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Abstract—Underwater sensor networks (UWSNs) face specific
challenges due to the transmission properties in the underwater
environment. Radio waves propagate only for short distances
under water, and acoustic transmissions have limited data rate
and relatively high latency. One of the possible solutions to these
challenges involves the use of autonomous underwater vehicles
(AUVs) to visit and offload data from the individual sensor nodes.
We consider an underwater sensor network visually monitoring
an offshore oil platform for hazards such as oil spills from
pipes and blowups. To each observation chunk (image or video)
we attach a numerical value of information (VoI). This value
monotonically decreases in time with a speeed which depends
on the urgency of the captured data. An AUV visits different
nodes along a specific path and collects data to be transmitted to
the customer. Our objective is to develop path planners for the
movement of the AUV which maximizes the total VoI collected.
We consider three different path planners: the lawn mower
path planner (LPP), the greedy planner (GPP) and the random
planner (RPP). In a simulation study we compare the total VoI
collected by these algorithms and show that the GPP outperforms
the other two proposed algorithms on the studied scenarios.

I. INTRODUCTION

Underwater sensor networks (UWSNs) had emerged as
subject of active research, with applications such as under-
water real-time surveillance of sea ports, dockyards, offshore
drilling platforms and cultural heritage sites, environmental
monitoring (for oil spills or carbon dioxide leaks) and studies
of marine life. UWSNs pose challenges not encountered in
other scenarios. The physical deployment and maintenance
of the nodes is difficult, and sensors can be hindered by
cloudy water and debris. However, one of the most difficult
challenges pertain to underwater communication. While most
traditional sensor networks use wireless communication, radio
waves travel only over very short distances under water, as
water absorbs large part of the electromagnetic spectrum. To
overcome this limitation many UWSNs use acoustic com-
munication. While acoustic signals can travel long distances
underwater, they have relatively high latency (due to the speed
of sound in water) and low bandwidht (values of 1-10 kbps
are typical for distances of hundreds of meters). While such
bandwidths are sufficient for transmitting compact sensing
data, such as temperature readings, they are insufficient for
video transmission and marginal for any any kind of image
data.

One possible solution to this problem is to combine the
underwater sensing nodes anchored to the sea floor with
mobile units such as autonomous underwater vehicles (AUVs)
which visit the sensor nodes, offload data using either short
distance optical communication or physical connection, and
then physically transport this data either to a collection point,
or to the surface where it can be transmitted through open-air
wireless transmission.

In this paper, we are considering a scenario where static
underwater sensor nodes are equipped with cameras, data
buffers and communication modules. The cameras record the
environment of the node, and store the recordings as both
image files and video files in a memory device (data buffer).
An AUV is responsible for collecting this data from the sen-
sor nodes using an optical communication technology which
allows high data rates over short distances, which requires a
physical visit by the AUV to the immediate neighborhood of
the static node. After downloading the data from the sensor
node, the AUV must travel to the surface to forward the data
using open-air wireless technology to the sink. In addition to
this both the AUV and the sensing nodes are equipped with
acoustic communication modems. The data rate of the acoustic
communication is too small to be useful in the transmission of
images and video files. However, the acoustic communication
allows the real-time exchange of synchronization messages
and other meta data. For the scenario we are considering,
the most important role of the acoustic communication is the
transmission of beacon messages which indicate the presence
of hot spots in certain areas of the sensor networks (see
Figure 2). Hot spots are a regions of active interest for the
user, which are either designated as such by the customer or
self-detected by the sensor nodes. For instance, a hot spot for
an offshore drilling platform might be an area where an oil
spill is detected or suspected.

The objective of this paper is to propose and investigate
various path-planning algorithms for the AUV. A path of the
AUV includes the order and time-slots in which the AUV
visits certain nodes to download the data and, respectively
surfaces for the forwarding of the data to the base-station. The
sequence of visits depends upon the goals of the user which
determine the metrics and heuristics on the basis of which a
path-planning algorithm can be formulated. The metric we use
is Value of Information (VoI) associated with each data chunk.



The VoI is a monotonically decreasing function in time and
each data chunk has VoI function associated with it, which
describes the initial VoI of the data as well as the way in
which it descreases in time.

