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SE C U R I T Y I N WIRELESS

MO B I L E AD HOC A N D SENSOR NETWORKS

INTRODUCTION
Distributed wireless sensor networks heavily
depend on time synchronization for various rea-
sons such as determining location and proximity
of deployed sensor nodes, intranetwork coordi-
nation among different sensor nodes, temporal
message ordering, security, time-division multi-
plexing in wireless communication, improving
energy efficiency of sensor nodes by scheduling
their sleep times, and so on [1].

Most computer devices contain an internal
clock, usually designed to be synchronized with
the exact real-world time at the specific location
of the computer. Although many functionalities
depend on the clock even on desktop computers,
such as the scheduled Friday afternoon virus
checks or the popular “make” program, which
determines whether a file needs to be recom-
piled by comparing the timestamp of the source
and object files. However, in practice, a desktop
computer can function correctly even if its inter-
nal clock is minutes or even years away from the
correct time.

Let us first define the ways in which the
clocks of two nodes, A and B, might be out of
sync. Let us note the clock of a node X with a
function CX(t), which returns the reading of the
clock at real time t. The first type of difference is
clock offset: δAB = CA(t) – CB(t). That is, the two

clocks are identical, except that the clock of
node A is early (if δAB > 0). Now, we might fix
this by setting the clock of node A back; howev-
er, that would create a problem, because the
same time slice would appear twice for node A.
This creates major problems for a number of
protocols. It is better to set the clock of node B
forward; however, most protocols simply require
the nodes to keep track of their offsets without
actually changing the internal clock.

The second type of synchronization differ-
ence is clock skew, ηAB: one clock is running
faster than the other. This can be expressed as a
difference in the derivatives of the clock func-
tion in respect to the time:

While this appears to be a more difficult prob-
lem, if a node is aware of its clock skew, it can
very easily account for it.

Neither clock offset nor clock skew requires
periodic synchronizations. If we know the offset
and skew of a node’s clock, we can calculate the
time difference at any moment in time. Howev-
er, the frequency of the clocks can change ran-
domly due to environmental conditions such as
temperature differences or aging of the hard-
ware, a condition called drift error and denoted
λAB. Drift error appears as a nonzero second
derivative in one or both clocks:

The clocks of sensor nodes usually accumulate
several seconds of drift error per day; as drift is
not predictable, it needs to be solved using clock
synchronization.

However, for sensor networks the correct syn-
chronization of clocks is frequently a necessary
component of the ability of a sensor network to
function correctly. Unsynchronized clocks can
yield invalid observations, create uncovered
areas and timeslots, and in the worst case disable
the communication architecture of the network.
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ABSTRACT
Time synchronization is essential in wireless

sensor networks as it is needed by many applica-
tions for basic communication. The inherent
characteristics of sensor networks do not permit
simply applying traditional time synchronization
algorithms. Therefore, many new time synchro-
nization algorithms have been proposed, and a
few of them provide security measures against
various degrees of attacks. In this article we
review the most commonly used time synchro-
nization algorithms and evaluate these algo-
rithms based on factors such as their
countermeasures against various attacks and the
types of techniques used.

SECURE TIME SYNCHRONIZATION PROTOCOLS FOR
WIRELESS SENSOR NETWORKS
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Let us consider several examples. The indi-
vidual nodes of the sensor network send their
timestamped observations to the sink.

In Fig. 1, an intruder is sensed consecutively
by sensors S1 and S2, and their reports are sent
to the sink. Based on reports (intruder, S1, t1)
and (intruder, S2, t2), knowing the locations of
the sensors S1 and S2, and noticing that t1 < t2
and t2 – t1 < 1 s, the sink can correctly infer
that the observations refer to the same intruder
who is moving from left to right (in certain
cases this inference can be performed through
in-network processing). However, this inference
is valid only under the assumption that the
clocks of the two sensors are synchronized at
the level of tenths of seconds. Let us explain
this further.

