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Abstract

We consider a model where commodity service providers are offering commodity computational services to a set of customers. We provide
a solution for the efficient distribution of tasks by forwarding the service requests on an overlay network comprised on random cycles. We
introduce algorithms for the creation, maintenance and repair of the overlay network. We discuss two algorithms, random wandering and weighted
stochastic forwarding, for the allocation of the tasks to providers. Both approaches are highly scalable because the algorithms use only limited
local information.

As we are designing our approach for use in a commercial setting, there is a requirement that the tasks, being a source of profits, be allocated
fairly to the providers. We investigate the fairness of the algorithms and show that adding a random pre-walk can improve the fairness.

Through a simulation study we show that the approach provides efficient task allocation on networks loaded up to 95% of their capacity.
Published by Elsevier B.V.
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1. Introduction and motivation

Grand challenge computing was traditionally considered the
domain of expensive, specialized hardware. In recent years,
however, a number of “public computing” initiatives have
exploited the abundance of commodity resources for solving
highly parallel applications. Examples are SETI@Home [22],
Folding@Home [19], the cryptographic challenges sponsored
by RSA Laboratories [21] or the Mersenne prime search [20].
The Berkeley Open Infrastructure for Network Computing
(BOINC, [1,18]) proposes to provide a framework more general
than the SETI@Home project, which can be shared by a
number of projects following this pattern of interaction.

Public computing is concerned with commodity tasks with
moderate processor and memory requirements. In addition,
public computing introduces certain simplifying assumptions,
which typically do not hold in other settings: there is a single
client for all tasks, there are no hard deadlines, and as there are
no financial transactions involved, the accounting, fairness and
security issues are of secondary importance. For instance, in the
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SETI@Home system, computers are “rewarded” for executing
a task, but they are not penalized for accepting a task for
execution and then not executing it. Public computing relies on
a “gift economy” of donated computing services. This model is
only suitable for computational problems for which there is a
perception of widespread benefits for the society.

We note that many high performance computing workflows
contain both specialized and commodity tasks.1 The optimal
solution for the specialized tasks is to send and queue them
at the appropriate specialized providers, for instance through
a system such as Condor [14]. The commodity components in
these workflows have a granularity similar to the subtasks of
the SETI@Home or Mersenne prime search, but they do not
share the other simplifying assumptions of those approaches.
In particular, there are a large number of providers as well
as consumers, the providers do not provide their services for
free, the consumers are interested in the fast execution of the
tasks, the tasks are not identical nor equivalent and there can be
dependencies between the tasks.

1 For instance, the authors’ experience with computational virology
workflows shows that approximately 75% of the workflow contains image
processing tasks on moderate datasets which can be written as commodity
tasks [7].
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In this paper we propose and study an architecture which
leads to the efficient execution of commodity tasks. The
architecture strongly relies on the equivalence properties of
commodity resources, but it takes into account the requirements
of a commercial system. The problem we are trying to solve
is that of efficient and fair task allocation. We need to pair
the providers of the resources with the consumers who have
tasks to be executed. We strive for an efficient utilization of
the resources and minimization of the overhead. In addition
we also need to consider the fairness towards the customers
(such that every customer has the same chance of its task being
executed) and towards the provider (such that every provider
will be allocated similar amounts of profit-generating tasks).

The approach we are proposing is based on forwarding the
task requests on a overlay network formed by n randomized
cycles (the n-Cycle overlay). We introduce algorithms for
the creation, maintenance and repair of the overlay network.
We discuss two algorithms, random wandering and weighted
stochastic forwarding, for the allocation of the tasks to
providers. Both approaches are highly scalable because the
algorithms use only limited local information.

The remainder of this paper is organized as follows. We
introduce the n-Cycle overlay network, algorithms for building
and maintaining it, and two distributed algorithms for task
allocation in Section 2. Simulation results are presented in
Section 3. We overview related work in Section 4 and conclude
in Section 5.

2. The n-Cycle task distribution algorithm

We consider a market of computations and borrow concepts
such as commodity task and commodity provider from
economic market models. In this new market providers p carry
out tasks t on behalf of clients c and receive a fee cost(p, t) for
their services.

Let us consider a set of tasks T = {t1, t2 . . . tk . . .}. A set of
providers P = {p1, p2, . . .} are commodity providers for the
tasks T if (a) any provider pi can execute any task tk and (b)
the performance differences between the providers in respect to
any task tk are negligible. This means that if a client c wants to
execute the task tk , it has no reason to pick any of the providers
over the other. Naturally, this leads to uniform pricing across
the providers:

∀pi , p j , tk cost(pi , tk) = cost(p j , tk).

A set of T consists of commodity tasks, if the revenue each task
tk ∈ T brings to a provider is proportional with its execution
time.2 Thus, for a provider the tasks are indistinguishable, the
provider has no reason to choose one task over another. This
leads to a pricing model in which the value of execution time is
constant across the providers

∀tk cost(p j , tk) = C · exectime(tk).

2 See the definition of a commodity good: the value of a commodity is
proportional with its quantity.
Note that we can have commodity providers, but differentiated
tasks. We call a computational market a commodity market if it
consists exclusively of the commodity providers and tasks.

This approach is similar to the one of network-centric
applications such as SETI@Home or Folding@Home. The
differences between our approach and one of these applications
are: (i) the financial aspect, and (ii) the presence of multiple
clients.

