t1+t2) ≥
Axe

−B(t1+t2) +Aye
−B(t1)

Simplifying,

e−B(t1) > e−B(t1+t2)

We know that t1 > 0 & t2 > 0, therefore, the hypothesis holds

true.

Scenario B Let the constraints be,

Bx > By and Ax = Ay = A

tmx = tmy = t1 > 0,

txy = tyx = t2 > 0
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(a) Different VoI functions. Note how Ax & By control the
shapes of the various functions. Top-Left: Descending stair-
case function, Top-Right: Negative ramp function, Bottom:
Two different decaying exponential functions where the
function on the left side can be assigned to higher priority
events because of its larger initial magnitude and quicker
decay rate while the exponential on the right hand can be
assigned to lower priority events as it has a comparatively
lower initial magnitude and a slower decay rate.
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(b) An example scenario of the greedy
heuristic G1. Here dxy > dmx =
dmy while fV oIx(t) = Axe−Bxt &
fV oIy(t) = Aye−Byt. Also dxy ∝
txy , dmx ∝ tmx, dmy ∝ tmy where
d is distance & t is time.

m

dmx

dxy

x y

Mobile Sink

Sensor Nodesz

dxz dyz

(c) An example scenario for the greedy
heuristic G2. Here dxy > dmx = dxz =
dyz while fV oIx(t) = fV oIy(t) =
fV oIz(t) = Ae−Bt. Also dxy ∝ txy ,
dmx ∝ tmx, dyz ∝ tyz , dxz ∝ txz where
d is distance & t is time.

Fig. 2. In Figure 2b & Figure 2c, Path 1 and Path 2 are the two routes that the mobile sink m will use to traverse to retrieve data from the sensor nodes
x, y & z.

Then we hypothesize,

V oIS1B(Pathmxy) > V oIS1B(Pathmyx) (2)

Substituting values,

Ae−Bx(tmx) +Ae−By(tmx+txy) >

Ae−Bx(tmy+tyx) +Ae−By(tmy)

Implies,

e−Bx(t1) + e−By(t1+t2) > e−Bx(t1+t2) + e−By(t1)

Simplifying,

e−Bx(t1) − e−Bx(t1+t2) > e−By(t1) − e−By(t1+t2)

We know that Bz > By and contributes to a faster decaying

exponential which in this inequality leads to a larger Δ,

therefore, the hypothesis holds true.

Scenario C Let the constraints be,

Ax > Ay and Bx > By,

tmx = tmy = t1 > 0,

txy = tyx = t2 > 0

Then we hypothesize,

V oIS1C(Pathmxy) > V oIS1C(Pathmyx) (3)

As inequality (1) and inequality (2) hold true, therefore,

inequality (3) holds true. Hence PNM is a valid proposition

under the aforementioned scenarios.

2) Minimize Tour Time for Path Traversal(PMT ): Here

the proposal is to minimize tour times by the AUV as it is a

metric that should improve VoI. Consider the scenario shown

in Figure 2c.
Let,

fV oIx(t) = Axe
−Bxt

fV oIy(t) = Aye
−Byt

fV oIz(t) = Aze
−Bzt

Then,

V oI(Pathmxyz) =fV oIx(tmx) + fV oIy(tmx + txy)+

fV oIz(tmx + txy + tyz)

V oI(Pathmxzy) =fV oIx(tmx) + fV oIz(tmx + txz)+

fV oIy(tmx + txz + tzy)

Scenario D Let the constraints be,

Ax = Ay = Az = A,

Bx = By = Bz = B,

tmx = txz = tzy = tyz = t1 > 0,

txy = t2 > t1 > 0

Then we hypothesize,

V oIS2(Pathmxzy) > V oIS2(Pathmxyz)

Substituting values,

Ae−B(t1) +Ae−B(2t1) +Ae−B(3t1) >

Ae−B(t1) +Ae−B(t1+t2) +Ae−B(2t1+t2)
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Simplifying,

e−B(2t1) > e−B(t1+t2)

We know that t2 > t1, therefore, the hypothesis holds true.

