
Challenges and Benefits of Time-Parallel Simulation of
Wireless Ad Hoc Networks

Ladislau Bölöni, Damla Turgut, Guoqiang Wang, and Dan C. Marinescu
School of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL 32816-2450

{lboloni,turgut,gwang,dcm}@cs.ucf.edu

ABSTRACT
In this paper we discuss time-parallel simulation of wireless ad hoc
networks. Such systems are rarely amenable to analytical mod-
elling due to the complexity of the models involved. Thus, to obtain
a quantitative evaluation of such models we often resort to simula-
tion. Yet, current simulation techniques do not allow us to study
systems consisting of thousands of nodes for extended periods of
time.

We introduce the notion of perturbation of measurements and
present a layer-by-layer analysis of the impact of perturbations on
the functioning of the wireless network. This model allows us to
predict the accuracy of the simulation for several measures of per-
formance through an analysis of the protocols involved at the vari-
ous layers.

We also present an implementation of time-parallel simulation
based on iterative extension of the warmup period. In a series of
experiments, we find good concordance between the predicted find-
ings and the results of the simulations.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

1. MOTIVATION
Time-parallel simulation, the simulation of large systems by par-

titioning the time domain, rather than the space domain, has re-
ceived significant attention in the past. The advantages, as well as,
the theoretical and practical limitations of time-parallel simulation
have been extensively researched for many applications. As a gen-
eral rule time-parallel simulation requires the simulated process to
be regenerative, a situation rarely encountered in practice. Yet, of-
tentimes we are satisfied with approximate results which could give
us some qualitative rather than quantitative results important for the
design of a system.

In this paper we discuss time-parallel simulation of wireless ad
hoc networks. Such systems are rarely amenable to analytical mod-
elling due to the complexity of the models involved. Thus, to obtain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools’06 October 11-13, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-504-5 ...$5.00.

a quantitative evaluation of such models we often resort to sim-
ulation. Personal networking technologies such as Bluetooth and
Zigbee, allow the number of networked components in systems of
interest to grow significantly. Current simulation techniques do not
allow us to study systems consisting of thousands of nodes for ex-
tended periods of time.

Systems consisting of a few thousand nodes are rather common.
Indeed, let us consider a simple scenario. In a university classroom,
120 students attend a class; each student has a cell phone (GSM
source), a PDA and laptop (two 802.11b WiFi sources). There
are five Bluetooth sources: PDA, laptop, cell phone, headset, and
mouse. Some of the students might have WiFi enabled cameras,
Bluetooth enabled audio players, and matching head phones. All in
all, it does not seem out of the ordinary to have 3 WiFi and 7 Blue-
tooth sources per person. Thus, even without considering that many
of the WiFi nodes have a transmission range long enough to cover
neighboring classrooms as well, in order to study the networking
environment of one classroom we have to simulate a system with
1200 wireless sources operating in the same frequency band.

A wireless network with 1200 nodes pushes the limits of serial
simulators such as NS-2. Even when feasible, such simulations
require a significant computing power and can take a very long
time. An alternative is a parallel implementation of the simulation.
Spatial partitioning based parallelism, however, is difficult to apply
to our case. In the classroom environment, every transmission can
be received by all the other nodes; the fully connected dependency
defeats the purpose of spatial partitioning.

The question we pose is if an approximate time-parallel simula-
tion of wireless ad hoc networks is feasible and if the quality of the
results produced by such a simulation is acceptable. To analyze and
predict the performance of time-parallel simulation of wireless ad
hoc networks, we introduce the notion of perturbation of measure-
ments and present a layer-by-layer analysis of the impact of per-
turbations on the functioning of the wireless network. This model
allows us to predict the accuracy of the simulation relative to vari-
ous measurements through an analysis of the protocols involved at
each layer.

This paper is organized as follows. Related work is surveyed in
Section 2. Our model of the propagation of perturbations in wire-
less networks, the impact of the protocols at the various layers of
the networking stack and the application for time-parallel simula-
tion is presented in Section 3. Our approach for time-parallel sim-
ulation is introduced in Section 4. A series of simulation studies
investigating the speedup and precision of the proposed method for
typical wireless network simulation scenarios are presented in Sec-
tion 5. We conclude in Section 6.

2. RELATED WORK
Simulation along with analytical modelling allow us to carry out

performance analysis studies of wireless ad hoc networks. Our
studies cover a wide range of systems, from relatively simple sys-
tems composed of several nodes connected to a wireless access
point to large wireless sensor networks consisting of thousands of
nodes. As the size of the simulation problem increases and exceeds
the capabilities of a single machine, we are forced to consider par-
allel simulation. Parallel discrete event simulation (PDES) reduces
the overall execution time by parallel execution of the simulation on
multiple processors. There are two main avenues for parallel simu-
lation: space-parallel simulation (distributed simulation), and time-
parallel simulation. In the space-parallel simulation approach [4,9],
the simulation model is decomposed into a number of components
on a spatial basis. Each component is modelled by a logical pro-
cessor. Logical processors establish a communication mechanism
among each other to avoid or fix possible causality errors. The
Parallel/Distributed NS (PDNS) [1] project uses a space parallel
simulation approach based on the NS-2 network simulator [14].
However, the applicability of PDNS is limited to wired networks,
and the traffic simulated at different spatial partitions cannot affect
each other.