In general, shorter tasks are more likely to be considered
as commodity tasks, as the differences in their performance
are hidden by the overhead. On a commodity market, the
completion time of a task is determined completely by its time
to entering into execution. Thus it is critical that for a new
task t , a provider which can take it into execution is found in
an efficient way. Once the provider is found, the remainder is
an archetypal remote execution problem, for which there are a
variety of mature solutions.

This paper concentrates on the task allocation problem on a
commodity market. We had to make several design decisions:
centralized versus distributed algorithms, unicast or multicast
communication. A centralized approach for task allocation
is feasible for small and stable networks and for tasks with
relatively long execution time. Yet, a centralized approach is not
feasible for a large network of providers, which join and leave
the network dynamically and for relatively short tasks. The
approach we propose is inherently distributed, it does not use
global information, and does not involve single-failure points.

We choose to use unicast communication even though
popular resource allocation methods, such as the expanding
circle search, are based upon multicast. Let us consider the
way in which expanding circle search operates. The request
is replicated and sent first to the immediate neighbors; if no
appropriate provider is found, the request is sent out to a larger
circle, and so on. This approach does a good job to minimize
the time to find a provider, but has significant drawbacks. It
requires the provider to temporally reserve the resource if a
request is received. This reservation needs to be maintained
until the client explicitly notifies the provider of its decision,
or until a timeout occurs. This leads to long processing time. In
contrast, with a unicast approach there is a single task request
in the network; a positive response from a provider guarantees
that the provider will be chosen for the execution of the task.
The client is not motivated to seek multiple offers, given that
in a commodity network all providers are indistinguishable.
Of course, without the parallel communication implied by
the multicast model, the task allocation usually takes longer.
Our experiments show that the n-Cycle algorithms enjoy very
good allocation time performance and prevents the waste
of computational capacity by eliminating the time when the
resource is reserved, but not used.

In the n-Cycle architecture, the task requests are forwarded
on an overlay network, according to a forwarding policy. The
forwarding stops when a free provider is found. The number
of hops until the task is allocated is the principal performance
criteria of the system. The two components of the architecture
are (a) the creation and maintenance of the n-Cycle overlay
and (b) the forwarding policy together with the maintenance
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Fig. 1. A 3-Cycle overlay network on a network of 5 nodes. The first cycle
is ABCDE (shown with continuous line), the second cycle is ACEBD (dotted
line) and the third cycle is ADCEB (dashed line).

of the forwarding data. Our goal is to design efficient and
fully distributed algorithms for both steps, which maximize the
performance of the forwarding.

2.1. Creation and maintenance of the overlay network

The n-Cycle algorithm [4] creates an overlay network of
directional links. For any link A → B, we forward the task
from A to B, while status information travels from B to A. The
links of the overlay network form n separate cycles connecting
all the nodes in the grid. Such a cycle can be represented
by a permutation of the nodes of the network, with all the
nodes in the permutation being connected to the next, and the
last one connected to the first node. The randomness of the
cycles is an important part of the algorithm. For any n-Cycle
overlay network, every individual node has n nodes “upstream”
and n nodes “downstream”. A node forwards tasks to nodes
downstream and receives status updates from them. Similarly,
the node receives tasks from the nodes upstream and forwards
status updates to them. Fig. 1 shows a 3-Cycle forwarding mesh
on a grid of 5 nodes.

Our design decisions are driven by the following considera-
tions:

• To guarantee that an available provider can be found,
independently of the insertion point of the request, we use
cycles.

• To prevent re-forwarding of the request in the same
direction, the cycles are directional.

• To increase the number of providers that can be reached from
an entry point we allow multiple cycles.

• The individual cycles are random in relation to each other,
to prevent locality; the requests are inserted at a point to be
distributed as widely as possible in the network.

2.1.1. Centralized network maintenance algorithms
To maintain the overlay network, we need algorithms to

create a network from a set of nodes, and to add or remove
nodes from an existing network. A centralized implementation,
with a global view of the network is straightforward.
If we have a list of N nodes, an n-Cycle network can be
created from scratch by generating n − 1 random permutations
of the nodes. The first cycle will follow the natural order of
the list, the remaining n − 1 cycles will follow the order of the
nodes in the permutations. For all cases, we close the cycle by
connecting the last node to the first node.

Adding a new node to the existing overlay network can be
accomplished by making n “cuts” at random locations in the
existing cycles and “splicing” the node in the cycles at these
locations. These random locations can be chosen by generating
n random numbers between 1 and N .

Finally we can remove a node from the n-Cycle network, by
“tying together” its uplink and downlink nodes on each of the
individual cycles.

For all these algorithms, an additional consideration should
be to assure that the n downstream nodes from any node
are distinct. For the creation algorithms, we can check if this
condition is satisfied at the addition of every new cycle, and
either create a new permutation or fix the existing one by
changing the position of the offending node. For the addition
algorithm, if a certain cut leads to a duplicate downstream node,
we create a new random cut, until all the downstream nodes
are distinct. The problem is most difficult for the case of the
removal of a node. If the removal of a node leads to its upstream
nodes to have duplicate downstream nodes, we can fix this only
by changing the position of the offending downstream node
in the given cycle. Nevertheless, as n � N , the number of
these occurrences are small and they can be ignored for large
networks.

2.1.2. Decentralized network maintenance algorithms
As pointed out earlier, centralized algorithms are impractical

for very large networks consisting of several million nodes. At
the setup time it is reasonable to expect global knowledge about
the set of nodes which want to participate in the mesh. However,
overlay networks would normally start with a smaller number
of nodes and will be extended over time; so most nodes will be
added to the overlay using the dynamic addition algorithm. The
algorithms for dynamically adding and removing nodes from
the mesh are invoked many times during the lifecycle of the
network, thus it is desirable that they operate without global
information about the mesh.

