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Abstract

Traditionally, heavy computational tasks were performed on a dedicated infrastructure requiring a heavy initial investment, such
as a supercomputer or a data center. Grid computing relaxed the assumptions of the fixed infrastructure, allowing the sharing of
remote computational resources. Cloud computing brought these ideas into the commercial realm and allows users to request on
demand an essentially unlimited amount of computing power. However, in contrast to previous assumptions, this computing power
is metered and billed on an hour-by-hour basis.

In this paper, we are considering applications where the output quality increases with the deployed computational power, a large
class including applications ranging from weather prediction to financial modeling. We are proposing a computation scheduling
that considers both the financial cost of the computation and the predicted financial benefit of the output, that is, its value of infor-
mation (VoI). We model the proposed approach for an example of analyzing real-estate investment opportunities in a competitive
environment. We show that by using the VoI-based scheduling algorithm, we can outperform minimalistic computing approaches,
large but fixedly allocated data centers and cloud computing approaches that do not consider the VoI.
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1. Introduction

We often forget that computation and networking costs
money. We do not see the dollars counted down when we talk
on the cellphone, have the hardware depreciation cost displayed
on our laptops or the power bill showing up on the screen when
we are playing on a gaming PC with a 700 Watt power source
(of course, in a room illuminated by a 7W LED lightbulb). Even
for high performance computing, where the computation and
networking costs can be substantial, financial considerations
used to come into picture only at the time of the investment
decisions. Once a new supercomputer, data center or Beowulf
cluster had been purchased, users were encouraged to utilize
them to their maximum capacity. The grid computing model
emerging in the late 1990s [1, 2] introduced the ability of re-
questing computational power on demand, on the analogy of the
power grid. Nevertheless, all grid systems had been financed by
national research foundations and thus, the objective of maxi-
mum utilization remained in place.

Cloud computing introduced a significant change. In some
ways, cloud computing is fulfilling the promise of grid comput-
ing of providing on demand, on a very short notice, an amount
of computational, storage and networking capacity, normally
in the form of virtualized resources. For instance, compu-
tational capacity can be offered in form of virtual machines
or containers. For instance, virtual machine on demand ser-
vices provide the user with a remotely allocated virtual ma-
chine, in which the client can run its own operating system.
These services can be public clouds, fully managed services
offered by a third party vendor, such as in the case of Ama-

zon’s EC2 service [3, 4], Rackspace’s OpenStack on Demand
service or VMWare’s vCloud Air service. In these cases, the
cloud provider charges in actual dollars for the provided, me-
tered computing capacity. The client makes a request for a com-
puting unit, and in less then a minute, he can log in and start the
computation. While computing, the client will pay an hourly
fee. Once the computation is terminated, the client discards
the virtual machine. Alternatively, companies can create pri-
vate clouds in which they are offering similar services for their
internal divisions. This allows companies to more efficiently
share their existing computational resources. Large companies
have developed their internal software architectures to provide
computing on demand (this being, for instance, the casse of
Google’s Borg system [5]). Other companies can use available
open source software to provide computing-on-demand solu-
tions, for instance using OpenStack Nova system [6] for virtual
machines on demand, or Apache Mesos or Google’s Kuber-
netes for containers on demand. In Borg, company subdivisions
need to purchase computing quotas with actual money, thus the
principles of operation are similar to the one in public clouds.

In such systems, the amount of computation that a client can
obtain is limited, in principle, only by the client’s ability to pay.
For instance, a client can pay $168, and run a parallel computa-
tion on 10,000 computer cores, a computing power that was out
of reach to anyone without a million dollar investment. For vari-
able and unpredictable loads, such as the sudden popularity and
just as sudden fading of a game or app, cloud computing might
be the only approach that can trace the variations of the comput-
ing demand. Of course, if one would use the 10,000 computer
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Unit type Virtual
CPUs

Performance
(ECU)

Cost per hour

m4.large 2 6.5 $0.12
m4.xlarge 4 13 $0.239
m4.2xlarge 8 26 $0.479
m4.4xlarge 16 53.5 $0.958
m4.10xlarge 40 124.5 $2.394
c4.large 2 8 $0.105
c4.8xlarge 36 132 $1.675
g2.2xlarge 8 26 $0.65
g2.8xlarge 32 104 $2.60

Table 1: The on-demand computation costs on Amazon EC2 at several repre-
sentative compute units (as of April 2016). The mX models are general pur-
pose, the cX models are compute optimized while the gX are GPU optimized

cores continuously for years, acquiring a private computer cen-
ter would be cheaper. However, even for companies that own
their data center, as Google’s Borg example shows, it had been
found that the fine grain measuring and accounting can better
optimize the use of the computational resources.