Hence PMT is a valid proposition under the aforementioned

scenarios.
3) Proposition PNM with Intermediate Neighbour Visit

(PNMV ): According to this proposition sensor nodes should

be visited in-order of the VoI values they offer just as in PNM

but while moving from a source to a destination node the

mobile sink should retrieve data from nodes that it encounters

on its path. The definition of nodes encountered on the path

can be determined for example by deciding the next node

to visit based upon if it is that immediate neighbour of the

current node who is closest to the destination. This will help

in minimizing the tour time and information loss by avoiding

delayed visits to nodes whose visitation at an earlier point in

time would have had been less taxing in terms of information

loss and fuel expenditure. Technically, PNMV is a combination

PNM followed by PMT .
4) Load Balancing in terms of Nodes Visited (PLB):

The proposition demands allocation of an equal number of

nodes to each AUV for their tours. The intuition is that this

will improve the chances of minimizing the overall time for

retrieving data from all the nodes because the chances of some

AUVs collecting data while others sitting idle will be reduced.
5) Balanced Distribution of nodes in terms of VoI(PV PA):

This proposition suggests that the nodes being assigned to

AUVs should be in round-robin fashion such that at each

iteration an unassigned node with the maximum VoI should

be assigned to the next AUV. This implies that no single AUV

will be accessing a large number of high priority nodes (nodes

with higher VoI). This should ensure that nodes with higher

priority will be visited earlier and this according to PNM will

improve the overall VoI gathered.
6) Partitioning Map on basis of Node Proximity(PMP ):

The goal of this proposition is to reduce the average traveling

time of each AUV which should in turn improve the overall

VoI gathered according to PMT . This proposition does this

by partitioning the map into segments of nodes for the AUVs.

Their is a one-to-one mapping of these segments to the AUVs.

The partitions have nodes that are physically collocated or

have physically proximity i.e. nodes in a partition are reachable

to each other another by recursively traversing through their

one-hop neighbours. This proposition should reduce the trav-

eling time intuitively because each AUV will now has a lesser

amount of area to cover (because of the newly partitioned

regions that are smaller in size) and hence a shorter average

distance covered will result in a shorter average time.

B. Scheduling Heuristics for Scheduling and Path Planning
for Multiple AUVs

We define the path as the list of sensor nodes that the mobile

sink will traverse for collecting the value of information. The

goal for a scheduling algorithm is to find a planned path (tour)

for an AUV to maximize the collected VoI. Therefore, in the

case of multiple AUVs, the scheduling algorithm should find

a unique schedule for each AUV for collecting the VoI. The

unique schedule demands that the scheduling algorithm should

be able to find a Hamiltonian subpath for each mobile AUV

- the sensor node is only visited once by any of the assigned

AUVs. Scheduling a planned path for multiple AUV’s has not

only the goal of maximizing the VoI using Hamiltonian paths

but the AUVs should have a balanced workload. This means

that they should balance between them the number of nodes

they would visit. Hence, the output of the scheduling algorithm

would be a unique set (with an equal number of sensor nodes)

in the planned path for each AUV. The algorithms assume a

Mesh deployment of nodes and can be conceptually extended

to other deployments as well. The algorithms employ the

aforementioned propositions in different combinations. Table I

provides a listing of these combinations. The columns are

the propositions while the rows are the various path planning

algorithms.

TABLE I
LISTING OF WHICH ALGORITHMS EMPLOY WHICH PROPOSITIONS

PNM PMT PNMV PLB PV PA PMP

RPP �
ZPP � �
LPP � � �
GPP � �
GIPP � � !

GPP-B � � �
GIPP-B � � ! �
GPP-P � � �
GIPP-P � � ! �

In Table I, the exclamation mark ‘!’ is a specific remark

on the effect of PNMV on PLB . The remark is that GIPP
uses the same algorithm as GPP but has an extra step of

Tour Adjustment in the end to enforce proposition PNMV .