The algorithm for removing the node requires only the
upstream and downstream neighbors of the node to be
removed—information which is readily available to the node.
The centralized algorithm for adding a node requires global
information about the mesh to determine the set of n random
nodes (“cuts”) where the new node will be inserted in the n
cycles. To maintain the randomness of the network, the cuts
have to be randomly chosen from the complete set of nodes
W , with a uniform probability. Let us assume that the cuts
are chosen only from a set W ′

⊂ W . Then, if we add a set
of nodes E = {e1, e2 . . . en} the resulting network assumes
an hourglass shape, with W ′ being the bottleneck. The task
forwarding algorithm will still work, but it will be unbalanced.

In the following, we present two fully distributed algorithms
for the insertion of a new node into the n-Cycle network.
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The first algorithm guarantees that the node is connected
through cuts which are selected from the full set of nodes
W , but its complexity is linear in the size of the network.
The second algorithm offers only a statistical expectation,
but its complexity is logarithmic. Both algorithms exploit the
properties of the n-Cycle network. For both algorithms we
assume that we have an estimate of the size of the network
N . Although this is global information, it is a much weaker
requirement than having a snapshot of the network; moreover,
overestimates are acceptable.

The first algorithm relies on forwarding a message on a
single cycle of the n-Cycle network. As the cycle contains all
the nodes, we can pick the random cuts by randomly selecting n
numbers between 0 and N , and reaching the nodes by sending
a message from node to node, in the direction of the uplinks.

The number of messages needed to add a single node is
O(N ). This makes the number of messages for building a
network through repeated additions O(

N (N−1)
2 ). This process

is naturally parallelized over all the nodes; in average, every
node needs to forward one message whenever a new node is
added to the network. However, the time for adding a single
node is still unacceptably high.

We now introduce a new algorithm which relies on the
randomness in the existing n-Cycle network to build future
randomness. The approach, described in Algorithm 2, performs
a random walk of k steps by randomly selecting one of the n
downlink nodes—basically jumping to a random cycle in each
step.

Algorithm 1 Adding a node A into the n-Cycle overlay network
using a random walk on a cycle
When node A to be inserted into overlay network W

generate n random numbers ci ∈ {0 . . . N }

sort them in increasing order
create a message M = {0, {c1, c2 . . . cn}, A}

send it to downlink 0
When node B receives a message M = {i, {ck . . . cm}, A}

If i == ck
make B’s k-th uplink the k-th uplink of A
make A B’s k-th uplink
If k < n

create new message
M ′

= {i + 1, {ck+1 . . . cm}, A}

send it to downlink 0
Else

create new message M ′
= {i + 1, {ck . . . cm}, A}

send it to downlink 0

Let us now consider the probability that a node n is not on
the list of the nodes reachable by k = dlogn(N )e+s. We assume
that there is an even probability for any node to be at the end of
any k step path, this probability is 1/N , with the probability
for a node not to be at the end of the path being 1 − 1/N .
There are nk such paths, so the probability of the node not
terminating any of them is (1−1/N )nk

= (1−1/N )nlogn (N )+s
=

(1−1/N )Nns
. However, limN→∞(1−1/N )N

= 1/e, therefore,
the probability that a given node will not be reachable in
dlogn(N )e + s steps is approximately ( 1

e )ns
for large N .

For instance, probability for a node not be reachable in a
10,000 node 5-Cycle network are 0.3679 for s = 0, 0.0067 for
Algorithm 2 Adding a node into the n-Cycle overlay network
using a random walk with cycle jumping
When node A to be inserted into overlay network W

For i = 0 to n
generate k = dlog(N )e + 3 random numbers
cm ∈ {0 . . . n − 1}

create a message M = {i, {c1 . . . ck}, A}

send it to downlink c1
When node B receives a message

M = {i, {c j . . . ck}, A}

If j == k
make B’s i-th uplink the i-th uplink of A
make A B’s i-th uplink

Else
create new message M ′

= {i, {c j+1 . . . ck}, A}

send it to downlink c j

s = 1, 1.3887 × 10−11 for s = 2 and 5.1656 × 10−55 for
s = 3. Thus, we conclude that performing dlogn(N )e + 3 steps
offers statistically sufficient guarantees that the new node will
be inserted at a random position chosen from the entire set of
existing nodes.

An additional requirement would be that every node have
the same probability of being picked, independently from the
starting point. One way to measure this probability is to count
the number of paths leading from the insertion point to the
given random point. Due to the structure of the network, the
probabilities are not uniform, but empirical evidence (see the
results in Sections 3.4 and 3.5) shows that the probabilities tend
to equalize with the increasing number of hops. An analytic
study of this problem is outside the scope of this paper.

For this algorithm, the time complexity is much smaller,
O(nlogn(N )), which leads to the complexity of the complete
network building O(nN logn(N )).

2.1.3. Robustness and recovery from failures
In any large distributed system, node failures are a fact

of life. If a node fails unexpectedly, it will not be able to
correctly remove itself from the n-Cycle network. This disrupts
the structure of the overlay network. In the following, we
investigate the consequences of such a disruption, as well as
preventive and repair measures.