In the time-parallel simulation approach [2,5,6,8,15,16], a long
simulation interval is partitioned into smaller adjacent simulation
intervals, and each simulation interval is assigned to a processor
with a guessed initial state. The simulation terminates when the
final state of each interval matches the initial state of its succes-
sive interval. Thus, state matching is one of the key problems
of time-parallel simulation. In [8], the authors propose a time-
parallel simulation algorithm based on state matching. A simu-
lation is defined as partial regenerative if there exists a subset of
the system state variables such that the subsystem represented by
the subset can repeat its state infinitely many times. The system
is then partitioned at the regeneration points which mark a regen-
erative substate. In some cases the regeneration points of a re-
generative simulation can be found without performing a detailed
simulation; the state matching problem can be solved by perform-
ing a pre-computation [10, 11]. Wang and Abrams propose a pre-
simulation to identify regenerative points based upon Markovian
modelling [16]. Although time-parallel simulation rarely allows us
to obtain accurate results, approximate results [6, 15] can be pro-
duced efficiently.

3. MEASUREMENTS AND PERTURBA-
TIONS IN WIRELESS AD HOC NET-
WORKS

We propose a model to investigate how an event perturbs the
measurements of a simulation of wireless ad hoc networks. While
our model might not amount to a rigorous formalism, it accurately
captures the underlying phenomena and promotes a framework in
which observations can be analyzed and predictions can be made.

We consider a simulation s specified by a geographic area A, a
time interval τ = [tstart, tend], an initial state Sinit and a set of
planned events P = {p1 . . . pn}. The result of the simulation pro-
cess is the calculation of the trace of the simulation which is the set
of events T = {e1 . . . em} as well as the final state Sfinal. The
trace includes the planned events (P ⊂ T) as well as new events
triggered by the planned events and calculated by the simulation
process. Every event has a series of properties, where one with a
special importance is the time when it happens: time(ei). Other
properties of the events are in general associated with various mea-
surements we can make on the event (such as delay, packet size and

so on). We will note these measurements M1(ei), M2(ei) and so
on.

The purpose of running a simulation is to gain access to the mea-
surements of the events in the trace. In practice, however, we are
not interested in the individual measurements of the events. Rather,
we are interested in global measurements which span all the events
in the trace Mi(T).

Measurements can be:
(a) instantaneous M i(tc), reflecting the situation at the current

time tc.
(b) cumulative Mc(tc), reflecting the evolution of the measure-

ment from the beginning of the simulation to the current time tc.
For every instantaneous measurement M i there is an associated
cumulative measurement Mc:

Mc(tc) =

∫ tc

0

M i(t)dt (1)

(c) average Ma(tc). For every instantaneous measurement M i

there is an associated cumulative measurement Ma defined by:

Ma(tc) =

∫ tc

0
M i(t)dt

tc
(2)

An example is the current transmission rate (instantaneous mea-
surement), with the associated cumulative measurement total trans-
mitted data, and the associated average measurement average trans-
mission rate.

We call an approximate simulation for global measure M , re-
lated to precise simulation s, a simulation s′ which generates a
trace T ′ such that M(T ′) ≈ M(T). We define the error of the
simulation

ε =
|M(T)−M(T ′)|

M(T)
(3)

It is possible that a simulation results in a good approximation
for certain measures of performance, but not for the others. The
rationale for an approximate simulation is that it is easier to obtain
the results, the simulation is faster, easily to parallelize, and so on.

Now we introduce the notion of a perturbing event. We consider
a simulation with the planned events P = {p1 . . . pn} and a per-
turbed set P ′ = P

⋃
pp where pp is the perturbing event. The per-

turbed set of planned events will lead to a simulation trace (T)′, and
obviously, perturbed measurements M ′(t). In the following, when
we are talking about perturbations, we mean the impact of a per-
turbing event on a set of measurements, ∆M(t) = M ′(t)−M(t).
We are interested in the size and the temporal extent of the pertur-
bations.

We say that:

• The perturbation has no effect on measurement M if
∆M(t) = 0 ∀t.

• The event ep creates a time limited perturbation in the
measurement M which lasts until the extinction time te if
∆M(t) = 0 ∀t > te.

• The event ep has a shift effect perturbation on the measure-
ment M if limt→∞(∆M(t)) = c, with c being the shift
constant. If there is a time point ts with the property that
∆M(t) = c ∀t > ts, we call the ts stabilization point.

PROPERTY 1. If an event ep causes a time-limited perturbation
on the instantaneous measurement M i with extinguishing time te

it creates a shift effect perturbation on the corresponding cummu-
lative measurement Mc, with the stabilization point ts = te. The
shift constant can be expressed as:

c =

∫ te

tp

∆M i(t)dt (4)

We say that an event causes a destabilizing perturbation of mea-
surement M if @ts > tp such that ∆M = c ∀t > ts.

3.1 Perturbations and measurements in wire-
less ad hoc networks

As a first approximation, the events in a wireless ad hoc networks
are caused by individual transmissions of packets. We consider the
perturbing event to be the insertion of a new packet in the network.
We do not consider separately the removal of the packet because
that is equivalent to simply reversing the perturbed and the original
system in the discussion. As we are concerned about the absolute
values of the difference on the measurements of these systems, the
reversed system will yield the same conclusions.

An additional type of perturbation we consider is the perturba-
tion of the initial state - that is the simulation starts with a different
initial state than expected. We discuss this type of perturbation sep-
arately.

For events representing the addition or removal of a single
packet, the immediate affect of the perturbations is usually mini-
mal. However, the different layers of the networking stack are af-
fected by the packet in various ways, which can trigger significant
chances in the network. We investigate the impact of the perturba-
tion at the various network layers.