If clocks 1 and 2 are synchronized (i.e., they
have the same offset δ(1) = δ(2) compared to a
universal time t), t2

(2) – t(1)
1 = t2 + δ(2) – t1 – δ(1)

= t2 – t1 > 0. Thus, t2 – t1 indicates the correct
order of arrival to the sensors. However, if there
is a large offset between these two, δ(1) – δ(2) <<
0; that is, the clock of δ(1) is early. We might
have a situation that t2

(2) – t(1)
1 = (t2 – t1) + δ(2) –

δ(1) < 0; that is, the sink will infer incorrectly
that the intruder is moving from right to left.
This is so if the clock of sensor S1 is 2 s late, the
inference would be that the intruder moves from
right to left. As a drift of several seconds per day
is a normal occurrence for the internal oscilla-
tors of the devices, we cannot rely on the initial
setting of the clocks at deployment time. The
clocks need to be synchronized periodically in
the field.

Notice that the faster the intruder moves, the
smaller (t2 – t1), and the more accurate the syn-
chronization needed in order to make the cor-
rect inferences.

Our second example concerns the wake-up
time of sensors. Sensors have limited power
resources. To extend the lifetime of a deployed
network, sensor nodes are frequently selectively
put to sleep. The idea of the method is that the
set of currently active nodes at any given
moment in time covers the area to be surveyed
and forms a connected network. If an attacker
can modify the internal clock of certain sensor
nodes, such that these nodes, for instance, do
not wake up in time, certain areas might not be
surveilled by the sensors for a certain amount of
time, allowing an intruder to operate unreport-
ed.

Finally, time-division multiple access
(TDMA)-based channel sharing protocols rely
on the participating nodes to transmit at well
defined time slots. Relatively small time drifts in
the clocks of individual nodes can make trans-
mission intrude on an adjacent time slot, causing
a collision. Repeated collisions can significantly
disrupt the network. A detailed survey of clock
synchronization protocols can be found in [2, 3].

The rest of the article is organized as follows.
We survey some of the time synchronization
protocols, including possible attacks and pro-
posed countermeasures against these attacks.
The types of attackers and attacks are presented.
We give a detailed discussion of the approaches
to secure time synchronization. We then con-
clude the article.

SECURE TIME SYNCHRONIZATION

These examples show us that time synchroniza-
tion is vital for the correct operation of a sensor
network. As relatively small time drifts can cause
significant disruption, we cannot rely on the pre-
cision of the hardware; we need to use external
synchronization protocols. Furthermore, it was
found that relatively small changes in the clocks
can disturb the operation of the sensor network
or even cause it to make erroneous inferences
about the observed event. Time synchronization
protocols are a convenient target for malicious
attackers. Most time synchronization protocols
were not designed with security in mind. Recent-
ly, however, several research groups have per-
formed analyses of various vulnerabilities, and
proposed countermeasures against them.

In the following, we survey some of the time
synchronization protocols, discuss their benefits
and outline possible attacks and proposed coun-
termeasures.

REFERENCE BROADCAST SYNCHRONIZATION
The Reference Broadcast Synchronization (RBS)
[4] method is based on a synchronization signal
broadcast by an external unit. The receivers
record their local time when they receive this
reference message, and then exchange this infor-
mation among themselves. The recording of a
message is not 100 percent exact, because of
hazards such as the propagation time of the
message or the processing time of the packet at
the lower protocol layers. To improve precision,
a number of reference messages can be broad-
cast; the nodes exchange the arrival times for
each message and then find the best approxima-
tion using a least squares fit.

Possible attacks: In RBS two nodes, upon receiv-
ing a broadcast signal, exchange their local clock
times. An attack can happen if one of the receiver
nodes is compromised with an incorrect time. The
compromised node can then send the incorrect time
information to its neighbor, causing the uncompro-
mised node to calculate an incorrect offset.

n Figure 1. Intruder movement detected by sensors 1 and 2 at times t1
(1) accord-

ing to clock 1 and t2
(2) according to clock 2.
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TIME SYNCHRONIZATION PROTOCOL
SENSOR NETWORKS

Time Synchronization Protocol for Sensor Net-
works (TPSN) [5] creates a spanning tree for
the sensor network. The root of the tree is usu-
ally a base station. Clock synchronization is
done by synchronization of the child nodes to
the parent. Synchronization is initiated by a
child node, which sends a synchronization pack-
et at time t1. This is received by the parent at t2,
and an acknowledgment packet is sent in
response at time t3. The values of t2 and t3 will
be included in the acknowledgment packet. This
packet is received by the child node at time t4.
Knowing these four time values, the child node
can calculate its clock offset relative to the par-
ent node as