The robustness of an n-Cycle network has two aspects: (a)
the connectivity of the network and (b) the integrity of the
cycles. We will see that the n-Cycle network is structurally
very robust from the point of view of connectivity, but relatively
vulnerable from the point of view of the integrity of the cycles.

Let us first consider what is happening in the case of a
node failure. The n upstream nodes will lose one of their
downstream nodes, remaining with only n −1 nodes to forward
tasks to. Similarly, the n downstream nodes will remain with
only n − 1 nodes to receive tasks from. Assuming that the
connections between these nodes are based on a guaranteed
delivery transport layer, the loss of the connection will be
discovered at the latest at the first attempted transmission. In
addition to this, all the n cycles are now interrupted. We note
that the loss of a node does not affect in a significant way the
behavior or performance of the network. Nevertheless, as the
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failures are additive, the overlay network needs to be protected
from continuing deterioration and eventually, repaired.

A simple way to add some level of redundancy in the
n-Cycle network is by adding a bypass, maintaining in the node
information links to the second, third and so on nodes in the n
cycles both in the upstream and in the downstream direction.
Normally a node needs to maintain information about 2n nodes
(n upstream and n downstream). With a single bypass, this
number will become 4n, while with a double bypass, 6n. This
is still a relatively modest number of nodes to maintain (10, 20
and 30 nodes for a 5-cycle network).

Let us now consider how the connectivity of the network is
affected by failures in the nodes. In order for a single node to
become disconnected from the n-Cycle network, a set of 10,
20 or 30 exactly selected nodes need to fail simultaneously
(before the node has a chance to repair any connection). As
these nodes are randomly scattered over the network, there is
no single failure (such a disconnected subnetwork) which can
trigger such a simultaneous failure of nodes. Even if it happens,
the disconnection of a single node is a minor problem compared
with the failure of 30 nodes. If this happens, however, the node
can simply reinsert itself into the network.

A more major problem would happen if an n-Cycle network
would separate into two networks of approximately equal size.
However, this is made impossible by the structure of the
network. Let us consider the hypothetical case when a network
on N nodes is split into two networks of equal size A and B by
a series of failures. To have this, we need all the connections to
remain inside the two disjoint networks. The random structure
of the network guarantees that for any node, any given upstream
or downstream node has an equal probability to be in the subset
A and B. The probability of a node to have at least one of its
upstream or downstream nodes in the opposite subset is the
very high 1 − 2−30. All these types of nodes need to fail to
prevent connectivity between A and B. In conclusion, short of a
major failure simultaneously shutting most of the network, the
n-Cycle network will maintain connectivity.

Let us now consider the repair of the n-Cycle network.
While the loss of connectivity in the network is statistically
improbable and requires a massive number of failed nodes, the
integrity of the cycles can be lost with only a small number
of failed nodes. In a network without a bypass, the failure of
a single node can lead to a disconnected cycle. If the nodes
maintain a single or double bypass, the failure of one or two
nodes can be quickly and simply corrected, by simply skipping
the failed node. The failure of 2 or 3 nodes, for single or double
bypasses, however, still leads to the disconnection of the cycle.
The simultaneous failure of 3 nodes is a very rare occurrence,
thus we can afford to use relatively expensive algorithms.

In the following, we discuss an algorithm for repairing a
cycle. Let us consider the case when a series of failures lead to
the situation that cycle i is disconnected in k different locations.
This means that we will have k end-nodes (which are missing
the downstream node on the cycle i) and k start-nodes (which
are missing the upstream node on cycle i). Our goal is to
connect every start-node to an end-node, not necessarily in the
order in which they were in the original network. This can be
achieved with a double expanding cycle search starting from
both the start and the stop node. The disconnected node will
send to its remaining 2n − 1 connections a start- or end-point
advertisement message indicating its disconnected cycle i and
its end or start status. If the opposite cycle was not found, in the
next cycle the message will be sent to all nodes two hops away
and so on. Whenever a node receives both types of messages
(start and end) for the same cycle, it notifies the two nodes
which reconnect the cycle.

Let us analyze the computational complexity of this
algorithm. Let us consider that we have N nodes and both sides
had broadcasted to K nodes. The probability that any given
node will have a start/end advertisement is pstart = pend =

K/N . The probability that there is a node which has both
advertisements is:

pmatch = 1 −

(
1 −

K 2

N 2

)N

.

This probability becomes very close to 1 for relatively
small K ’s compared to N . For instance, for K = 90 and
N = 10,000, we get pmatch = 0.9997063092544672. However,
K = 90 represents only two steps, each from the disconnected
start-node and end-node (as these nodes have only 9 active
neighbors). Thus, using this algorithm, the cycles can be
repaired quickly and with limited cost in terms of messages or
network bandwidth.

2.2. Distributing tasks on the overlay network

Once the overlay network is built, we can use it to distribute
tasks to the providers. There are two main classes of forwarding
algorithms: stateless algorithms do not use any information
about the load of the individual nodes, relying exclusively on
the structure of the overlay network and rules for forwarding.
In contrast, stateful algorithms maintain knowledge about the
current state of the network, and use this information in the task
forwarding. Naturally, we expect better performance from the
stateful algorithms, but this performance improvement comes
at the cost of maintaining the load information. The challenge
is to balance the cost and benefits of the routing information.
We discuss two forwarding algorithms: the stateless random
wandering algorithm and the stateful weighted stochastic
forwarding algorithm.