3.1.1 Physical layer
A new packet will perturb the physical layer measurements only

for the duration of the packet.
The length of a packet can be calculated as follows. Assume that

we send a packet of 1536 bit, the maximum length supported by the
802.11b protocol. The transmission rate of 802.11b is 1.375 Mbps.
The time required to send this packet is composed of:

• DIFS–Distributed InterFrame Space, set to 50µs

• Data packet transmission: 192µs for the preamble +
1536/ 1.375 Mbps = 192µs + 1118µs

• SIFS–Small InterFrame Space, set to 10µs

• 802.11 ACK packet: 192µs + 14/1.375 Mbps = 203µs

Thus, the total time becomes 2084µ, or approximately, 2 ms.
This might change slightly for different protocols, but the order of
magnitude remains the same.

We conclude that the perturbation in the physical layer due to
a new packet is time-limited, with a very short (2 ms) extinction
time.

3.1.2 MAC layer
The effect of a new packet perturbation over the MAC layer de-

pends on the load of the network, and the type of the new packet.
If the packet is significant for the MAC protocol itself (e.g., ACK,
RTS, or CTS packet) its influence extends beyond the time frame
covered. For instance, an RTS packet make the nodes receiving
refrain from transmitting for the duration specified in the packet.
The maximum order of magnitude of this interval is the maximum
packet transmission time; its order of magnitude is 2µs.

An additional effect, however, is that the delay on the sending of
one node can then delay the transmission of another packet, creat-
ing a ripple effect.

A rule of thumb is that for a channel of n bps, with a load of
ν ≤ 1

te =
PacketSize

ChannelCapacity
· 1

1− ν

Note that for a full channel, ν = 1, there is no extinction time.
If we are considering a network which cannot avoid collisions,

the perturbation will extend to the length of the contention window.
802.11 uses an exponential backoff algorithm where the contention
window can vary between CVMin and CVMax. Typical values of
CVMin are between 7-15 and of CVMax are between 7-255 with the
numbers being multiples of a slot time which is 20µs in 802.11b.
Thus, the influence of initial collision can extend to 5000µs. How-
ever, if the channel is very busy, the initial collision can lead to
further collisions down the line. Furthermore, any collision is ex-
tending the collision window through exponential backoff, which
will be only gradually reduced.

In conclusion, on highly loaded networks, an introduction of a
packet creating a collision can yield to perturbations of the order of
magnitude of several seconds in the worst case.

In summary, the TDMA (Time Division Multiple Access) style
Medium Access protocols lead to the smallest perturbation levels,
followed by CSMA-CA (Carrier Sense Multiple Access with Colli-
sion Avoidance). CSMA-CD (Carrier Sense Multiple Access with
Collision Detection) shows the most significant perturbations in the
worst case.

3.1.3 Routing layer
Perturbations triggered by packet insertion at the routing layer

are heavily dependent on the nature of the protocol and the newly
considered packet. The effect of the inserted packet was consid-
ered at the lower layers. Here, we will consider whether the packet
will change the routing of future packets or not. There are several
cases to consider. If the packet is part of an established flow of
application layer data, it will most likely not affect the routing of
the other packets. If the packet is the first packet of a new flow,
and the routing protocol is a reactive one, the packet will establish
a new route. This frequently requires broadcast of routing informa-
tion, which in its turn trigger additional packets being transmitted
all over the network. Although, this appears to be a destabilizing
factor–and a destabilizing perturbance, in reality, the extent of this
flooding is carefully constrained by the routing protocol. Thus, the
perturbation will be still limited in time. This perturbation interval
will last at most several seconds. As we have mentioned before, the
process will not be repeated for the future packets of the same flow.

Proactive routing algorithms deploy a routing table which is up-
dated proactively by routing packets. The insertion of a routing
packet triggers a perturbation in the network by changing the rout-
ing table of a node, and this will affect the routing of the future
packets. This is a major perturbation, affecting a large number of
packets and a long time interval.

To evaluate the extent of the perturbation, let us consider the
ways in which the extinction of the perturbation can happen. A
routing table perturbation is extinct when the routing tables of the
original and the perturbed system re-converge. This situation oc-
curs when:

• The modified routes are superseded by new, independently
discovered routes, in both the original and the perturbed sys-
tem (for instance, as a result of node mobility).

• The original system acquires the same routes as the modified
one.

• The modified routes expire through a timeout and the routing
table returns to the unperturbed version.

• An external command or a predetermined timeout flushes
partially or completely the routing tables, forcing the recom-
puting of all routes.

Although it is technically possible to imagine a routing protocol
where the loss or addition of a single routing packet would change
the routes indefinitely, virtually all the proposed protocols contain
methods which will ultimately allow the routing tables to converge.

We conclude that for proactive routing protocols the extent of
the perturbations cover a longer interval, of the order of minutes.
The protocol designers, in their quest to make the protocols more
reliable, have adapted features which make the routing tables con-
verge; this has the indirect effect of limiting the perturbations and
improve the accuracy of time parallel simulations.

3.1.4 Transport layer and application layer
Finally, we investigate how a perturbing event affects the trans-

port layer and the application layer protocols. The major difference
here is between reliable or non-reliable protocols.

Let us consider the case of the most frequently used reliable
transport protocol, TCP. The loss of a single TCP packet can signif-
icantly perturb the nature of the subsequent TCP flow: the packet
will be retransmitted, the transmission window reset to its mini-
mal value, which will then extend through the slow start algorithm.
Thus, the loss of a single packet can exert an influence over the net-
work of several seconds. Conceivably, there can be side effects as
well, through which a change in one TCP transmission might affect
other transmissions on the network.