Possible attacks: Naturally, the child node
relies on the parent for its clock synchroniza-
tion; by providing incorrect values for t2 and
t3, the parent can set an arbitrary offset on its
child node. What is more, this incorrect off-
set will then be propagated down the tree.
Therefore, the number of nodes whose syn-
chronization can be affected by the compro-
mised node depends on the location of the
compromised node on the tree. One way for
a malicious attacker to compromise a larger
number of nodes is to reposition itself in a
higher  locat ion on the tree or  to  answer
queries instead of the proper parent. This is
surprisingly easy to do in the original algo-
rithm.

FLOODING TIME SYNCHRONIZATION
PROTOCOL

In the Flooding Time Synchronization Protocol
(FTSP) [6], nodes participate in a process in
which a root node is elected. The root is the ori-
gin of the time synchronization messages. If a
node does not hear a time synchronization mes-
sage for a while, it declares itself the new root.
The protocol requires that if at a later time the
node receives a time synchronization message
from a node with a lower id than itself, it gives
up its root status. When a node receives a time
synchronization message from the root, it adjusts
its clock and broadcasts its own time to its neigh-
bors.

Possible attacks: FTSP is more robust to
node failures than TPSN, as there is no need
to maintain a tree structure, which is notori-
ously vulnerable to single point failures — the
failure of a single node can disconnect a whole
subtree. The weak point of FTSP is the elec-
tion process. Any node can declare itself a
root, and the protocol relies on the node to
step back if a lower id root appears. A compro-
mised node can easily masquerade as a root,
and by declaring a very low id it can actually
dislodge the existing legitimate root. Then, by
sending a synchronization message with a fake
timestamp, it can make the nodes synchronize
to an incorrect time.

ATTACKERS AND ATTACKS
Possible attacks against time synchronization
protocols depend on the nature and capabilities
of the attackers. We first identify three different
types of attackers, outline the types of attacks of
which they are capable, and then discuss the var-
ious types of defenses proposed against these
types of attacks.

We describe the system with the characters
regularly used in the description of cryptograph-
ic protocols. We assume that Alice and Bob
(and potentially additional nodes Carol, Dave,
and so on) are engaging in a time synchroniza-
tion process.

The malicious outsider, Malory, is a wireless
device inserted in the range of nodes of the sen-
sor network, which has the ability to send and
receive packets. We assume that the attacker can
eavesdrop on any ongoing transmission; we can
also assume that the attacker can transmit mes-
sages which are physically indistinguishable from
other nodes’ messages. However, this type of
attacker does not have access to keys or other
confidential information, other than what it can
infer from eavesdropping on transmissions.

An attacker with jamming and replay ability,
Jimmy, has the ability to jam a message, record
it, and possibly replay it at a later time. This type
of attack is called a pulse delay attack. Although
the existence of jamming in principle can be
detected, it requires significant resources, and by
default most nodes are not prepared for it.

A compromised node is a node taken over by
an attacker. We denote one as Zach (for zom-
bie). One example of this is the physical capture
of a node by an attacker, although a node can, in
principle, be compromised by purely software
methods. Compromised nodes have access to all
the keys and other information of the original
node, and represent the most difficult type of
attackers to defend against.

The challenge of secure time synchronization
is to defend against all three types of attackers.
An attacker is considered successful if it suc-
ceeds in making the nodes calculate an incorrect
offset. By default, all three time synchronization
protocols we have described are vulnerable to all
three types of attackers.

APPROACHES TO SECURE
TIME SYNCHRONIZATION

Malicious outsiders can affect all types of proto-
cols. The primary defense against a malicious
outsider is cryptographic techniques for authen-
tication of messages. If the sender and receiver
share a key KB, they can use it to sign messages.
The nodes can be provided with the shared key
at the time of deployment, or they can rely on
secure key exchange algorithms such as the
Diffie-Hellman protocol [7]. To prevent an
attacker capturing a valid message and inserting
a copy of it later in a different synchronization
round, the sender sends a random nonce in the
initial message, which then needs to be signed by
the synchronization partner. While the attacker
can still replay the same message in the same
synchronization round, by simply considering

∆t
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only the first arrived message, the receiver can
ignore the malicious outsider.