2.2.1. Random walk (RW)
The Random walk (RW) task forwarding algorithm is based

on the following rules: if current host is free, accept the
incoming task. If not, then forward with equal probability the
task to any downstream node. The number of hops until the
task is accepted depends on the average load of the network l,
calculated as the number of busy nodes over the total number
of nodes N . In a first approximation, for any number of hops
h, the probability that a node will be allocated in less than h
hops is (1 − l)h . Although this approach leads to satisfactory
average values as long as the load is not getting close to 100%,
the maximum values can be (potentially) indefinitely long.



L. Bölöni et al. / Future Generation Computer Systems 22 (2006) 676–687 681
2.2.2. Weighted stochastic forwarding
The weighted stochastic forwarding (WSF) uses information

collected from downstream nodes in the forwarding decision.
Every node maintains its weight w which represents the
desirability of the node as a forwarding target for a task. The
weight w is composed in equal parts from (a) the ability of the
node to receive a task for execution and (b) the weights of the
nodes downstream from the node. The new candidate weight is
computed as follows:

w′
=

wself

2
+

n∑
k=1

wk

2n
. (1)

The candidate weight w′ will replace the weight w only if
|w − w′

| > 1/2n. If the weight is updated, it is propagated
to the upstream nodes using weight update messages. This
heuristic limits the propagation of the weight update messages.
The acceptance or the termination of a task triggers a change
of 0.5 in the weight of the current node, but only 1/2n in the
n immediate upstream nodes, and (1/2n)k in nodes k steps
away in the upstream direction. The effect of a single task
allocation or termination is normally limited to n weight update
messages to the immediate upstream nodes (although multiple
downstream allocations can trigger further messages through
the addition of received weights).

At any given node, a task is either taken into execution (if
the node is free), or forwarded to one of the downstream nodes
with a probability proportional with their weights. A time-to-
live (TTL) based approach limits the number of hops a task
can be forwarded, the TTL being decreased at every hop. When
TTL reaches 0, the request is sent back to the originating client
as rejected. The complete approach is presented in Algorithm 3.

2.3. The fairness of the task distribution algorithms

The architecture presented in this paper is based on the
voluntary cooperation of resource providers and customers.
This cooperation can be assured only if the algorithm is viewed
as “fair” by the participants.3 In this section, we consider the
issues of fairness for this algorithm, and propose modifications
which increase its fairness at the cost of slight reductions in
efficiency.

There are two, largely independent viewpoints towards the
fairness of the task allocation algorithm. From the point of
view of the customers, fairness means that the servicing of a
task does not depend on its customer. From a point of view of
providers, fairness means that every available provider has an
equal chance to service a given task. To assure the cooperation
of customers and service providers the algorithm should treat
both groups fairly.

2.3.1. Fair treatment of customers
A fair treatment of customers means that every task of every

customer is treated equally: every task should have the same

3 We note that it is outside the scope of this paper to propose methods of
detecting participants who feign cooperation, or cheat through other methods.
Algorithm 3 Weighted stochastic forwarding
Initially

wself = 1
wi = 1, ∀i ∈ {1 . . . n}

When task t received by node N
If wself == 1

take t into execution
wself = 0
calculate new weight w′

If |w − w′
| > 1

2n
w = w′

send the new weight w = w′ to all upstream nodes
Else

If TTL of the request is 0
send the task t back to the originator as rejected

Else
decrease the TTL of the request with 1
forward t to downstream node i with probability wi∑n

k=1 wk
When execution of task t is terminated at node N

wself = 1
calculate new weight w′

send the new weight w = w′ to all upstream nodes
When weight w′

i received from i-th downstream node
wi = w′

i
calculate new weight w′

If |w − w′
| > 1

2n
w = w′

send the new weight w to all upstream nodes

chance of being accepted or rejected. A less important factor is
the number of hops the task needs to travel until it is accepted
for processing. As long as the number of hops is small (on the
order of 10–20), this factor is of little importance.

The task distribution algorithms do not label the requests
based on the customer; therefore, the only possible source
of unfairness towards the customers is the distribution of the
insertion points.

For networks with a single insertion point, every task is
treated identically, and its acceptance/rejection and hops until
allocated depend only on the current state of the network.
The same considerations apply to the case where the tasks are
inserted at a random point in the network, provided that the
insertion point is uniformly distributed and independent of the
previous tasks.

Unfair treatment of customers can happen if there is a
small number of fixed insertion points, with different rates of
incoming tasks. Intuitively, every insertion point “fills up” the
grid nodes in its vicinity. Tasks which arrive at insertion points
which have a higher rate of incoming tasks have to travel farther
until an available provider is found. The question is whether for
networks with a very high load this can make the difference
between a request being accepted or rejected. Let us recall that
after dlogn(N )e+3 hops, the location of the packet is effectively
random. In practice, however, the TTL of the request is set to
values significantly larger than dlogn(N )e + 3. For instance in
our experiments for a 5-Cycle network of 10,000 nodes with
dlog5(10,000)e+3 = 9 we used a TTL of 200 hops. Therefore,
the choice of the insertion point is basically irrelevant after the
first 9 hops.
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Table 1
Simulation parameters

Input parameters
Number of grid nodes 10,000
Overlay network 5-Cycle
Task arrival Poisson-distributed arrival, mean 10 . . . 200 tasks/s
Task servicing Normally distributed, mean 60 s/task
Simulation time 5000 s
Pre-walk hops 0 and 9
Output parameters (Measurements)
Hops per task Number of hops a task is forwarded until it finds a host for execution (avg, max)
Average load Ratio of busy vs. total nodes
Discarded tasks Number of tasks which were discarded
We conclude that even in the most unfavorable conditions,
every task has the same chance of being allocated, with only
minor differences in the number of hops until allocated for
the case of a small number of insertion points with highly
asymmetric loads.