In the case of the UDP protocol, which does not implement re-
liable transmission, the perturbation is minimal or nonexistent. It
is however, incorrect to say that the loss of a UDP packet does
not introduce any perturbation - applications which deploy UDP
usually use application layer protocols to control the flow of data.
For instance, the multimedia streaming application RealPlayer is
using an application level byte stream protocol RTP (specified in
RFC 1889) for the transfer of multimedia information, with UDP
being the transport protocol. Packet losses are handled by a com-
plex logic and actions involving the RTSP (Real Time Streaming
Protocol), RTCP (Real Time Control Protocol), SDP (Session De-
scription Protocol) and, of course RTP.

We conclude that perturbations have effects up to the applica-
tion layer. However, at the application layer, the behavior of the
system becomes very complex, and in fact it can depend on user
interactions.

In research involving ad hoc networks, most of the experimental
work stop at the level of routing protocols, the consideration of the
transport layer is an exception rather than the rule.

3.2 Perturbations and time-parallel simula-
tion

The analysis from the previous section can be applied to predict
the approximation level of time-parallel simulations. Let us sum-
marize the conclusions:

• The largest perturbations are the ones affecting the routing
tables.

• There is limited benefit in making a simulation batch smaller
than the longest perturbation.

• Perturbations are amplified in highly loaded systems.

• Time parallel simulations can be more useful in the study
of the physical and the MAC layer than the routing and the
transport layer.

• Time-parallel simulation of reactive routing protocols yields
higher precision than that of proactive routing protocols.

3.3 Techniques for improving the accuracy of
time-parallel simulations

Time parallel simulation is dividing the simulation in a set of
batches which correspond to time intervals. The most straightfor-
ward way to partition a simulation is by partitioning the time into
batches of equal length. For instance, in Figure 1 (a) we see a par-
titioning of the simulation interval into three equal time intervals:
[0, t1 = t/3], [t1 = t/3, t2 = 2t/3] and [t2 = 2t/3, t]. The
figure also illustrates a potential source of inaccuracy of the sim-
ulation: the perturbations due to two events are overflowing from
one batch to the other. However, as the processor working on the
second batch has no way of knowing about event e1 its simulation
will be inaccurate.

Time interval shift. One way to increase the accuracy of the
simulation is to select the borders of the simulation intervals such
that the perturbations are completely contained in the batches, as
shown in Figure 1(b). These points are the equivalent of the re-
generative states of the queuing systems. If we can not find states
where all the perturbations are extinguished, we can search for
points where there are a comparatively smaller number of ongoing
perturbations (partial regenerative states).

There are several difficulties with this approach. First, there
might not be any regenerative states in the simulation, or their dis-
tribution might be such that it does not lead to batches of size ap-
propriate for parallelization. The most difficult problem, however
is, that it is very difficult to find regenerative or partially regen-
erative states in a simulation without first running the simulation
itself. There are certain circumstances when the identification of
such points is possible. If a routing protocol periodically flushes
the complete set of routing information, that timepoint is a natural
partial regenerative point.

Warmup interval. As time interval shift is possible only in
limited circumstances, we consider a different approach. For each
batch we will consider two time intervals: during the warmup time,
we perform the simulation but do not perform any measurements,
which during the measurement phase we perform measurements,
which should have a higher degree of precision, due to the fact that
some perturbing events are considered in the warmup phase. Let us
consider the appropriate size of the warmup window. This window
needs to be the minimum size such that it contains all the perturbing
events which generate perturbations which extend beyond the start
of the measured interval. The Figure 1(c) represents such a case.
The size of the required warmup period can vary between various
batches, the first batch does not require a warmup. Unfortunately,
for practical cases we can not accurately compute the size of the
required warmup time without first running the simulation.

In practice, for the simulation study discussed in this paper, we
set up all the batches with a warmup period of identical length.
Furthermore, we will gradually increase the size of the warmup
period, obtaining more and more accurate simulations.

Warmup with compressed history. In a practical run of time-
parallel simulation with warmup, the size of the warmup period can
be significantly longer than the measured interval; thus most of the
computation time is spent into the simulation of the warmup inter-
val, which does not contribute to the measurements. Traditionally,

t
e1

e2 t2t1
t

e1
e2 t2t1

t
e1

e2 t2t1
te2 t2

(a)

warmup
interval

measured
interval

compressed
history

(b)

(c) (d)

measured
interval

measured
interval

measured
interval

e1

Figure 1: An illustration of techniques for improving the accuracy of time parallel simulations. (a) Unimproved equal length batches.
(b) Time interval shift. (c) Warmup intervals. (d) Warmup with history compression.

the warmup interval is the exact match of the simulated events for
a period before the measured interval starts. We can replace the
warmup interval with a shorter and/or simpler simulation interval
which, however, would yield the same results. For instance, we can
remove all the events from the warmup period which do not pro-
duce perturbations at the measured point. For the events which pro-
duce perturbations, we might be able to replace them with events
easier and faster to simulate. We call this modified warmup interval
a compressed history.