This Tour Adjustment might disturb the load balancing which

earlier had resulted because of employing PLB . Therefore, the

PLB for GIPP is in a weak form of implementation here.

The same discussion holds for GPP-B and GPP-P. These

algorithms are stated as Algorithm 4, 5 and 6 respectively and

the last three lines for each state the optional Tour Adjustment

pseudo-code segment.
We discuss the heuristics in the forthcoming subsections.

In the pseudo-codes for all the heuristics we use the notations

given in Table II.
1) Random Path Planner - RPP: For a baseline comparison

we use a Random Path Planner. It creates a tour by randomly

assigning nodes to the tours. However, it ensures that the

tours are balanced. The algorithm for the RPP is given in

Algorithm 1.
2) Lawn-Mower Path Planner - LPP: The Lawn-Mower

Path Planner is based on the propositions PMT , PLB & PMP .

It is a deterministic planner. This planner has specifically been

designed for Mesh deployment of nodes. It plans a traversal
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1: procedure RPP(N,A)
2: count ← �N.size/A.size�
3: for all a ∈ A do
4: Ta ← φ
5: for j ← 1, count do
6: if N.isNotEmpty then
7: n ← N.getRandom()
8: Ta ←add n
9: N.remove(n)

Algorithm 1: Random Assignment

1: procedure LPP(N,A)
2: Order(N,nun)
3: count ← �N.size/A.size�
4: for all a ∈ A do
5: Ta ← φ
6: for j ← 1, count do
7: if N.isNotEmpty then
8: n ← N.getF irst()
9: Ta ←add n

10: N.remove(n)

Algorithm 2: Lawn-Mower

1: procedure ZPP(N,A)
2: Order(N, fun)
3: count ← �N.size/A.size�
4: for all a ∈ A do
5: Ta ← φ
6: for j ← 1, count do
7: if N.isNotEmpty then
8: n ← N.getF irst()
9: Ta ←add n

10: N.remove(n)

Algorithm 3: Zig-Zag

1: procedure GPP(N,A, adjust)
2: SortDescending(N,V oI)
3: count ← �N.size/A.size�
4: for all a ∈ A do
5: Ta ← φ
6: for j ← 1, count do
7: if N.isNotEmpty then
8: Ta ←add N.getF irst()
9: N.removeF irst()

10: if adjust.isTrue then
11: for all a ∈ A do
12: Ta.adjustTour()

Algorithm 4: Naive Greedy

1: procedure GPP-B(N,A, adjust)
2: SortDescending(N,V oI)
3: for all a ∈ A do
4: Ta ← φ

5: for all n ∈ N do
6: for all a ∈ A do
7: if N.isNotEmpty then
8: Ta ←add N.getF irst()
9: N.removeF irst()

10: if adjust.isTrue then
11: for all a ∈ A do
12: Ta.adjustTour()

Algorithm 5: VoI Priority Greedy

1: procedure GPP-P(N,A, adjust)
2: Order(N, run)
3: count ← �N.size/A.size�
4: for all a ∈ A do
5: Ta ← φ
6: for j ← 1, count do
7: if N.isNotEmpty then
8: Ta ←add N.getF irst()
9: N.removeF irst()

10: Sort(Ta, V oI)

11: if adjust.isTrue then
12: for all a ∈ A do
13: Ta.adjustTour()