2.3.2. Fair treatment of providers
The fair treatment of the providers means that each provider

has the same chance of being allocated a task. In practice, it is
easier to measure the number of tasks allocated to a provider
during a period of time. Since every allocated task provides
some revenue, a selfish provider wishes to have as many tasks
allocated as possible.

Both the random wandering and weighted stochastic
forwarding are greedy regarding the allocation of tasks—if
a request reaches an available host it will be immediately
allocated. This leads to an unbalanced (and, according to our
definition, unfair) load distribution. The nodes in the vicinity
of the insertion point will be almost always fully loaded,
while nodes farther from the insertion point will be idle.
Paradoxically, this effect is more pronounced for lighter loads.
If the number of tasks is sufficiently small, the entire load can
be handled by the neighbors of the insertion point, while the
rest of the network would not receive any task.4

It follows that the algorithms ensure provider fairness only if
the insertion points are selected at random. It is not enough for a
consumer to choose an insertion point randomly, and later send
all its tasks through that point; the random selection needs to be
repeated for every task. This would require every consumer to
have global information about the network.

By exploiting the built-in randomness of the n-Cycle
network, we can make a small modification in the forwarding
algorithms which will ensure fairness at the cost of a small
decrease in performance. We require every task description
packet to perform a random pre-walk of length m before the
task can be taken into execution. The pre-walk number m will
be part of the task description packet. As long as m > 0, the
packet will be forwarded randomly according to the random
wandering algorithm, but it will not be allocated to any node

4 The number of providers which will be allocated tasks can be determined
by considering the arrival rate and distribution of the tasks, the servicing rate of
N nodes and a simple queuing theoretic model.
even if the current node is free. At every forwarding, the pre-
walk number will be decreased by 1. The node at which the
packets arrive with m = 0 will be called effective insertion
point. From then on, the weighted stochastic algorithm will be
followed.

With the same reasoning as in Section 2.1.2, we can prove
that a value of m = dlogn(N )e + 3 leads with a statistical
certainty to a random effective insertion point. We study the
fairness properties of the presented algorithms with and without
pre-walk in Section 3.3.

We note that participating in pre-walk is not in the immediate
interest of the providers. Some providers might cheat, by
accepting a task for execution, before the required pre-walk
tests. The potential solutions to this problem (such as by the
use of signatures) is outside the scope of this paper. We note
that many networking protocols (such as the TCP rate control)
rely on the cooperation of the participants without deploying
any cryptographic assurance, despite the fact that there is a
possibility of the nodes cheating, for instance by not reducing
their rate in the case of congestion.

3. Simulation studies

We have used the YAES [3,24] simulation framework to
simulate the behavior of the algorithm. Table 1 illustrates the
input and output parameters of the simulation as specified in
the YAES configuration files.

3.1. Performance study of the forwarding algorithms

First we present the results of a performance study where a
gradually increasing number of tasks are inserted in the network
through a single insertion point. The tasks are forwarded using
the random wandering and weighted stochastic forwarding
algorithms. We measure the average and maximum number of
hops required for a task to be assigned to an available node.
To prevent the tasks to wander indefinitely in the network, we
assign to every request a time-to-live (TTL) value, which in our
experiments was set to 200 hops. Once the TTL of a packet
expired, the receiving node will forward it back to the client,
instead of forwarding it to one of the downstream nodes. Thus
the client receives prompt notification that the task was not
allocated and can take appropriate action. We also measure
the load of the network (the ratio of the busy nodes to the
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Fig. 2. Number of hops (average and maximum) and network load vs. the
incoming number of tasks per second, using random wandering on the n-Cycle
overlay network.

Fig. 3. Number of hops (average and maximum) and network load vs. the
incoming number of tasks per second, using the weighted stochastic forwarding
algorithm.

total number of nodes). We show the graphs for the number
of hops needed for a task to be allocated on the same plot
with the graphs for the load for a better representation of the
relationship between these quantities. The flattening of the load
graph indicates the level where requests start to get discarded.

The results for the random wandering algorithm are
presented in Fig. 2. For light loads, this algorithm shows very
good results (due to the randomizing nature of the n-Cycle
network). However, for greater loads, the maximum number of
hops start to increase.

The results for the weighted stochastic forwarding algorithm
are presented in Fig. 3. We note that both the average and
maximum number of hops stay virtually constant at a very
low number (under 10 hops), up to loads approaching 95%.
For instance, at a load of 90% the maximum will be as low
as 10 hops, versus about 75 hops for the RW algorithm. At
that moment the number of hops increases dramatically as the
algorithm struggles to find free nodes in an overwhelmingly
busy network.

The relatively constant number of nodes for moderate loads
is explained by the single insertion point. The nodes closer
to the insertion point will be filled in relatively quickly, so
the majority of tasks need to “hop over” the busy nodes
in this area. A good approximation of the size of this
constant value is logN (|W |) which in our case is log5(10,000),
Fig. 4. The cost of task allocation expressed as the number of messages per
second which need to be processed by the algorithms as a function of the
incoming tasks.

approximately 5.7. If we choose a random insertion point, the
diagram has a similar shape, but with an average number of
hops for lightly loaded networks much smaller (about 1–2
hops).