Ganeriwal et al. [8, 9] proposed a series of
secure time synchronization protocols based on
this idea. The protocols are adapted to pairwise
single-hop, multihop, and group synchronization.
The protocols can also detect the existence of a
pulse delay attack by calculating the end-to-end
delay d of the message. If the delay is larger
than a predetermined threshold d*, the proto-
cols assume that an attack is in progress and
abort the synchronization. We should note that
key exchange is a major problem for these types
of algorithms, due to the ways in which sensor
nodes are deployed, which does not always per-
mit the exchange of keys in a secure environ-
ment.

Notice that cryptographic methods are not
feasible against a compromised node, which has
all the keys and knowledge to correctly answer
all challenges, and appropriately sign its mes-
sages. If the time synchronization protocol hap-
pens only between Alice and Zach, it is
impossible for Alice to detect or mitigate the
attack. However, for protocols with a larger
number of participants, we can use redundancy
in the synchronization messages to identify mali-
cious participants or messages. We note that
delay attacks can be performed by either Zach
or Jimmy, but not Mallory.

Song et al. [10] propose a method for making
time synchronization protocols resilient to delay
attacks based on techniques of outlier detection.
The essential assumption behind this method is
that the synchronization signals received from
compromised nodes will be “much different
from others.” Thus, messages coming from com-
promised nodes can be identified, using statisti-
cal techniques, as outliers and eliminated from
the package, and the synchronization performed
with the remaining nodes.

The authors propose two alternative meth-
ods. One of them uses the generalized extreme
studentized deviate (GESD), a generalization of
the well-known Grubb’s test from statistics.
GESD can identify multiple outliers in a sample
drawn from a normal distribution. GESD
requires as one of its outputs the estimated
number of malicious nodes.

A somewhat simpler approach is based on a
delay threshold. At system setup, the nodes
determine the maximum amount of time offsets
they will tolerate, based on information about
the typical drift rate of the nodes. A received
offset that is higher than this value is considered
to come from a malicious node and discarded.

As an observation, naturally Zach the com-
promised node would have exact knowledge
about the thresholds used (but not Jimmy).
Therefore, Zach has the possibility to remain
undetected by setting the delay just below the
threshold (or, in the GESD case, such that it will
not be identified as an outlier), but still have a
distorting effect on the time synchronization
process. Thus, statistical techniques can only
reduce but not necessarily eliminate the effect of
delay attacks by nodes with insider knowledge.

Sun et al. [11] propose a statistical method
for secure and resilient clock synchronization in
the presence of compromised nodes. The tech-

niques are applied for both level-based clock syn-
chronization, where a hierarchical structure of
nodes is developed that determines which node
is synchronized with whom, and diffusion-based
clock synchronization, which does not use such a
structure and simply relies on the reachability
information of the network. Naturally, the level-
based approach allows more disciplined control
of the synchronization flow, and thus higher
accuracy, whereas the diffusion method has the
advantage that it can be applied to dynamic sen-
sor networks with mobile nodes.

Furthermore, the authors consider both the
case with a single source of synchronization
information and that with multiple sources. For
instance, in the single source case, the goal is to
find the clock offset δiS from the node to the
source. The technique assumes that at every
level a normal node collects 2t + 1 candidate
source clock differences from its 2t + 1 neigh-
bors and chooses the median of them. Thus, the
node can tolerate up to t compromised nodes
while retaining correct synchronization. Similar
considerations apply to the diffusion-based
approach. In the case of multiple sources, the
node can receive synchronization information
from 2s + 1 sources, synchronized to the same
external standard (e.g., a GPS signal) and toler-
ate up to s compromised sources by selecting the
median.

Note that this approach uses the whole redun-
dancy of the system to defend against an exter-
nal attack: out of 2t + 1 recorded offsets, the
method will pick a single one, the offsets medi-
an. Approaches that assume a benign environ-
ment usually select the mean of these
measurements, thereby improving accuracy;
however, the mean is vulnerable to even a single
malicious node.