1.1. Applications with elastic computational needs
The way we used to think about performing a computation,

is that we have a certain input data X, a certain computing algo-
rithm A and we expect that by performing the algorithm on the
data we will create the output B = A(X). For a given algorithm
and input, there is a fixed set of computing resources C nec-
essary to perform this computation. Depending on the actual
hardware performing the computation, this might take a shorter
or longer time, it might cost more or less, or use more or less
energy.

There is, however, a very large class of applications that
can be seen through a different model: by allocating a com-
putational resource Ci to the process, we obtain an output
Bi = A(X,Ci). Naturally, if we perform two computations
C1 > C2 then we expect the corresponding B1 to be “better”
than B2 according to some quality measure. Many popular algo-
rithms used today generate continuous improvements with ad-
ditional computational power: we can run some more Markov
Chain Monte Carlo network, run a particle filter with more par-
ticles, train a larger neural network, perform climate modeling
at a finer spatial or temporal resolution and so on. There can be
many reasons for not finishing a computation to the end: there
can be limits on time, on cost, or simply there is no clear stop-
ping point where we can say that the algorithm had finished.
Most such methods eventually run in the problem of diminish-
ing returns in the sense that after a while, adding additional
computing power will not measurably improve or even change
the outputs (for a given input). In this paper we will argue that
we do not need to run the computation so far that no change is
observed in the output. We can stop much earlier, at the point
where further computation is not justified by the value of infor-
mation that can be obtained from the output.

The remainder of this paper is organized as follows. In Sec-
tion 2 we discuss related work. In Section 3 we work out a de-
tailed model for VoI for analyzing investment opportunities. In

Section 4 we discuss several possible scheduling algorithms for
allocating computational power to the applications discussed in
the previous section. We present the result of some simulation
studies in Section 5. We conclude in Section 6.

2. Related work

The problem of scheduling computational and networking
resources to computations had seen a significant effort in the
last quarter century. The exact optimization criteria, however,
changed in function of both the nature of resources and the
applications that are running on them. While early batch sys-
tems only ensured the sequential execution of a task on a sin-
gle computational resource, the emergence of distributed com-
puting systems with multiple, usually heterogeneous resources
implied that multiple tasks can be allocated in parallel, and de-
cisions need to be made about which resource is the best fit to
which task [7]. The optimization criteria on these systems could
be the expected time to completion of each task, the overall
throughput of the system, as well as various fairness measures.
If the executed tasks are actually collections of parallel and in-
teracting tasks (meta-programs or workflows), new challenges
had to be taken into consideration, for instance with regards to
the scheduling of network connections or the storage of tempo-
rary data. A modern example of such a scheduler is the Hadoop
scheduler YARN [8].

Cloud computing is a natural development of the previous
models of distributed computing. Beyond the technical innova-
tions related to virtualization, software defined networks and so
on, cloud computing also represented a new model with regards
to the ownership of the resources. In a typical public cloud, the
owner of the computing resource is not the beneficiary of the
computing applications. On the other hand, the actual benefi-
ciary has little control over the scheduling decisions - for in-
stance the customer of EC2 does not normally know where the
virtual machine she requested is actually running.

Scheduling and resource allocation can be seen as an opti-
mization problem, and thus such a wide range of optimization
algorithms had been deployed. To sample just several recent
examples done in the context of cloud computing, Zheng et
al. [9] use a parallel genetic algorithm for the placement of vir-
tual machines in a cloud computing system. Li, Tordsson and
Elmroth [10] use linear integer programming to allocate cloud
resources on public clouds, taking into account virtual machine
migration as well as continuously changing pricing schemes,
virtual machine types and performance. Pandey et al. [11] use
particle swarm optimization to schedule applications on clouds
taking into account both computation and data transfer costs.
Abrishami, Naghibzadeh and Epema [12] schedule application
workflows to cloud resources by analyzing the workflow as a
graph and determining its critical path. Caron, Desprez and
Mureşan [13] present an approach to predict the need for cloud
resources by using a short-term memory of load patterns.