4. AN ALGORITHM FOR TIME-
PARALLEL SIMULATION

A simulation S of an ad hoc network calculates the simula-
tion trace T of event set E which occurs in geographic area A,
within time interval τ , when the initial state is I, and the fi-
nal state is F . Formally, we denote a simulation as a six-tuple
set S = (A, τ, E, I,F , T). We partition the temporal dimen-
sion of the simulation S into m time intervals {τi|τi = [(i −
1)D(τ)

m
, iD(τ)

m
], i ∈ {1, . . . , m}}, where D(τ) calculates the du-

ration of time interval τ . Then, we obtain a time-parallel simu-
lation set I(0) = {Si|Si = (A, τi, E(Si), φ,F(Si), T (Si)), i ∈
{1, . . . , m}}. Thus the time-parallel simulation set will operate on
the full spatial component A, but a subset of the temporal span
τi. In case of an exact simulation, the final state of Si needs
to match the initial state of Si+1, i ∈ {1, . . . , m − 1}. How-
ever, since there is no prior knowledge for the initial states of
S2, . . . , Sm when they are parallelized, the combined simulation
trace T (I(0)) = T (S1) ∪ T (S2) ∪ . . . ∪ T (Sm) is far from being
approximate.

After the execution of I(0), the simulation trace of S1 becomes
an accurate trace. A natural solution to refine the other simulation

traces is to apply the final state of a simulation interval to the initial
state of its successive simulation interval, I(S

(1)
i) ← F(Si−1)

and re-execute the new simulation set I(1) = {S(1)
i |S(1)

i =

(A, τi, E(S
(1)
i),F(Si−1),F(S

(1)
i),

T (S
(1)
i)), i ∈ { 2, . . . , m}}. The causality dependencies of

events of two consecutive time intervals are now removed, mean-
while the dependencies for events in a time interval to affect later
time intervals are weakened, since the strongest causality depen-
dencies (dependencies of two consecutive time intervals) are al-
ready removed. The combined simulation trace after the first iter-
ation, T (I(1)) = T (S1) ∪ T (S

(1)
2) ∪ T (S

(1)
3) ∪ . . . ∪ T (S

(1)
m),

should become more accurate, compared to T (I(0)).
As we repeat this process, all strong dependencies are further

removed and the simulation trace becomes more accurate. The par-
allel simulation continues until the error of simulation results in all
relevant metrics is lower than a predefined treshold. The k-th iter-
ation contains m − k simulation segments I(k) = {S(k)

i |S(k)
i =

(A, τi, E(S
(k)
i),F(S

(k−1)
i−1),F(S

(k)
i), T (S

(k)
i)), i ∈ {k + 1,

. . . , m}}. After k-th iteration, the traces of simulation intervals
S1, S

(1)
2 , . . . , S

(k)
k+1 become accurate. The combined simulation

trace of (I(k)) can be obtained by
T (I(k)) = T (S1) ∪ T (S

(1)
2) ∪ T (S

(2)
3) ∪ . . . ∪ T (S

(k−1)
k) ∪

T (S
(k)
k+1) ∪ T (S

(k)
k+2) ∪ . . . ∪ T (S

(k)
m).

We illustrate the approximate simulation in the following ex-
ample, see Figure 2. Assume a simulation S = (500 ×
500, [0, 200], E, φ,F , T) is segmented into 10 equal-duration time
intervals, with τi = [20(i− 1), 20i], i ∈ {1, . . . , 10}. The simula-
tion sets of iteration 0, 1, 2 are as follows
I(0) = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6 ∪ S7 ∪ S8 ∪ S9 ∪ S10;

I(1) = S
(1)
2 ∪S

(1)
3 ∪S

(1)
4 ∪S

(1)
5 ∪S

(1)
6 ∪S

(1)
7 ∪S

(1)
8 ∪S

(1)
9 ∪S

(1)
10 ;

I(2) = S
(2)
3 ∪ S

(2)
4 ∪ S

(2)
5 ∪ S

(2)
6 ∪ S

(2)
7 ∪ S

(2)
8 ∪ S

(2)
9 ∪ S

(2)
10 .

The simulation traces after iterations 0, 1, 2 are as follows
T (I(0)) = T (S1) ∪ T (S2) ∪ T (S3) ∪ . . . ∪ T (S10);

T (I(1)) = T (S1) ∪ T (S
(1)
2) ∪ T (S

(1)
3) ∪ . . . ∪ T (S

(1)
10);

T (I(2)) = T (S1) ∪ T (S
(2)
2) ∪ T (S

(2)
3) ∪ . . . ∪ T (S

(2)
10).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S2
(1) S3

(1) S4
(1) S5

(1) S6
(1) S7

(1) S8
(1) S9

(1) S10
(1)

S3
(2) S4

(2) S5
(2) S6

(2) S7
(2) S8

(2) S9
(2) S10

(2)

I(0)

I(1)

I(2)

Figure 2: Illustration of the time-parallel simulation approach.
The duration of the simulation S is 200. It is segmented into
10 equal-duration simulation intervals. The shaded simulation
segments are used to compose the final simulation trace after 3
iterations.

The approach outlined above requires the ability to accurately
capture the complete state of a simulation, and to be able to restart
the simulator with an arbitrary initial state. For instance, to accu-
rately capture the state of the simulation at the MAC layer, we need
to save information such as the packets in the priority queue, the
status of timers for NAV, RST, CTS and all the other MAC related
information. In addition, we need the ability to start a simulation
with an arbitrary value of these parameters. This is not possible
with the stock NS-2 distribution. Furthermore, as different pro-
tocols require different state data, we would need to develop new
patches for every new protocol considered.