Algorithm 6: Partitioned Greedy

TABLE II
HEURISTIC NOTATIONS USED FOR THE PSEUDO-CODES

N ⇒ Collection of Nodes

⇒ {n1, n2, ...nk}
A ⇒ Collection of AUVs

⇒ {a1, a2, ...ak}
n ⇒ Member of Collection N

⇒ {n | n ∈ N ∧ {n} ∩ {N − {n}} = φ}
a ⇒ Member of Collection A

⇒ {a | a ∈ A ∧ {a} ∩ {A− {a}} = φ}
count ⇒ Number of Nodes in each Tour

⇒ | N | / | A |
Ta ⇒ Tour for each AUV

⇒ {a | a ∈ A} ∧ Ta ⊆ N

adjust ⇒ Boolean to determine Tour Adjustment

⇒ If True then enforce PNMV

of the mesh row-by-row from one end to another. Once it

reaches the end of a row, it starts traversing the immediate

next row from the node which is the immediate neighbour

of the last node that the AUV just visited. This neighbouring

node is the closest non-visited node. The Lawn-Mower Path

Planner is essentially a form Shortest-Path algorithm for the

Mesh deployment. i.e. it will traverse through all the nodes

the quickest. For multiple Mobile Sinks the Mesh rows in the

Map are divided among the AUVs. The algorithm also takes

care of load balancing. The algorithm for the LPP is given in

Algorithm 2. In Order(N,nun) in Algorithm 2 ’nun’ implies

that the next node to visited after the end of a row would be

the nearest unvisited neighbour.

3) Zig-Zag Path Planner - ZPP: This planner, like LPP,

is deterministic too but it will also act as a baseline for

comparison with LPP. It also plans a traversal of the mesh

row-by-row from one end to another. However, once it reaches

the end of a row, unlike LPP, it starts traversing the immediate

next row from the node that is farthest from the last node the

AUV just visited. Algorithm 3 gives the pseudo-code. It is

similar Algorithm 2 except that it uses a different order for

the initial list of nodes. In Order(N, fun) in Algorithm 3

’fun’ implies that the next node to visited after the end of a

row would be the farthest node in the neighbouring unvisited

row.

4) Naive Greedy Path Planner - GPP & GIPP): This path

planner will act as a baseline for comparisons with non-

deterministic path planners based on greedy heuristics. It is

based on the proposition PNM . This planner sorts nodes in

descending order of their VoI. Afterwards, it assigns them in

batches of k nodes (where, k =| N | / | A |) to each AUV turn

by turn. The first batch (and therefore corresponding tour) has

nodes with the highest values of VoI while the last batch has

nodes with the lowest values of VoI. The planner automatically

takes care of load balancing. After assignment, the tours can

be adjusted if the requirement is to visit intermediate nodes

(named as GIPP) in accordance with proposition PNMV .

Algorithm 4 lists the scheduling procedure.
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5) VoI Balanced Greedy Path Planner - GPP-B & GIPP-
B): This path planner is based on proposition PNM , PLB &

PBD and also may include the heuristic PNMV (in case of

GIPP-B). For this scheduler see Algorithm 5
6) Partitioned Map Greedy Path Planner - (GPP-P &

GIPP-P): This path planner first employs the PMP propo-

sition to partition the Map. Afterwards it employs PNM to

maximize VoI. PLB and PBD are irrelevant here as there is no

cross sharing of nodes in the partitions. As in the earlier greedy

algorithms GPP-P may use PNMV and in such a scenario

will be termed as GIPP-P. Algorithm 6 states the procedure

for this scheduler. In Order(N, run) in Algorithm 6 ’run’

implies that the partition should be done so that each node in

the partition is reachable by a recursive traversal of immediate

neighbour hopping.

V. EXPERIMENTAL RESULTS

We consider an underwater sensor network of 100 nodes,

deployed in a uniform grid over a 10 x 10 km2 area as

shown in Figure 1. These sensor nodes have an acoustic

communication medium that allows them to send the data to

the AUV. We consider the AUV, a Katrina boat [10] that can

speed up to 10 knots in rough water. The travel time of the

AUV varies between two sensor nodes with the speed of wind

gushes and roughness of water surface. For our experiments,

we ignore these two environmental factors and consider a calm

water profile.
We evaluate the effectiveness of the proposed greedy algo-

rithms by varying the three important characteristics of the

hotspot - its spatial information and its time-critical infor-

mation and the number of hotspots in the region of interest.