Whenever we are talking about economic models in terms
of cloud or grid computing, we need to distinguish between
systems that use a market model for efficient resource alloca-
tion versus systems where resources are allocated in exchange
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for actual financial resources. It had been found that the intro-
duction of a synthetic economic model can be actually useful
even for system where no actual money is exchanged [14, 15].
More recently, Frincu [16] describes an approach for schedul-
ing highly available applications using a cost model (which
might not necessarily be actual financial cost).

The financial aspect of cloud scheduling had received com-
paratively less attention. Bittencourt and Madeira [17] consider
scheduling on hybrid clouds, where some of the resources are
allocated from the private cloud of the customer, while others
are rented on the public cloud. The authors show that their
proposed method can reduce the cost while achieving the pre-
defined execution deadlines. Wang, Li, and Liang [18] con-
sider the financial aspects from the point of view of the ser-
vice provider, who needs to segment its offerings into different
classes - the existing classes of the Amazon EC2 product and an
auction market. They describe the optimal segmentation model
as a Markov Decision Process.

Another aspect of the work described in this paper is that
we assume a certain elasticity in the requirements of the user.
Hwang et al. [19] describe a system where the customer trades
off between long-term reserved resources and on-demand re-
sources. To optimize its allocation between these two resource
types the user uses a Kalman filter to predict its future resource
needs. Yang et al [20] proposes a cost-aware auto-scaling ap-
proach based on a workload predicted using a linear regression
model.

Our approach assumes an elastically scalable load where the
computational performance of the application can be directly
mapped to financial value. This allows us to define the value
of information acquired through computation. The concept of
value of information had been previously defined in game the-
ory [21]. Recent work applied this concept to various situa-
tions where the cost of computation and communication must
be traded against its benefits [22, 23, 24, 25].

Alicherry and Lakshman [26] consider resource allocation
algorithms for cloud systems distributed over a large number of
locations. The cloud users are running applications, for which
they require a specific number of virtual machines and spec-
ify the communication requirements between them. The main
optimization criteria for this paper is to minimize the communi-
cation latency between the VMs allocated to the same applica-
tion. The paper proposes efficient 2-approximation algorithms
for selecting the data centers, racks and servers on which the
specific VMs will be allocated.

Cucinotta et al [27] assume a complex application that re-
quires both computation and networking, and for whom a spe-
cific SLA is provided describing the quality of service require-
ments. The authors assume that there is a choice of network ser-
vice providers and cloud (computation) service providers, each
with their specific capabilities and prices. The task of the bro-
ker is to find an allocation of the application components and
their communication paths in such a way that overall quality
of service requirements are met. This can be formulated math-
ematically in the form of a mixed-integer geometric program-
ming optimization problem, where the objective is to minimize
the cost while meeting the SLA.

The paper [27] is similar to our approach in the sense that it
takes into account the financial cost of operating the cloud sys-
tem. However the optimization task is different - while [27] op-
timizes the cost for a given application with fixed needs, in our
case we consider applications with elastic needs and optimize
the ratio between the cost of computation and value created.

Konstanteli et al. [28] consider an approach where a set of
horizontally scalable applications whose requirements might
elastically grow or shrink need to be scheduled into a feder-
ated cloud. The scheduling is done through a probalistic op-
timization model which takes into account affinity and anti-
affinity rules and optimizes for eco-efficiency and cost. The
proposed optimization approach also allows the system to take
into account predictions of scaling requirements (for instance
based on historical data). The resulting system can be described
through a mixed-integer linear programming problem. This pa-
per shares with our paper the fact that it considers applications
that have elastic requirements. In [28] the optimization is taken
place outside the internal logic of the application: the elasticity
is considered to be due to external factors. In contrast in our
approach, we are taking the perspective of the application: an
application might scale up because computation is momentarily
cheap and the benefits of the computation can be high.

3. Application model: analyzing real-estate investment op-
portunities

3.1. Notation and terminology
Table 2 summarizes our terminology and notations used

throughout the paper.