The remainder of this paper is organized as follows. In
Section II we describe related work. In Section III we define
a model for estimating the value of information of a data
chunk. Section IV describes the deployment scenario we are
considering. Section V formulates the AUV path planning
problem for our scenario. Section VI discusses the algortihms
we have used for path planning. Section VII describes the
setup of our simulation experiments and their results. We
conclude in Section VIII.

II. RELATED WORK

Path planning is a diverse subject and there is lot of literature
on it specifically in the artificial intelligence community. A
path planner essentially is an algorithm which discovers a
valid route between two points on a map (usually represented
by graph). Path planners are used to guide robotic/autonomic
agents in their automated movement for path discovery and
obstacle avoidance in an environment with a variety of con-
straints. Among the subgoals or constraints would be to find
the most optimal route in terms of shortest distance, minimal
time, low fuel expenditure, and so on. They essentially convert
a set of high level specifications into low level instructions thus
breaking down the problem solution into simpler steps.

There are generally two types of path planners: pre-
generative and reactive [8]. If the path is planned before the
AUV starts the course then the algorithm is pre-generative
while if the plan is updated during the course in reaction
to changes in objectives, constraints or obstacles then the
algorithm is reactive. Maps represented by graphs are usually
solved by planners which are variants of Dijkstras Algorithm.
One of these well-known variants is A* which plans a path
based on a set of heuristics provided.

AUVs are autonomous entities and hence require path
planning techniques to help them navigate beneath seas and
oceans. They have certain issues that affect them more heavily
as compared to dry-land autonomous agents in terms of
navigation (e.g. they suffer from inherent limitations of slow
communication, limited sensing and power issues). But given
the number of issues particular to underwater navigation and
the existing research on path planning in general, AUV path
planning is still a comparatively open research area.

An earlier path planning technique employed case-based
reasoning in [14]. One of the first efforts to use A* for path
planning for AUVs was by Carroll et al [4]. Garau et al.
[7] used the potential field based methods and some of its
drawbacks has been resolved by Fu-guang et al. [6]. Genetic
Algorithms [11], [5], [1] and evolutionary algorithms [10]
were also employed to present their niche on AUV path
planning.

Turgut and Boloni [12] introduced an information quality
metric on the basis of which a methodology was devised to

retrieve data in a particular priority from different types of sen-
sor networks. The information quality metric was VoI which
essentially makes the user aware of the degradation/decay of
the quality of information of data (pertaining to a set of sensed
stimuli) with respect to time (since the time the stimuli were
first recorded to the present instant). The VoI has been initially
applied within the intruder tracking sensor networks [12],
[13]. The transmission scheduling of sensor nodes via acoustic
links to the sink as well as the path planning of an AUV to
collect data from sensor nodes have been also explored [3], [2].
In either of the application domain, the goal was to maximize
the quality of the gathered data.

III. VALUE OF INFORMATION

VoI is an intuitive metric for estimating the quality of an
information set. The idea behind VoI can be described by a
scenario where an actuation action has to be taken on the
basis of sensed data. The sensed information is of more value
at present as compared to it being processed for actuation at
a later time. For instance, if an oil leak appears, the customer
must try to take action to repair the leak at the earliest time.
The more earlier the information (sensed by nodes) arrives to
the user (sink and controller) the more swiftly the user will
be able to take any decision for repairing and patching up the
leaks.

The VoI is always monotonically decreases - an early
arrival of the information never decreases its value. For many
scenarios, the VoI can be described in terms of an exponential
decay (although other forms are possible):

FV OI(t) = Ae−Bt (1)

The value A represents the initial value of the information -
this is the VoI which would be realized if the customer would
receive the data chunk at the moment in which it had been
sensed. Figure 1 shows three different profiles describing the
fact that different data chunks can have different VoI profiles.
For instance we can have a lower magnitude A or a lower
exponent multiplier B or both. In case of an emergency we
can have a greater magnitude of A or exponent multiplier B
as compared to the normal operation. A higher magnitude of
A will represent information with a higher initial value while
a higher value of B represents a faster decay of the VoI - that
is, an information which is more “urgent”.