In the following, we present a method to rearrange the calcu-
lations in such a way that the state saving and restoration is not
necessary, and we can use the stock, unpatched simulator for arbi-
trary protocols. Let us consider the approximate simulation trace
obtained after γ+1 iterations, at the end of iteration γ. We partition
the simulation interval into m overlapping time intervals:

ηi =

{
[(i− 1)D(τ)

m
, (i− 1 + γ)D(τ)

m
], i ∈ {1, . . . , m− γ};

[(i− 1)D(τ)
m

,D(τ)], i ∈ {m− γ + 1, . . . , m}.
The time interval ηi starts at a same time with τi, but it lasts for

γ + 1 times the duration of τi for the first m− γ time intervals; ηi

ends atD(τ) for later time intervals. We obtain a time-parallel sim-
ulation set L = {Pi|Pi = (A, ηi, E(Pi), φ,F(Pi), T (Pi)), i ∈
{1, . . . , m}}. ηi can be divided into a set of sub time intervals,
each with a duration of D(τ)

m
.

Call Pi,j the j-th sub-interval of Pi (enumeration starts at 0):

Pi =

{
Pi,0 + Pi,1 + . . . + Pi,γ , i ∈ {1, . . . , m− γ};
Pi,0 + Pi,1 + . . . + Pi,m+1−i, i ∈ {m− γ + 1, . . . , m}.

Pi,j simulates the same simulation interval as Si+j . For in-
stance, in Figures 2 and 3, P3,2, P4,1 and S5,0 all simulate the
simulation interval [80, 100].

We assume the same simulation S in Figure 2 as our example,
m = 10, γ = 2. The new simulation set L = {P1, P2, . . . , P10}
is shown in Figure 3. We observe that Pi,0 and Si are essen-
tially equivalent since they simulate the same time interval without
prior knowledge of initial states see Figures 2 and 3. Thus, I(0)

can be rewritten as I(0) = {Si|i ∈ {1, . . . , m}} = {Pi,0|i ∈
{1, . . . , m}}.

The final state of simulation Pi,0 is naturally transferred as the

P
1,0

P
1,1

P
1,2

P
1

P2,0 P2,1 P2,2

P3,0 P3,1 P3,2

P4,0 P4,1 P4,2

P5,0 P5,1 P5,2

P6,0 P6,1 P6,2

P7,0 P7,1 P7,2

P8,0 P8,1 P8,2

P9,0 P9,1

P10,0

P2

P3

P4

P5

P6

P7

P8

P9

P10

20 40 60 800 100 120 140 160 180 200

Time

Figure 3: An alternative approach to the simulation in Figure 2.
Shaded blocks correspond to partial results used to construct
the final simulation results.

initial state of simulation Pi,1, thus Pi,1 and S
(1)
i+1 are essentially

equivalent since they simulate the same interval with the same
initial states. Thus, I(1) can be rewritten as I(1) = {S(1)

i |i ∈
{2, . . . , m}} = {Pi,1|i ∈ {1, . . . , m− 1}}.

Similarly, I(γ) = {S(γ)
i |i ∈ {γ + 1, . . . , m}} = {Pi,γ |i ∈

{1, . . . , m− γ}}.
The alternative simulation algorithm has several desirable prop-

erties: (i) the final state corresponding to time interval τi is nat-
urally and accurately accepted as the initial state of its succes-
sive time interval, τi+1, and the obstacle to save the state in-
formation is removed; (ii) if the number of iterations (γ + 1)
to obtain the approximate simulation trace is known, the subset
{Pi|i ∈ {m − γ + 1, . . . , m}} is not needed in the computa-
tion of T (I(γ)), thus the required number of computational nodes
can be reduced from m to m−γ. In our example, the simulation set
{P9, P10} is not needed, and the required number of cluster nodes
can be reduced from 10 to 8.

5. SIMULATION STUDY
We evaluate a set of metrics to establish the level of accuracy of

the results obtained by our time-parallel simulation approach rela-
tive to an exact sequential simulation. We study the number of it-
erations to obtain approximate simulation results, as the simulated
time is cut into segments of different durations. We are also con-
cerned with the sensitivity of our method to the network load and
network mobility.

We use the “random waypoint” model [3, 7] to simulate the
node movement. Traffic patterns are generated by constant bit rate
(CBR) sources sending 512-byte UDP packets at a rate of 1 packet
per second. The simulation area is 500× 500 and the default num-
ber of nodes is 80. All the nodes have a transmission range of 100
meters. The simulation time of 600 seconds is segmented into 20
time intervals of 30 seconds. We run several simulation experi-
ments by varying the segment duration, number of CBR sources,
and the speed. Table 1 shows the default settings and the range of
the parameters for our experiments.

5.1 Performance Metrics
To establish the accuracy of our time-parallel simulation relative

to an exact sequential simulation, we evaluate the relative error for
several measurements. Let M0 be the result produced by the exact

Table 1: The default values and the range of the parameters.
Field Value Range
simulation area 500× 500(m2)
number of nodes 80
transmission range 100 (m)
speed 1 (m/s) 1 - 21 (m/s)
pause time 15 (s)
simulation time 600 (s)
segment duration 30 (s) 10 - 60
number of CBR sources 20 4 - 40
CBR packet size 512 (bytes)
CBR sending rate 4 (kbps)

sequential simulation and M the one produced by our time-parallel
algorithm; the relative error for this metric is ε = M−M0

M0
×100%.

We investigate the relative error for the packet loss ratio and the
throughput of the given algorithm. Notice that both of these are
average measurements.