3.2. Investment opportunity at single timepoint
The scenario we are considering is that of an investor analyz-

ing investment opportunities. Let us assume that the investor is
offered to buy an asset for the price Vcost. Let us assume that
the investment horizon is a year, after which the investor can
sell the investment for Vfuture. The alternative of buying an as-
set is for the investor to put the money into a safe investment
choice which guarantees a return of Rsafe. If the investor spent
Ccost on computation to analyze the investment opportunity, and
took the opportunity, his profit will be:

Prinvest = Vfuture − Vcost −Ccost (1)

If he did not ta the opportunity, his profit would be:

Prdecline = Rsafe −Ccost (2)

To understand how the investor will make this decision, we
need to understand that at the time of investment, the investor
does not know the Vfuture value, only an estimate Vest, which
leads to the corresponding estimate of the invest profit Pr′invest.
Thus the investor will calculate

∆Pr′ = Pr′invest − Prdecline = Vest − Vcost − Rsafe (3)

A simple decision model would be for an investor to invest
if ∆Pr′ > 0 and to decline otherwise. Note that the investment
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Table 2: Notation and Terminology
Vcost the purchase cost of the investment
Vfuture the future value of the investment
Vest the estimated future value of the investment
Vhigh the high estimate of the future value of the investment
Vlow the low estimate of the future value of the investment
Rsafe the safe return on the investment
C the amount of computation analyzing the investment (in ECU hour)
Ccost the cost of computation analyzing the investment
Prinvest profit if investing
Prdecline profit if not investing
σ the standard deviation of the estimated future value
k the confidence level for investment decision level (k · σ)
k1, k2 and k3 constants in the function σ(C)
ploss probability of loosing a pending opportunity to the competitor, a metric of competition intensity

decision does not depend on the expended computational cost,
although that comes into the calculation of the actual profit. At
the time of expenditures, the computation is a sunk cost, which
should not influence the outcome (although psychological stud-
ies show us that it often does [29]).

The critical variable influencing the decision is the estimate
Vest. The estimate is a result of computational analysis. Let us
consider that the investment opportunity is a piece of real estate.
The input of the analysis would be public information avail-
able about the real estate (location, square footage, amenities
etc.), information about the environment (comparables, com-
mercial potential, traffic patterns), information about the mar-
kets present and future (demand for locations, loan interests,
taxes, incentives, trends for demand) and private information
the investor might hold (eg. customers looking for similar real
estate and so on). This information is often available in form
of probability chains: if a certain politician is elected as mayor
(p = 0.60), it will implement a change in the zoning ordinance
(p = 0.80), which can trigger the sale of the building as a com-
mercial space (p = 0.75), increasing its value. Such chains
are too complex for a closed form solution, but are well suited
to particle filter / Markov Chain Monte Carlo methods. One
advantage of such techniques is that they not only generate an
estimate of the value, but they also can infer, through the dis-
tribution of the particles, the probability distribution of the es-
timate. Monte Carlo methods have been pioneered in financial
risk calculation by Boyle [30]. Several recent examples dealing
with property value calculations [31, 32, 33]. For the remain-
der of this paper, we will make the assumption that the analysis
will create a normal probability distribution, which will allow
us to describe the uncertainty with a single value, the standard
deviation σ1. In general, the choice of the normal distribution
is a justified choice taken both by the general investment com-
munity (eg the Black-Scholes equation for pricing options [34])
as well as it is empirically justified by the profile of simulation
result histograms (eg. in [33]).

1In analysis which involve binary choices, such as the election of a politi-
cian, it can might happen that the distribution will be bi- or multi-modal.

With this assumption, the decision model becomes some-
what more complex. The Vest value only denotes the mean of
the Gaussian distribution, which means that if ∆Pr′ = 0, there
will be an even chance of loosing or gaining a profit. Investors
typically require a higher confidence in success before they in-
vest. One way to achieve this is to use a “low estimate” for
the estimated value, lowering it with a certain number of σs:
Vlow = Vest − k · σ. With this approach, if we choose k = 1 we
will have a 68% confidence in making a profit, while with k = 2
a 95.4% confidence. Similarly we can define a “high estimate”
Vhigh = Vest + k · σ.

With this approach, the investor can proceed as follows. It
starts by choosing a certain confidence level k - a choice of
k = 2 yielding a higher than 95% confidence might be a good
starting point. The investor performs the computational analy-
sis, yielding a Vest and σ, and implicitly, the Vlow and Vhigh. If
the estimated profit using the low estimate is positive, the in-
vestor decides to invest. If the estimated profit using the high
estimate is negative, the investor declines the investment oppor-
tunity. In between these two values there is a 2kσ range where
the investor cannot make a determination with the desired con-
fidence (see Figure 1). If no other options are available, these
opportunities will also not be taken.