The two constants that give shape to these exponential
curves are A and B. Let us illustrate by example the use of
these constants. Let us hypothetically declare a time Tresponse
which is hard limit on the activation of an actuation response
to a sensed stimuli. If the response is initiated after time TB
then there would be not much use of it as the required damage
is already done, therefore, it is imperative that the information
be delivered from the sensor nodes to the sink and controller
within the time TB so the correct response could be initiated
at the earliest. Let us suppose there are two events E1 and
E2. This then implies that the response to event E1 should
be more swift as chances are that the validity of an actuation
response might expire quickly. For the event E1 a lower value
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Fig. 1. VoI for different decay times

of B could be chosen indicating a quicker decay and hence
demanding an urgent action.

Tresponse E1 > Tresponse E2 ⇒ BE1 < BE2 (2)

Let the urgency of an event be described by the magnitude
Mcritical. Now suppose events E1 and E2 have the same
Tresponse but event E1 demands more urgent action e.g. an oil
spill. Then we can set the magnitude A1 of event E1 to be of a
higher value as compared to A2 for event E2, thereby, laying
a higher emphasis on the importance of the information it has
so as to demand a suitable actuation response more urgently.

Mcritical E1 > Mcritical E2 ⇒ AE1 > AE2 (3)

IV. DEPLOYMENT SCENARIO

We are considering the case where there are underwater
sensor nodes arranged in a grid (see Figure 2). The nodes
have the ability to sense and classify data into two distinct
categories. Class CNorm has data associated with it which
is reported to be normal and each data bundle in this class
has a VoI profile defined by the function fVoI Norm(t). This
function is common to all the members in the class (i.e. the
constants take on the same values A1 and B1 for each data
bundle). While in case of an emergency the data is classified
to be part of class CHot Spot and the function for members
of this class is fVoI Hot Spot(t) and again this is common to
all the members of the class with constant values A2 and B2.

The AUV goes about collecting data from various nodes in
a way that it is desirable to maximize the value of information
required. The AUV can resurface at any point during collection
of data and can communicate using wireless medium to
transfer the accumulated data up till that instant to a base-
station. Once it transmits all the data it returns to resume
offloading data from the underwater sensor nodes.

Suppose there is a senor node that has detected a critical
event and classifies it to be in CHot Spot. It will then raise
an alarm by signaling a beacon through an acoustic channel.
Once the AUV detects the beacon it will re-evaluate its strategy
of node visitation sequence and will devise a way to quickly
reach the node that raised the alarm. The region which the
AUV has to visit to offload this critical data is referred to
as Region of Interest (RoI) or Hot Spot (HS). While on its

way to the Hot Spot the AUV can devise strategies to gather
data from nodes it passes by on its way. It can have other
strategies and the agenda is to discuss these strategies which
we will refer to as “heuristics for path planning”.

V. AUV PATH PLANNING PROBLEM

The problem for the path planning of the AUV is to
maximize the value of information, collected in the form of
data chunks from a set of nodes. Therefore, an AUV needs to
plan a priority path for visiting the nodes for data collection.
The sensing nodes attribute a value, decaying in time, with
each chunk of sensed data. For urgent data, the decay for
value of information is high whereas its low otherwise.

Therefore, we can mathematically represent the problem for
VoI path planning as the (L,H,A,V(B, t)) where

• H ⊂ S, is a set of nodes with urgent VoI profiles, i.e.,
having maximum value of information and is given as

V (B, t)∀x ∈ H > V (B, t)∀x ∈ (SN−H) (4)

where x is a sensor node
• the value of information V (B, t) when AUV collects data

from node at time t
• L is a finite set of locations of the high profile VoI sensor

nodes
• the action A for selecting the next visiting node from the

list of nodes having urgent VoI profiles, i.e., L
The goal for the AUV is to use a path planning policy for

creating a priority list of nodes π to be visited, to maximize
the value of information

∑t
i=1 V (B, i) during its detour for

collecting the data packets.

VI. PATH PLANNING ALGORITHMS

In the following, we discuss the three algorithms that we
consider for the path planning problem.

A. PathPlanner 1: Lawn mover path planner (LPP)

The Lawn mover path planner (LPP) is an information max-
imizing path planner which provides the maximum amount
of VoI for a homogeneous VoI profile throughout the sensor
network. For a homogeneous profile all the sensor nodes will
have same magnitude and decay time for the VoI. An example
for a homogeneous profile can be a set of few neighbor nodes
observing the oil spill over a large region where each node
has the information of same magnitude and importance. In
this scenario, besides collecting other information, the AUV
still needs to visit every node to collect additional information
that would be of importance to evaluate the oil spill. LPP
has a practical significance in the absence of hot-spot as it
provides the best greedy path planning for a homogeneous
profile network.

