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Abstract—In this paper, we propose an infrastructure-
independent opportunistic mobile social networking strategy
for efficient message broadcasting in campus environments.
Specifically, we focus on the application scenario of university
campuses. In our model, the students’ smart-phones forward
messages to each other. The messages are created spontaneously
as independent events in various places of the campus. The events
can be either urgent security alerts or private announcements
to the students currently on the campus. Our proposed state-
based campus routing (SCR) protocol is based on the idle and
active states of the students in indoor and outdoor places.
The proposed model is analyzed through extensive network
simulations using mobility datasets collected from students on
University of Milano and University of Cambridge campuses. The
opportunistic network model and the SCR protocol are compared
with epidemic, epidemic with TTS (Times To Send), PROPHET,
and random routing protocols. The message delivery performance
of SCR is close to Epidemic and PROPHET while SCR reduces
the amount of message transmissions.

I. INTRODUCTION

Recent advances and the increasing popularity of mobile
devices allowed various applications of opportunistic social
networks. Opportunistic networks are considered as a type of
ad hoc networks and data transfer occurs in a hop-by-hop
manner among mobile devices during encounters via Bluetooth
or Wifi connections. The topology of these networks change
frequently due to frequent addition or removal of the nodes.
Moreover, data forwarding decisions during encounters have
critical importance in the network performance. For instance,
forwarding data in each encounter may cost the network
excessive energy consumption, while limiting data transfers
may prevent messages to arrive their destinations.

There are two distinguishing characteristics of routing
methods in opportunistic networks from the methods in con-
ventional wireless networks. The first is related to the cost of
links discovered by the routing algorithm that are supposed
to remain constant in traditional wireless network settings.
Some traditional routing approaches focus on discovery of the
network structure before transmission of packets. In oppor-
tunistic routing approaches, however, it may not be possible to
calculate all routes to the destinations because of the dynamic
structure of the network. The second characteristic is that
the traditional routing approaches mostly consider connected
networks. On the other hand, in opportunistic networks, nodes
may become disconnected due to mobility of a walking person
or a vehicle [1].

Most of the previous work in opportunistic networks aim
for a generic routing methods which are applicable to various
scenarios such as the most popularly used epidemic routing [2].
However, due to the fact that mobility of the nodes drastically
change [3] the network performances and mobility depends on
the environment, we consider mobilities in specific scenarios.
For instance, a person in an urban area may use a car or
take a bus to go to work. On the other hand, in university
campuses, vehicle use is mostly limited and students spend
time in preplanned locations such as classrooms or food courts
and walk between these locations during the day.

While in this study we focus on the university campuses as
an application scenario, our routing protocol can also be used
in similar environments such as the large corporate campuses
or theme parks where routine activities are mostly taking place.
Some routing protocols such as dLife [4] require previous
encounter information of the nodes in the network. Our method
differs from these models in the sense that our routing strategy
does not require prior knowledge about the system. This allows
the network to maintain similar performances under various
conditions such as newly added nodes or frequency changes
of message generations in the system.

Our application scenario that we describe in Section III
is based on broadcasting messages on a university campus.
The messages are created in various regions of a campus such
as department buildings or current locations of the patrolling
security personnel. We basically consider the situation where a
message is created as an event. The events are spontaneously
happen in random times of the day due to security reasons
such as fire alarms, weather alerts (e.g., hurricane alert),
closed roads, and so on. Moreover, the events can be private
announcements that are only delivered to the students in the
campus such as a parking lot closure or a traffic accident. The
smart-phones of the students are used for hop-by-hop wireless
transmissions. Each message has an expiration date according
to the type of event.

We propose a routing protocol to work efficiently in the
campus environments in Section IV. In our state-based campus
routing (SCR) approach, the nodes change their generation of
message delivery probabilities according to their states. The
nodes can be either in idle or active state during their lifetimes.
The current states of the nodes are based on the regions that
the nodes are located such as hot-spots or deserted regions.
The efficiency of the proposed network model and the SCR
strategy is compared with epidemic, epidemic with TTS(Times
To Send), PROPHET, and random routing protocols using



mobility datasets from University of Milano and University of
Cambridge in Section V. SCR provides close to Epidemic and
PROPHET in terms of the delivery success rates and message
delays, while it significantly reduces the message transmission
counts.