Of course, this approach raises the question of how large is
the σ value. The investor will only take opportunities where
the k · σ is larger than the expected profit, thus large σs can
effectively starve the investor of opportunities to invest. For a
given amount of known data, the value of σ depends on the
amount of computational power spent on the analysis.

Let us develop a plausible model of the σ function of the
amount of computation. In Monte Carlo integration [35], a
problem closely related to ours, the error is estimated as σ =

c/
√

N where N is the number of tests, proportional with the
computational power C. We will need to generalize this for-
mula to take into account some of the specifics of our problem.
For a given computational power C (assumed to be measured in
ECU-hours) we will assume that the standard deviation takes a
form:

σ = k1 +
k2

1 + C
1

k3

(4)
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Figure 1: The average, high and low estimates for an investment opportunity
(with k = 1, versus its cost. In this case, the investor cannot make a determina-
tion to invest or not with the desired confidence.

This formula integrates several intuitions about the nature of
analysing financial investments. The constant k1 represents that
there are uncertainties that no amount of computation can re-
duce - these include unknown factors and genuine random out-
comes. The constant k2 represents the amount of uncertainty
that can be removed by more analysis. Finally, the constant
k3 models the fact that even for the reducible uncertainty, the
improvement might not scale linearly with the amount of com-
putation. Note that the formula uses the amount of computation
C, not the cost of computation Ccost. How much money an in-
vestor uses to acquire a certain amount of computation depends
on many factors. If he is purchasing them using the Amazon
Elastic Compute Cloud, the cost can be calculated based on Ta-
ble 1. With the computation measured in ECU-hours, if the user
runs a c4.large machine (with ECU=8) for 10 hours, the amount
of computation is going to be 80 hours.

If he is harvesting unused computing cycles on a company
network, the cost can be zero. If a dedicated data center is used,
the cost depends on the equipment amortization costs and the
cost of maintenance.

One of the questions is: do we need a large amount of com-
putation to make an informed decision, i.e. is Ccost at the same
order of magnitude with the potential profit? Certainly, it is
possible for an offer to be priced such it can be accepted or
declined with minimal computation. However, in an efficient
market, such offers will be very rare. We assume that the seller
is just as competent as the buyers: there is no incentive for the
seller to leave money on the table by pricing the offer too low,
or to not sell by pricing it too high. In fact, the seller has a
strong incentive to price the offer very close to the borderline of
the predicted profit or loss. For such situations, the cost of es-
timating the profit will be in the same order of magnitude with
the predicted profit.

3.3. Investment opportunity in time and scheduling the compu-
tation

Up to this moment we assumed that the investment oppor-
tunity appears as a decision made at a single timepoint. We

have seen that by investing a certain amount of computational
power C, the user approximates the future value with an uncer-
tainty α(C). This value allows the investor to categorize the in-
vestments into three classes: those that clearly should be taken,
those that clearly should be declined and those about which no
confident decision can be made given the specific α(C).

One way to reduce this uncertainty is to use more computa-
tion C2, with the hope that the uncertainty σ(C + C2) will be
small enough such that a confident decision may be made. If a
decision still cannot be made, the investor might choose to add
additional computation C3 in the next timestep and so on. Al-
ternatively, the investor might choose to decline the investment
opportunity and not spend additional computational resources
on it.

Other than choosing its confidence level k, the choice of the
scheduling function that determines the amount of computation
Ct allocated to an opportunity at every timestep is the critical
choice that the investor can make in order to impact its profit on
the long run2.

There are several considerations to be taken with regards
to the scheduling function. First, allocating an overly large
amount of computation immediately after the arrival of the op-
portunity might allow to make a decision quickly, but it can lead
to an overly large computational cost - the investor might have
been able to make a decision with a smaller outline. This con-
sideration might make us conclude that adding up the computa-
tion gradually in small Ct increments would be a better choice.