For each experiment, we randomize the source-destination pairs
of CBR sources, and execute 10 times to obtain the average, as well
as, 95% confidence interval for each quantity. We use Destination
Sequenced Distance Vector Routing (DSDV) [12] and Ad Hoc On-
Demand Distance Vector Routing (AODV) [13] routing protocols to
investigate the performance of our time-parallel simulation algo-
rithm. The simulation was run on a cluster computer composed of
128 64-bit Opteron processors.

5.2 Simulation results
Segment Duration. This set of experiments (Figure 4) allows

us to investigate the effect of segment duration and determine the
number of iterations required to obtain results with a given level of
accuracy; we choose as a threshold for the relative error α = 5%.
We experiment with segment durations of 10, 20, 30, 40, 50, and 60
seconds. As the simulation time is fixed at 600 seconds, the number
of segments are 60, 30, 20, 15, 12, and 10, respectively. We com-
pare the simulation results after each iteration with the simulation
results obtained by exact sequential simulation.

The curves labeled PROTOCOL.ITERATION.i in Figure 4 show
the relative error after iteration i for the two protocols. Table 2 sum-
marizes the number of iterations needed to achieve a relative error
not larger than 5%, as well as the speedup compared to sequential
execution.

We note that the speedup for a single iteration is equal with the
number of time segments (provided that there are a sufficient num-
ber of computational nodes); however, smaller segments require a
larger number of iterations to achieve equivalent precision. Over-
all, however, the speedup tends to increase with the decrease of
segment size. Thus, a proper segment duration need to be chosen
according to the simulation time and the number of available com-
putational nodes.

Network Load. This set of experiments (Figure 5) investigate
the effect of the network load upon the number of iterations and the
accuracy. The number of CBR sources ranges from 4 to 40. The
size of a CBR packet is 512-bytes, and the rate for each source is 1
packet per second.

We notice that for both protocols, the relative error fluctuates
around a stable value regardless of workload after a certain number
of iterations. The number of iterations and the speedup for DSDV
are: 4 and 5 respectively. The same figures for AODV are 3 and
6.7 respectively. The number of iterations required to obtain the
simulation results is about the same regardless of the number of
CBR sources.

Node Mobility. We conducted this set of experiments (Figure 5)

Table 2: The number of iteration required to achieve an error
threshold α = 5% and the speedup, function of segment dura-
tion.

Segment Iteration required Speedup
Duration (s) DSDV AODV DSDV AODV

10 9 3 6.7 20
20 5 3 6 10
30 4 3 5 6.7
40 3 3 5 5
50 3 2 4 6
60 2 2 5 5

to reveal whether the node mobility will affect the number of it-
erations required to achieve a relative error threshold. The node
mobility ranges from 1 to 21 m/sec.

From Figure 6, we can see that for both protocols the relative
error for the metrics we investigate fluctuates around a relatively
stable value regardless of the workload. The results are increas-
ingly more accurate as the number of iterations increases. After i
iterations, the relative error for packet loss ratio drops below the
threshold α, and is about the same regardless of the number of CBR
sources. The number of iterations and the speedup for both proto-
cols are identical with those presented earlier, when we allowed the
number of CBR sources to vary.

We conclude that the performance of the parallel simulation is
not sensitive to the network load, or to the node mobility.

Speedup and Maximum Network Size. In our experiments the
number of nodes range from 100 to 1500. The density of the map
is fixed at 1

2500
m−2, and the other parameters are set as default

(Table 1).
For DSDV the actual execution time for 1400 simulated nodes

is approximately 110 minutes. The parallel simulation requires al-
most 24 minutes and has a speedup of almost 5. If we restrict the
execution time to 10 minutes the maximum number of nodes is 180,
for sequential simulation and 1000 for parallel simulation. The ex-
ecution time for AODV is: 90 minutes for sequential simulation and
15 minutes for the parallel one. When we restrict the execution
time to 10 minutes the maximum number of nodes is 200 for the
sequential and 1200 for the parallel simulation.

6. CONCLUSIONS
In this paper we explore the challenges and the benefits of time-

parallel simulation of wireless ad hoc networks. We introduce the
notion of perturbation of measurements and present a layer-by-
layer analysis of the impact of perturbations on the functioning of
the wireless network. This model allows us to conclude that:

• The largest perturbations are the ones affecting the routing
tables.

• There is limited benefit in making the simulation batch
smaller than the longest perturbation.

• Perturbations are amplified in highly loaded systems.

• Time parallel simulations can be more useful in the study
of the physical and the MAC layer than the routing and the
transport layer.

• Time-parallel simulation of reactive routing protocols yields
higher precision than that of proactive routing protocols.

Based on this investigation, we find ways to predict the accuracy
of a time-parallel simulation, and propose several methods such as

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

Segment Duration (s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le

DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

Segment Duration (s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le

AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(a) (b)

0 10 20 30 40 50 60 70
10

−1

10
0

10
1

10
2

Segment Duration (s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le

DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 10 20 30 40 50 60 70
10

−1

10
0

10
1

10
2

10
3

Segment Duration (s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(c) (d)

Figure 4: Relative error for packet loss ratio and throughput as function of the segment duration in a logarithmic scale; DSDV (left)
and AODV (right). (a) and (b) show the relative error for the packet loss ratio; (c) and (d) show the relative error for the throughput.

interval shift, warmup, and warmup with history compression to
improve the quality of the results. Finally, we present an imple-
mentation of the time-parallel simulation using equal intervals and
warmup periods of variable length. We study the accuracy of simu-
lated results for packet loss ratio and throughput for two popular ad
hoc routing algorithms: AODV and DSDV. The results of the simu-
lations are in good concordance with the predictions made through
the model. We conclude that time-parallel simulation allows us to
study relatively large wireless ad hoc networks consisting of a few
thousand nodes for extended periods of time.