Algorithm 1 highlights the different steps involved for an
AUV to plan its path using LPP. The AUV maintains a history
of nodes that it has already visited besides maintaining a
priority list of neighbor nodes. The priority list of a node
schedules the next neighbor nodes among the other neighbors
in which the AUV must visit. For our implementation, we
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Fig. 2. The deployment scenario

prioritize the selection of the next neighbor which is located
on the East of current node, then West, followed by South and
finally North.

B. PathPlanner 2: Greedy path planner (GPP)

The Greedy path planner (GPP) provides path to next desti-
nation to maximize information in a heterogeneous VoI profile
network. The idea is to maintain the overall VoI profile of the
network and visit the node of utmost importance. Therefore,
in the absence of hotspots, GPP is scheduled to act as an LPP.
This means that GPP would proactively follow the schedule
of an LPP but would reactively follow a greedy approach for
reaching a hotspot. In Algorithm 2, we can see that the AUV
maintains the list of VoI profiles for different hotspots in the
network. Afterwards, it schedules the destination list giving
priority to the hotspot with maximum VoI profile.

Algorithm 1 Lawn mover path planner (LPP)
1: visited-node-set := 0
2: direction-priority-set of tuple (direction, node)
3: current-location := AUV’s location
4: destination-location := farthest node from AUV
5: while current-location 6= destination-location do
6: for all neighbor-nodes of current-node do
7: if neighbor-node 6∈ visited-node-set then
8: direction-priority-set += (direction, node)
9: end if

10: end for
11: Priority based selection from direction-priority-set
12: Collect data from neighbor-node
13: visited-node-set =+ neighbor-node
14: end while



Algorithm 2 Greedy VoI path planner
1: source := AUV’s Current Location
2: destination := first node from priority list
3: Initialize priority list of the nodes with VoI profiles
4: Euclidean Shortest Path (source→ destination)
5: while source 6= destination do
6: Collect data from any node traversed during detour
7: end while

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Values
General properties of ROI

ROI size 1000 x 1000 m
Node deployment uniform grid
Number of sensor nodes 100
Transmission range 120 - 140 m
Sensing range 70 m
Mobile sink speed 1-20 knot
Experiment length 500 time-steps
VoI Profile {10, 0.04}

Other Parameters
Heuristics LPP, GPP, RPP
Number of hotSpots 0 - 5
Location of hotspots Random
Decay-time of VoI for hotspots 0.4 - 0.7

C. PathPlanner 3: Random path planner (RPP)

For evaluation purposes, we implemented a third path
planner, a random path planner (RPP) in which the AUV
randomly chooses the next sensor node for data collection.
The detours towards the selected node uses the Euclidean
shortest path planner. This path planner can be thought of as a
noisy planner which is incapable of scheduling proper visits to
nearest nodes or hotspots due to inconsistency of evaluation
of VoI data-profiles (which maybe due to intruder noise in
the system). Hence, the AUV schedules various path visits to
different sensor nodes irrespective of the critical nature of the
VoI in the underlying sensor networks.

VII. SIMULATIONSTUDY

We consider an underwater sensor network of 100 nodes
deployed in a uniform grid over 1 x 1 km2 area as shown in
Figure 2. These sensor nodes have an acoustic communication
medium that allows them to send the data to the AUV. We
consider the AUV, a Katrina boat [9] that can speed upto 10
knots in rough water. The travel time of AUV varies between
two sensor nodes with the speed of wind gushes and roughness
of water surface. For our experiments, we ignore these two
environmental factors and consider a calm water profile. For
collecting the data, the AUV can connect with the sensing
node with a data rate of 10 Mbps using the optical links or
can use acoustic links for collecting the data packets.

In order to determine the value profiles of the data chunks,
we divide them into various observation classes over the span
of simulation. Each of the value of information profile has a
different urgency and basis information levels.
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Fig. 3. The aggregated collected value of Information over time-span

We evaluate the effect of collected value of information with
the increasing number of hotspots in the region of interest.
For this scenario, we randomly generate different locations
of hotspots having random decay time for VoI but with same
magnitude of VoI. For each simulation, the number of hotspots
remain fixed, hence, we vary the number of hotspots from
one to five at randomly selected locations. From the results in
Figure 3, we can see that the magnitude difference of collected
VoI between GPP and LPP increases with the increase in
the number of hotspots. This shows that GPP outperforms
LPP with the increase in value of information of the overall
network.