A different consideration applies to the presence of the com-
petition. If the investor is not alone in the market, the opportu-
nity will be available to other investors as well. A way to model
this is that at any timestep, there is a ploss probability that a com-
petitor would grab the opportunity, leading the investor with the
Prdecline value, with all the invested computation cost wasted. In
a highly competitive environment, it is a bad strategy to use too
small Ct increments.

Figure 2 shows an example of the decision making using the
scheduling process. The evolution of the estimate Vest is shown
in the black line, the low estimate Vlow in green while the high
estimate Vhigh in red. The allocated computation is shown in
the lower graph. As a result of these computations, the σ value
decreases, and thus the lower and higher estimates are getting
closer together. As long as the decision line indicating zero
profit is between the high and the low estimates, the investor
cannot make a decision. In this graph, at timestep 12 the green
lower estimate line crosses the decision line - this gives the in-
vestor sufficient confidence that there will be a profit, and at this
point the decision is made to make an investment. After the in-
vestment had been made, no further computation is scheduled.

4. Scheduling algorithms

4.1. Non-adaptive scheduling algorithms
Before we move on to the proposed VoI-based scheduling

algorithm, let us discuss several non-adaptive scheduling algo-

2Of course, this statement assumes that each investor has access to the same
algorithms and information
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Figure 2: An investment analysis process ending in the decision to invest in
the offered opportunity. Upper graph: the evolutions of the estimates in time.
Lower graph: the allocated computation per time unit.

rithms the user might describe.
No-cost approach: this model assumes that the user does not
invest in any computational power. Such a user can still perform
the computation on his desktop or laptop machine, a situation
we can approximate with zero cost (compared with the invest-
ments). Naturally, such a user is disadvantaged with regards to
the speed of analyzing the investment opportunity. However, he
has the advantage that computational expenses will not reduce
his profit.
Data center: this model assumes that the user has a data center
with a fixed amount of computational power. A typical exam-
ple would be a Hewlett Packard modularized data centers POD
240a which can host about 4400 servers. In general, data cen-
ters are most efficient if they are fully utilized, thus we will
make the assumption that the user will choose to divide the
computational power of the data center evenly among the pend-
ing opportunities. The data center incurs a constant cost, even
if there is no computation performed. Another potential prob-
lem is that the more pending opportunities are there, the less
computing power is available.
Cloud computing (on demand, but not adaptive): this model
assumes that the user uses on-demand cloud computing in-
stances to analyze the investment opportunity. One of the ad-
vantages of this model is that when there are no pending oppor-
tunities, no cost will be incurred. On the other hand, the user
can analyze an arbitrary number of investment opportunities,
and analyzing multiple opportunities does not limit the amount
of computation the user can spend on each. Lacking other in-
formation about the opportunities, the best choice of the user is

to allocate the same amount of computing power to each oppor-
tunity.

4.2. The VoI scheduler

Let us assume that we have a cloud computing account and
a certain opportunity with cost Vcost. How much computation
C(t) should we buy from the cloud provider at time step t? Note
that in the remainder of this discussion we assume that our
cloud computing environment is predictable [36]. The cloud
computing approach we discussed above would be to decide
on a fixed value C and allocate the same value C(t) = C ∀t
until the opportunity is either taken, declined, taken by a com-
petitor or timed out. Fixed allocation is prone to overallocation
(allocating too much to an opportunity which will not give as a
significant profit) and underallocation (allocation too little com-
putation to a promising opportunity). Of course, overallocation
and underallocation can only be defined from the perspective of
an omniscient observer who knows Vfuture. The scheduler itself
does not know the profit because this is exactly what it tries to
calculate.

Let us analyze the scheduler’s decision from the point of
view of the value of information. The concept of the value of
information we refer in this context was initially introduced by
Bölöni and Turgut [37, 22] in the intruder tracking sensor net-
works and later extended into path planning [38] and schedul-
ing [25, 24, 23] algorithms in the underwater sensor networks
domain.

If the decision to invest had been reached, it means that
the estimate with the sufficient σ had obtained a profit Prinvest,
which can be seen as the value associated with the information
contained in the estimate. Similarly, if the decision to not in-
vest had been reached, the value of information is the loss that
had been avoided by declining the opportunity. We can avoid
the over and underallocation of the computing resources if we
make the cost of the computation allocated to the analysis a
constant fraction f of the value of information.