In addition, this approach requires unique
pairwise-key-based authentication of the nodes.
Otherwise, the malicious node could imperson-
ate multiple nodes (the so-called Sybill attack).

A significantly improved version of this tech-
nique was presented in [12]. In the approach
called TinySeRSync, time synchronization is per-
formed in two phases. While we call them phas-
es I and II for convenience, these two processes
take place asynchronously in the sensor network.
In the first phase single-hop pairwise synchro-
nization is performed. The main feature of the
pairwise synchronization process is that it relies
on a hardware enhanced authenticated medium
access control (MAC) layer timestamping. The
hardware is programmed to add a timestamp
authenticated with a message integrity code
(MIC) to every MAC packet transmitted. This is
especially challenging for newer radios, such as
the ones on the newer-generation MICAz motes,
where the time required to authenticate the
timestamp can interfere with the transmission
rate of the radio. The authors propose a predic-
tion-based approach where the authenticated
timestamp includes a prediction of the time
required to calculate the MIC.

Through these techniques (Table 1), the
nodes achieve sufficiently good local level syn-
chronization, which is exploited in the second
phase. The second phase implements global syn-
chronization using the ηTESLA broadcast
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authentication protocol. This protocol relies on
loose time synchronization between nodes using
a unidirectional keychain. Messages received
need to be stored by the receiver and are authen-
ticated only after several time slots. This pre-
vents an attacker from forging messages, but
opens the doors to a denial of service attack.
The messages received need to be buffered for
future authentication, and as the memory of sen-
sor nodes is limited, Malory can create fake mes-
sages that will not pass the authentication test
but will fill the buffer, preventing the node from
receiving legitimate messages. To prevent denial
of service attacks, the authors propose a modi-
fied version of ηTESLA. To reduce time slots
when the adversary nodes can flood the node
with messages based on captured keys (which
the receiver node needs to store for future
authentication), TinySeRSync uses an implemen-
tation with very short delays r (made possible by
the good local synchronization achieved in phase
I). However, such short delays would require the
generation of a large number of keys; the imple-
mentation alternates short intervals r used for
message broadcasting with long intervals R used
for broadcasting the disclosed keys.

The global synchronization in TinySeRSync
still relies on the selection of the median from
the 2t+1 candidate offsets, thus tolerating the
presence of at most t compromised nodes.

Notice that the approach presented in [11,
12] uses the median rather than the mean as a
choice of estimated time offset, thus obtaining
high protection against malicious nodes (provid-
ed the technique is coupled with cryptographic
defenses). However, it sacrifices the ability to
improve precision through multiple independent
observations.

We can attack the general problem of finding
the best estimation of the time offset δbest from a
set of candidate offsets {δ1, …, δn} by applying
the principles of robust estimation. We note that
the individual offset measurements δi might have
natural noise, but some of them might be a
result of a malicious attack. For any estimation
method, the breakdown point is the smallest
number of contaminated values that can move
the estimate arbitrarily far from the correct
value. Unfortunately, the most frequently used
estimators, the average and least squares estima-

tor, have very low breakdown points; a single
malicious value can modify the estimate arbitrar-
ily far. Manzo et al. [13] propose the use of the
least mean squares (LMS) estimator for more
robust modeling. GESD used by [10] is another
example of the application of the techniques of
robust estimation.

CONCLUSIONS

Among the many challenges in designing and
employing wireless sensor networks is the clock
synchronization between the sensor nodes.
Agreeing on a common time is needed and even
required by many of the sensor applications to
carry out the sensing, communication, and pro-
cessing of sensed data. The time synchronization
protocols in traditional wired networks cannot
simply be reused in the wireless sensor network
domain due to the inherent characteristics and
limited resources of these networks. Therefore,
several time synchronization protocols have been
proposed recently; however, most of them do
not consider security during the design stages.
There are only a handful of protocols where
security has been taken into the consideration.

In this article we review the three most com-
mon secure time synchronization protocols:
• Reference Broadcast Synchronization (RBS)
• Time Synchronization Protocol Sensor Net-

works (TPSN)
• Flooding Time Synchronization Protocol

(FTSP)
We then evaluate these algorithms based on fac-
tors such as their countermeasures against vari-
ous attacks and the types of techniques used
(cryptographic vs. statistical).
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