For comparing the efficiency of different path planners over
the course of AUV’s detour we compare the collected value of
information using each planner at different time steps. Figure 4
shows the time series output for different path planners. For
this scenario, we considered three randomly chosen hotspots
which had to be covered during the AUV’s detour for collect-
ing data packages. From Figure 4, we can observe that greedy
path planner was able to efficiently schedule visits to all three
hotspots as compared to the rest of the two path planners.

Figure 5 shows us the total collected value of information
over the span of simulation. The steps in the staircase graph
indicates the time at which the AUV was able to gather
the maximum the value of information from the hotspots.
It’s evident that greedy path planners outperform rest of the
two path planners for maximizing the collected value of
information.

Figure 6 shows the confidence intervals for VoI ratio col-
lected by the AUVs with the increasing number of hotspots
during each simulation. We can observe that for an LPP, the
ratio remains constant most of the time because LPP does
not takes into consideration the locations of hotspots for path
planning. We also observe that the performance of an RPP
increases because the probability of visiting hotspots increases
with an increasing number of hotspot locations in the network.
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VIII. CONCLUSION

In this paper, we proposed path-planning algorithms for an
AUV which acts as a mobile sink node for the underwater
sensor nodes. We used a heuristic called Value-of-Information
(VoI) as the metric for the path planning. The VoI is a strictly
monotonically decreasing function associated with each data
bundle and serves as a marker for decay of the quality of
information with respect to time of that data bundle. We
consider the scenario having sensing regions with different
VoI profiles for different data bundles. The objective of this
paper was to analyze various path planners for an AUV to
maximize the collected value of information by the AUV. The
results show that VoI greedy path planner outperforms others.
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[3] L. Bölöni, D. Turgut, S. Basagni, and C. Petrioli. Scheduling data
transmissions of underwater sensor nodes for maximizing value of
information. In IEEE GLOBECOM, pages 438–444, December 2013.

[4] K. P. Carroll, S. R. McClaran, E. L. Nelson, D. M. Barnett, D. K. Friesen,
and G. William. AUV path planning: an A* approach to path planning
with consideration of variable vehicle speeds and multiple, overlapping,
time-dependent exclusion zones. In Proc. of IEEE Symposium on
Autonomous Underwater Vehicle Technology, pages 79–84, 1992.

[5] R. Fox, A. Garcia, and M. Nelson. A three-dimensional path planning
algorithm for autonomous vehicles. In Proc. of Int’l Symposium on Un-
maned Untethered Submersible Technology, pages 546–553. University
of New Hampshire - Marine Systems, 1999.

[6] D. Fu-guang, J. Peng, B. Xin-qian, and W. Hong-Jian. AUV local path
planning based on virtual potential field. In Proc. of IEEE Int’l Conf.
of Mechatronics and Automation, volume 4, pages 1711–1716, 2005.

[7] B. Garau, A. Alvarez, and G. Oliver. Path planning of autonomous
underwater vehicles in current fields with complex spatial variability: an
A* approach. In Proc. of IEEE Int’l Conf. on Robotics and Automation
(ICRA), pages 194–198, 2005.

[8] Y. K. Hwang and N. Ahuja. Gross motion planning A Survey. ACM
Computing Surveys (CSUR), 24(3):219–291, 1992.

[9] MITSG. Katrina boat: A diesel electric vertical profiling autonomous
surface craft. MITSG, 2010.

[10] D. Rathbun, S. Kragelund, A. Pongpunwattana, and B. Capozzi. An
evolution based path planning algorithm for autonomous motion of a
UAV through uncertain environments. In 21st Proc. of IEEE Conf. of
Digital Avionics Systems, volume 2, pages 8D2–1–8D2–12, 2002.

[11] K. Sugihara and J. Yuh. GA-based motion planning for underwater
robotic vehicles. In Int’l Symposium on Unmanned Untethered Sub-
mersible Technology, pages 406–415, 1997.
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