3.2. The cost of the forwarding algorithms

The use of an overlay network for task allocation comes
with the cost of the messages which need to be forwarded by
the individual nodes. These messages are task requests, and,
in the case of weighted stochastic forwarding, also messages
for the maintenance of the status information. In a series of
experiments, we measured the number of messages forwarded
by every node for the RW, WSF and WSF with pre-walk cases
(Fig. 4). As expected, the cost of the WSF algorithm is higher
due to the existence of status messages. Pre-walk also adds to
the number of messages which needs to be processed by the
system. However, in general, the average number of messages
processed by the nodes is quite low. Even for very high loads,
it stays at a level of about 1 message every 2 s. This load can be
easily handled by any node of the grid.

3.3. Fairness measures

In a separate series of measurements, we measure the
fairness towards the providers as a function of the number of
tasks arriving to the network. The measurements are performed
by counting the number of tasks executed by every host. These
values are then sorted and four values picked at the minimum,
maximum, 5% and 95% percentiles. The reason for plotting
the intermediate values is to filter out providers having special
positions in the network. For example, for a single insertion
point network, the insertion point has a special situation, given
that all incoming tasks are passing through it. We performed all
the measurements using WSF.

Fig. 5 shows the results of the measurements for the case of a
single insertion point. As expected, the maximum value shows
that the insertion point will achieve 100% load. The bottom 5%
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Fig. 5. Fairness in terms of tasks allocated to providers. Single insertion point,
no pre-walk, weighted stochastic forwarding.

has no tasks allocated for task arrival rates as high as 40 tasks/s.
The gap between the four measurements is higher at low loads,
and lower at high loads when even providers far from the entry
point will be allocated tasks. This measurement validates our
prediction that for a single insertion point the allocation method
leads to unbalanced and unfair distribution of tasks.

Fig. 6 presents the measurements for the case of a
random insertion point. Again, the simulation results match
the prediction; the number of tasks executed by the nodes are
in a relatively narrow range, without standout values. As an
observation, the reason of the spread in the values is due to the
inherent randomness (Poisson arrival, random insertion point,
normally distributed execution time) and the limited timeframe
of the simulation. Simulated over longer timeframes, these
values are converging to a single line. This is basically the ideal
fairness, but as we stated before, it requires global information
about the network to prepare a proper random insertion point.

Fig. 7 shows the measurements for a single insertion point
and the task distribution algorithm including a 9 hop pre-
walk. The value of 9 is the empirically obtained value of
dlogn(|W |)e + 3 for |W | = 10,000 and n = 5. We should
note the resemblance of the diagram to Fig. 6. We conclude
that a pre-walk with sufficient number of hops achieves the
same results as the random insertion point approach, while still
requiring only local information.

3.4. Comparison of the three methods of creating an n-Cycle
network

We proposed three methods for the creation of the n-Cycle
overlay: through a centralized approach, through the traversal
of a single cycle and through multi-cycle jumping. While the
first two methods are equivalent in terms of the randomness
of the network created, the multi-cycle jumping offers only
a statistical probability that the newly inserted node is in a
random position uniformly chosen from the complete network.

In this series of experiments, we compare the n-Cycle
networks created by the three approaches, as well as the cost
of creation. Fig. 8(a) compares the cost of creating a network
using the single cycle traversal versus the multi-cycle jumping
approach. As expected, the cost of single cycle traversal
increases quadratically with the number of nodes, and it is
Fig. 6. Fairness in terms of tasks allocated to providers. Random insertion
point, no pre-walk, weighted stochastic forwarding.

Fig. 7. Fairness in terms of tasks allocated to providers. Single insertion point,
9-hop pre-walk, weighted stochastic forwarding.

significantly larger than the N · log(N ) cost of the multi-cycle
jumping. The centralized creation method is not comparable in
these terms, as it requires a global view of the network.

Fig. 8(b) compares the performance of the n-Cycle networks
created with the three methods on a network of 10,000
nodes using the weighted stochastic forwarding algorithm.
We can conclude that the performance is virtually the
same for all the three creation methods, with a very slight
disadvantage of the multi-cycle jumping method, visible
only at high loads. These results establish the multi-cycle
jumping method as being the preferred method of creating and
maintaining an n-Cycle network; it has an order of magnitude
better creation performance and virtually indistinguishable
forwarding performance compared with more expensive
methods.

3.5. The effect of correlation between the cycles

The n-Cycle algorithms rely on the randomness of the
network to provide an efficient and fair distribution of the
tasks. Correlated sequences in the cycles, or local clusters of
interconnections, lead to a degradation of the performance. In
this series of experiments, we measure the performance of the
network (in terms of average hops needed to allocate a task)
on n-Cycle networks with various levels of correlation. If the
cycles are created from independently created permutations,
there is, of course no correlation between them. However, if
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Fig. 8. (a) The number of messages required to create a network using random
walk on a single cycle vs. random walk with cycle jumping as a function of the
node count. (b) The number of hops needed to allocate a task using WSF for
the three different creation methods.

they are created using the cycle jumping algorithm, and the
number of jumps is too low, the next hops will be selected from
the same neighborhood—leading to an undesired locality in the
structure of the network. In Section 2.1.2 we showed that using
log5(|W |) + 3 hops, where |W | is the size of the network, leads
to a statistical certainty that no undesired locality will appear
in the network. To illustrate this effect, on Fig. 9 we show
the shape of the n-Cycle network, for a network of N = 50
nodes, created with the cycle jumping method with log5(N )−1,
log5(N ) and log5(N ) + 1 hops, respectively. As we see, if the
number of hops is too low, the links tend to be more dense
around the perimeter of the cycle, which shows that they are
mostly local links.