At the first timestep, the scheduling algorithm has no infor-
mation about the profit, thus it can do no better than allocating a
constant initial value C(0) = Cinit. Starting from timestep t = 2
we have an estimate of the future profit and while this estimate
is probabilistic through the current values Vest(t) and σ(t), it can
be used to make decisions about the schedule. To avoid loos-
ing investment opportunities when the initial profit estimates
are close to zero, in the calculation of the allocated computa-
tional power we use a value that overestimates the profit with
an optimism term o measured in units of σ:

Ccost(t + 1) = f ·
(
Cest(t) + o · σ(t) −Ccost − Rsafe

)
(5)

Notice that in contrast with other approaches, this model does
not allocate computation, but money to buy computation with.
The actual amount of computation C(t+1) allocated at time t+1
will be “whatever we can buy with Ccost(t + 1) money”.

Finally, the VoI model introduces a new reason to decline an
opportunity. We have seen that a schedule-independent reason
for declining an opportunity is that our estimates tell us with a
predefined degree of confidence that the investment will not be
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Parameter Value
Scenario

arrival rate Poisson distributed with λ= 0.01 to 2.00 (op-
portunities / hour)

timespan 1000 hours
Vcost uniformly distributed $100,000 .. $500,000
Vfuture - the future value of
the investment

normally distributed in a range around Vcost

Rsafe 0
competition 0.001 to 0.3 (probability / hour)
cost of cloud computation Amazon EC2 large computing instances

costs of April 2016
Estimation algorithm

k1 0.1 · Vfuture
k2 1.0 · Vfuture
k3 2
confidence k 2

No cost scheduler
Free computation per op-
portunity per time

1 ECU

Data center scheduler
Data center capacity 10,000 ECU

Cloud scheduler
Computation per opportu-
nity per time

10,000 ECU

VoI scheduler
inital profit estimate Pr(0) 0.001 · Vcost
optimism o 0.4 · σ
fraction f 0.01

Table 3: Simulation parameters

profitable. With the VoI model, another reason to decline would
be that the VoI decides that it is not justified to invest more
money in computation for this opportunity. If the formula gives
Ccost(t) = 0 for a given t, all the future Ccost(t + 1) values will be
also zero, because with no added computation, the values will
not change.

5. Experimental study

5.1. Scenario

We implemented the application model of analyzing invest-
ment opportunities as described in Section 3. Table 5.1 de-
scribes the simulation parameters.

5.2. Calculating the cost of computation

To calculate the cost of the cloud computing approach we
will use the current cost of computing units from Amazon EC2.
For the cost of the equivalent computing power obtained in a
local data center, we will rely on the fact that many analysts
assume that the the profit margins of Amazon AWS are about
50%[39], which makes the data center costs about 50% from
the Amazon cost.

Another question is measuring the computation unit. This
can be tricky as different performance factors in the system
(cache size, memory amount, memory speed, GPU, storage
amount and speed) might make a difference in the performance
of a specific application. However, our scenario assumes that
all the schedulers use the same software, which makes suitable

to use a common metric. We will use the ECU metric intro-
duced by Amazon [3]. We assume that the no-cost scheduler
allocates 1 ECU per task.

5.3. Experiment 1: Dependence on the arrival rate

In this study, we measure the performance of the various
scheduling approaches function of the arrival rate of the op-
portunities λ between 0.01 and 2.0 while keeping the competi-
tion level at 0.1. The experimental results for various metrics
are shown in Figure 3. Obviously, the most important metric
here is the total profit shown in Figure 3(a), the only of gen-
uine interest for the investor. We find that for all the scheduling
algorithms except NoCost the profit increases with the number
of opportunities, with the VoI algorithm being clearly the best
for all arrival rates, followed by the DataCenter and the Cloud
schedulers. At this level of competition, the NoCost creates
only minimal profit regardless of the arrival rate.

Figures 3(b), 3(c) and 3(d) help us understand the actual be-
havior of the user model. Figure 3(b) shows us the number of
taken opportunities function of the arrival rate. We find that
NoCost very rarely chooses to take an opportunity. What is in-
teresting is that the VoI and the Cloud algorithms choose to take
effectively the same number of opportunities. Despite this, the
VoI created a larger profit due to two factors: it picked a higher
fraction of the more valuable opportunities and spent much less
on the less valuable ones. The DataCenter scheduler took a
much smaller amount of opportunities, especially at higher ar-
rival rates, where its computational power had to be divided be-
tween the various opportunities that need to be analyzed. Note,
however, that, this lower acceptance rate yielded a higher profit,
due to the overall lower cost of the computations.