Acknowledgment
The research reported in this paper was partially supported by Na-
tional Science Foundation grants ACI0296035 and EIA0296179.

7. REFERENCES
[1] PDNS – Parallel/Distributed NS. URL http://www.cc.

gatech.edu/computing/compass/pdns/, 2004.
[2] S. Andradóttir and T. J. Ott. Time segmentation parallel

simulation of networks of queues with loss or
communication blocking. ACM Transactions on Modeling
and Computer Simulations, 5(4):269–305, 1995.

[3] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheva.
A performance comparison of multi-hop wireless ad hoc
network routing protocols. In Proc. Mobile Comp. &
Networking, pages 85–97, 1998.

[4] R. M. Fujimoto. Parallel discrete event simulation. CACM,
33(10):30–53, 1990.

[5] M. Hoseyni-Nasab and S. Andradóttir. Parallel simulation by
time segmentation: Methodology and apps. In Proc. 1996
Winter Sim. Conf., pages 376–381, 1996.

[6] M. Hoseyni-Nasab and S. Andradóttir. Time segmentation
parallel simulation of tandem queues with manufacturing
blocking. In Proc. 1998 Winter Sim. Conf., pages 181–186,
1998.

[7] D. Johnson and D. Maltz. Dynamic source routing in ad hoc
wireless networks. chapter 5, pages 153–181. Kluwer
Academic, 1996.

[8] Y.-B. Lin and E. D. Lazowska. A time-division algorithm for
parallel simulation. ACM Transactions on Modeling and
Computer Simulations, 1(1):73–83, 1991.

[9] V. K. Madisetti, J. C. Walrand, and D. G. Messerschmitt.
Asynchronous algorithms for the parallel simulation of
event-driven dynamical systems. ACM Transactions on

0 5 10 15 20 25 30 35 40 45
10

0

10
1

10
2

10
3

Number of CBR Sources (Size = 512, Rate = 1 packet/s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le

DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 5 10 15 20 25 30 35 40 45
10

0

10
1

10
2

10
3

Number of CBR Sources (Size = 512, Rate = 1 packet/s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le

AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(a) (b)

0 5 10 15 20 25 30 35 40 45
10

−1

10
0

10
1

10
2

10
3

Number of CBR Sources (Size = 512, Rate = 1 packet/s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le

DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 5 10 15 20 25 30 35 40 45
10

−1

10
0

10
1

10
2

Number of CBR Sources (Size = 512, Rate = 1 packet/s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(c) (d)

Figure 5: Relative error for packet loss ratio and throughput as function of the network load in a logarithmic scale; DSDV (left) and
AODV (right). (a) and (b) show the relative error for the packet loss ratio; (c) and (d) show the relative error for the throughput.

Modeling and Computer Simulations, 1(3):244–274, 1991.
[10] I. Nikolaidis, R. Fujimoto, and C. A. Cooper. Parallel

simulation of high-speed network multiplexers. IEEE Conf.
on Decision and Control, 3(1):2224–2229, 1993.

[11] I. Nikolaidis, R. Fujimoto, and C. A. Cooper. Time-parallel
simulation of cascaded statistical multiplexers. In Proc.
SIGMETRICS ’94, pages 231–240, New York, NY, USA,
1994. ACM Press.

[12] C. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (DSDV) for
mobile computers. In SIGCOMM ’94, pages 234–244, 1994.

[13] C. Perkins and E. Royer. Ad hoc On-demand Distance
Vector Routing. In Proc. 2nd IEEE Workshop on Mobile
Comp. Sys. & Apps, pages 99–100, 1999.

[14] VINT project. the ucb/lbnl/vint network simulator-ns
(version 2). URL http://www.isi.edu/nsnam/ns.

[15] J. J. Wang and M. Abrams. Approximate time-parallel
simulation of queueing systems with losses. In Proc. 24th
Winter Sim. Conf., pages 700–708, New York, NY, USA,
1992. ACM Press.

[16] J. J. Wang and M. Abrams. Determining initial states for
time-parallel simulations. In PADS ’93: Proc. 7th Workshop

on Parallel & Distrib. Sim., pages 19–26, New York, NY,
USA, 1993. ACM Press.

0 5 10 15 20 25
10

0

10
1

10
2

10
3

Node Mobility (m/s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le

DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 5 10 15 20 25
10

−1

10
0

10
1

10
2

Node Mobility (m/s)

R
el

at
iv

e
E

rr
or

 fo
r

P
ac

ke
t L

os
s

R
at

io
 (

%
)

in
 L

og
ar

ith
m

 S
ca

le

AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(a) (b)

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

10
3

Node Mobility (m/s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le DSDV.ITERATION.0
DSDV.ITERATION.1
DSDV.ITERATION.2
DSDV.ITERATION.3
DSDV.ITERATION.4

0 5 10 15 20 25
10

−1

10
0

10
1

10
2

Node Mobility (m/s)

R
el

at
iv

e
E

rr
or

 fo
r

T
hr

ou
gh

pu
t (

%
)

in
 L

og
ar

ith
m

 S
ca

le AODV.ITERATION.0
AODV.ITERATION.1
AODV.ITERATION.2

(c) (d)

Figure 6: Relative error for packet loss ratio and throughput as function of the node mobility in a logarithmic scale; DSDV (left) and
AODV (right). (a) and (b) show the relative error for the packet loss ratio; (c) and (d) show the relative error for the throughput.