For the simulation set-up, during each iteration, we randomly

assign to each sensor node the value of the information and

the number of packets for that information. To infer the results

for each scenario, we run 150 iterations for each algorithm and

analyse the results for those scenarios. Each of the AUVs is

located near the boundary of the mesh deployment and they

are deployed equidistant from each other. We are considering

four hotspot with variable locations and the decay time of

information at the hotspots is different but the VoI has the

same magnitude.

A. Studying the effect of the spatial characteristics of the
hotspots

For this set of experiments, we consider four different

deployments of the hotspots:

• The Zero deployment - this is the normal operating

scenario with no active hotspot.

• The Random deployment - in this scenario, we randomly

generate different locations of hotspots.

• The Average deployment - this scenario spatially divides

the sensor network region into equal sized sub-regions

and initializes the hotspots in those regions at equidistant.

• The Skewed deployment - in this scenario, we randomly

select a corner of the deployed sensor network and

initialize the hotspots for that corner

From the results in Figure 3, we can see that in the “zero

hotspot” scenario, LPP performs the best because in this

scenario the use of LPP minimizes the amount of traversal

time. For the rest of the scenarios, where the hotspots might be

located at a random position or might be skewed at the corner

of the sensor network or are location at equidistant, the greedy

algorithms specially GIPP-P performs the best. Comparing the

results of Figure 3 and Figure 4, we see that the proposed

algorithms balance the path traversal load between them. As

the number of AUVs increase, they show similar a trend for

maximizing the VoI irrespective of the increase in the number

of AUVs.

Zero Random Average Skewed
0

0.5

1

1.5

2

2.5

3
x 104

Distribution of hotspot’s

Av
er

ag
e 

ag
gr

eg
at

ed
 V

oI
 c

ol
le

ct
ed

 b
y 

th
e 

AU
Vs

RPP
ZPP
LPP
GPP
GIPP
GPP−B
GIPP−B
GPP−P
GIPP−P

Fig. 3. The average aggregated VoI by a path planner with two AUVs in
the deployed region
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Fig. 4. The average aggregated VoI by a path planner with five AUVs in
the deployed region

B. Studying the effect of the increase in the number of hotspots
To study the effect of the balanced resource consumption

by the AUVs, we consider the average aggregated distance

travelled by the AUVs using the proposed algorithms. For this
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experiment, we vary the number of AUVs from one to ten. The

two variations of the hotspots considered for this experiment

is that the sensor network would have a non-active hotspot or

will locate an active hotspot.
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Fig. 5. The distance travelled during path traversal by the AUV using
different the path planners

From results in Figure 5, we see that LPP and ZPP take the

least amount of fuel to cover the entire sensor network. This

is because of the inherent property of these two algorithms for

moving towards the next nearest neighbour, irrespective of the

hotspot location. These two algorithms consume the minimal

amount of fuel and are the best algorithms for sensor network

with no hotspots. But in the case of increasing number of

hotspots, the greedy algorithm GIPP-P is fuel effective and

also maximizes the time-critical VoI.

VI. CONCLUSION

Scheduling and balancing the use of multiple AUVs in-

troduces challenges for the path planning algorithms as they

should be able to balance the task for data collection and

should also maximum the collected information. We used

a heuristic called Value-of-Information (VoI) as the metric

for the path planning. The VoI is a strictly monotonically

decreasing function associated with each data bundle and

serves as a marker for decay of the quality of information with

respect to time of that data bundle. In this paper, we formulated

greedy heuristics for the path planning problem with multiple

AUVs. We proposed a number of greedy algorithms based

on these heuristic which can be used for both single AUV

and multiple AUVs. Through simulations, we demonstrated

the effectiveness of different greedy heuristics and proposed

algorithms by balancing and scheduling the collection of VoI

using multiple AUVs.

REFERENCES
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