Finally, Figure 3(c) and Figure 3(d) show the number of op-
portunities lost to the competion and their ratio to the total num-
ber of opportunities that had been presented. What we observe
here is that, in general, the NoCost computing model looses the
most opportunities, because its low computational investment,
it takes a long time to reach a decision, during which time com-
petitors have the chance to grab the opportunity. What is inter-
esting here is that wastly lower ratio of lost opportunities pre-
sented by the VoI scheduler – this is due to the adaptability of
the scheduler’s allocation. If it sees a promising opportunity, the
VoI scheduler will ramp up the computation much faster than
the uniformly allocating Cloud scheduler; on the other hand,
the VoI scheduler is more ready to decline an unpromising op-
portunity - both effects leading to a lower rate of opportunities
lost to the competition.

This experiment had shown us that the presence of compe-
tition significantly impacts the profits, leading us to the next
experiment.

5.4. Experiment 2: Dependence on the competition

In this study, we vary the competition value ploss which
shows the chance for a given profitable pending opportunity to
be taken by a competitor at any given time slot in a range of
0.001 to 0.3. For these experiments we kept the arrival rate λ
constant at 1.0.
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Figure 3: Performance of various scheduling algorithms function of the arrival rate of investment opportunities

Figure 4(a) shows the total profit. As expected, what we see
here is that the higher the competition, the lower the profit for
all scheduling algorithms. For very low competition even the
NoCost algorithm can make profit - the decision will eventually
be made, and no computational cost diminishes the cost. Also
for a low competition, DataCenter approach can actually out-
perform VoI, primarily due to its cheaper computational power.
Starting from a competition level of 0.05, however, the VoI ap-
proach significantly outperforms the other approaches. What
actually see is that for very high competition, the Cloud ap-
proach can actually loose money! As Figure 4(b) shows, this
is not due to its underperforming in its computations - in fact,
it takes more opportunities than the VoI approach. The Cloud
approach, however, looses a lot of money by analyzing oppor-
tunities which are then lost to the competition. Both the Data-
Center approach with its fixed costs that do not depend on the
number of opportunities and the VoI approach with its adaptive
behavior perform better for high competition.

Finally, figures 4(c) and Figure 4(d) show a similar pattern
to the ones in Experiment 1, with the VoI approach loosing the

least opportunities to competition. An interesting pattern can
be observed on Figure 4(d) while the other approaches stabilize
at a high level of about 50% loss starting from a relatively mild
competition of 0.05, the VoI approach stays lower, but it also
increases towards this level. The reason of this increase is the
special treatment of the first step in the VoI approach. For the
timestep, the VoI approach has no estimate of the VoI, thus only
makes a comparatively small initial investment. If the compe-
tition is high, there can be a significant chance that the system
looses the investment in timesteps 1 or 2 before the VoI behav-
ior “kicks in”.

6. Conclusions

The amount of high performance computing performed at a
research institution or business used to be limited by the avail-
able computational facilities. The decision to invest in such
facilities were justified and made years in advance. The advent
of cloud computing made the decision to perform high perfor-
mance computation on thousands of computer cores a decision
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Figure 4: Performance of various scheduling algorithms function of the intensity of the competition

that can be taken on a minute’s notice. In this paper, we argued
that the ability to make this decision very quickly does not re-
duce the need to analyze whether the computational expenses
are justified or not. We discussed that many modern high per-
formance computing applications are elastic in term of compu-
tational power - additional computation improves the quality of
results, but often with a curve of diminishing returns. We argue
that a convenient technique to create efficient decision making
approaches is to use the concept of “value of information” - to
try to quantify the amount of financial benefit a certain calcu-
lation can gain us, and use this value when making scheduling
decisions.

We illustrate the proposed model with the example of an in-
vestor who is analyzing real estate investment opportunities.
We compare approaches that assume minimal, no-cost compu-
tational analysis with the cost of maintaining a private data cen-
ter, buying computational power on the cloud and, finally, with
a VoI-informed, cloud-based scheduling approach. We find that
the VoI approach clearly outperforms every other approach ac-
cross a wide range of opportunity arrival rates and competition

intensity values.
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