To study the effect of correlation on the performance of
the task allocation, we use an artificially weakened version
of the cycle-jumping network creation method. Instead of
the analytically determined logn(N ) + 3 hops, we create
networks with logn(N ), logn(N ) − 1 and logn(N ) − 2 hops
respectively. The results in Fig. 10 show that there is relatively
little performance degradation at the logn(N ) − 1 level,
but performance suffers significantly at logn(N ) − 2. Task
allocations which take 6–7 hops on a random network would
take 60–140 hops if correlations are present.

3.6. The influence of the order of the network

In this series of experiments, we study the influence of the
order of the network in the performance of the forwarding
algorithms. Evidently, the higher the order of the network,
the higher performance we expect, due to the additional
connections which can be exploited. The higher order however
comes with a price. The messages needed for the creation
of the network, and the number of update messages for the
weighted stochastic forwarding, are linearly increasing with
the order of the network. There is no performance penalty
with the increasing order for the random wandering allocation
algorithm.

We measure the average number of hops to allocation for
networks ranging from 2-Cycle to 25-Cycle. Fig. 11 plots these
values for a relatively highly loaded grid. The measurements
were taken with the weighted stochastic forwarding algorithm.
With 170 tasks per second on a network of 10,000 nodes, the
load is just below the full capacity of the grid, which amplifies
the performance differences. Even in these cases, we find that
the increase of the order beyond 5-Cycle led to insignificant
increase in performance. The increase of order from 2-Cycle to
5-Cycle increased the performance with approximately 25%. In
conclusion, the 5-Cycle network represents a good compromise
in most cases.

4. Related work

This paper proposes an architecture where the commodity
tasks are allocated on a grid by forwarding the requests on a
Fig. 9. Visualizing an n-Cycle network of N = 50 nodes created with the cycle jumping method with log5(N ) − 1, log5(N ) and log5(N ) + 1 hops, respectively.
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Fig. 10. The effect of the correlations between the cycles of the n-Cycle overlay
on the performance of the forwarding algorithm. We compare networks created
with the cycle-jumping method with logn(N ), logn(N ) − 1 and logn(N ) −

2 hops. The smaller the number of hops during creation, the stronger the
correlation between the cycles.

Fig. 11. The effect of the order of the network on the performance of the
forwarding algorithms for a heavily loaded network.

overlay network. Similar designs are proposed in [2,6,9]. The
Wire Speed Grid Project [23] proposes an architecture in which
the task allocation is performed hardware accelerated on the
network routers. [11] proposes a model for the allocation of
cooperating tasks on networks of workstations.

Alternatively, we can see our work as the problem to
discover available resources on the grid. A super-peer model
for resource discovery is proposed in [8]. A QoS aware task
scheduling model is discussed in [15].

The algorithms presented in this paper have their closest
relatives in the class of distributed algorithms which create and
exploit an additional graph structure, built on top of the existing,
fully connected internet (often called overlay network). One of
the most important classes of overlay networks are Distributed
Hash Tables (DHT). These networks store pieces of data with
their associated unique key. Every key and the associated data
is mapped to a certain host, which is normally not known to the
user. Data can be inserted and retrieved from a DHT without
knowledge on where it will actually be stored—in fact, it is
possible that the location of data will change as hosts join and
leave the DHT. A number of DHT architectures were proposed
such as CAN [10], Chord [13], Pastry [12], and Tapestry [16].
For most of these networks, every node maintains O(log(N ))

neighbors and a message can be routed in O(log(N )) hops.
The properties of a DHT allow us to use it as the basis for

a resource discovery and allocation framework. An example of
this is the Self-Organizing Flock of Condors project [5] which
is augmenting the Condor program with a DHT based on the
Pastry overlay.

The CCOF (Cluster Computing On The Fly) project [17]
implements a system in which idle cycles are harvested from
a collection of computers. The system employs community
based overlay networks, which allow hosts to dynamically join
and leave. For the actual resource allocation step, a variety of
search algorithms were implemented and measured, the most
complex being Advertisement Based Search and Rendezvous
Point Search.

The n-Cycle differs in many ways from the approaches
outlined in this section. Its overlay network is not based
upon Distributed Hash Tables. It does not use multicast
communication. The algorithm requires exclusively local
information both for the actual forwarding and the maintenance
of the overlay network. The grid model considers commodity
tasks and commodity resource providers and under this
assumption it is more efficient to queue the tasks on the
consumer side than on the provider side. This differentiates n-
Cycle from models based on provider side queuing, which are
more suitable for specialized resources, e.g., Condor.

The system assumes some sort of payment services. When
a host plays both the role of a consumer and a provider there
is no guarantee that the credits and debits of a host will cancel
out in time. The “long term fairness” is not an inherent property
of our algorithm, and the fairness of the task allocation must be
ensured with explicit techniques.

5. Conclusions and future work

In this paper, we introduce two algorithms for task allocation
on a commodity grid. Our analysis based upon simulation
studies shows that the algorithms are: (a) scalable and produce
very good results even for very large networks of several
million nodes, and (b) efficient.

Our future work covers extensions and a more extensive
analysis of the algorithms. An important extension is to design
algorithms for heterogeneous tasks and heterogeneous services.
We also plan to develop congestion control algorithms and to
continue our studies of fairness in a more complex setting.
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