II. RELATED WORK

Let us briefly summarize the related literature on oppor-
tunistic routing strategies. Vahdat and Becker [2] propose
epidemic routing as the flooding approach in opportunistic
routing. Epidemic routing provides minimum message delays
and maximum success rate in the case where nodes have
unlimited buffer capacities. There are routing strategies that are
experimented with data collected from university campuses.
These routing strategies mostly require nodes to share their
collected network information with each other. PROPHET
routing model that is proposed by Lindgren et al. [5] is an
example of such routing strategies. SCR does not require this
type of data exchange as they bring energy overhead and
excessive message traffic.

Su et al. [6] provide Link State opportunistic routing
strategy that is experimented using campus data. Link State
routing strategy requires nodes to exchange their link state
weights with each other besides their messages. Mtibaa et
al. [7] propose PeopleRank routing where nodes send each
other their PeopleRank values and social graph neighbors in
each encounter besides their messages. 3R routing [8] requires
nodes to learn the encounter pattern of the network before
sending packets which may not fit a case where immediate
message delivery is required in the campus environment.

Song and Katz [9] proposed a routing strategy in which
nodes calculate the sending probability based on contact fre-
quency in a campus environment. Their strategy requires more
packet transmissions than PROPHET, but less than epidemic,
whereas SCR sends less packets than epidemic and PROPHET.
Srinivasan et al. [10] study epidemic routing on synthetically
generated campus mobility data based on students’ lecture
schedules. Solmaz and Turgut [11] study the use of ad hoc
networks in theme parks for event coverage, where they
use mobile sinks for gathering messages from sensor nodes.
Rahmatizadeh et al. [12] study routing towards a mobile sink
using virtual coordinates.

Feng and Chin [13] experiment different variations of
the epidemic routing in campus environments. Moreira et
al. [4] propose dLife routing method using daily life activity
information based on the Helsinki city trace data. The trace
data contains human walk and vehicle mobility traces. Our
strategy is different from the aforementioned work in terms of
the application scenario of broadcasting messages created by
the events. Lu et al. [14] propose Nodes Density Adaptive Op-
portunistic (NDAO) forwarding protocol where a node sends
packets if its number of neighbors is above a threshold value.
Although NDAO produces satisfactory results for delivery ratio
and latency, the energy overhead is not studied.

III. MODEL DESCRIPTION

A. Campus environments

The campus environments are places where most actions
happen according to daily routines. Daily activities of students
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Fig. 1. A daily walk trace of a student in the UCF campus

and staff follow a routine. For instance, they go to classes at
the predetermined times of the day, go to lunch and dinner in
the food courts and sometimes go to cafeterias in the campus
to have time with their colleagues or friends. People’s weekly
activities are also scheduled for every week. As an example,
students and professors go to classes some specific days of the
week.

We collected 18 daily mobility traces using GPS-enabled
smart-phones and observed the daily mobility patterns of the
students from our research group. An example daily walk
traces in the University of Central Florida (UCF) campus can
be seen in Fig. 1. This figure shows the waiting times in 5
pause locations near the trajectory lines. It can be seen that
during the day the student goes to the laboratory (P1, P3), the
lunch place (P2, P5) two times. Another pause location P4

is in some building in the campus possibly where the student
meets with a friend and then goes to dinner. Similar traces can
be observed for the same day of each week. Lastly, we observe
that most of the day is usually spent in indoor places and in
only few locations where people gather such as the food court.

B. Opportunistic network model

We consider an opportunistic social network using the
smart-phones of the students. In our application scenario, the
messages are created by mobile nodes in university campus
when an event occurs. The events occur in random times during
the day due to security reasons such as fire alarms, severe
weather alerts or due to necessary announcements such as a
closure of a pedestrian way. The creator of the messages can
be located in the departmental buildings or they can be security
personnel patrolling in the campus.

A smart-phone is a node in the network that receives a
message, stores it and carries to the other nodes. The message
transmission is handled by wireless communication of the
smart-phones in a hop-by-hop fashion using the Bluetooth
and Wifi connections. The proposed network model does not
require any infrastructure such as a base station for message
broadcasts. Therefore, it is useful for various conditions such
as natural disasters which may damage the infrastructure and
disrupt the service provided by internet.

IV. STATE-BASED CAMPUS ROUTING (SCR) PROTOCOL

We propose an opportunistic routing protocol based on
the campus environments, which we name state-based campus
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Fig. 2. A mobile node entering into a hotspot, waiting at pause point P1,
and leaving the hotspot.

routing (SCR). In our routing strategy, we consider the fact that
people mostly spend their time either waiting in the buildings
or walking outside in the campus. The waiting locations such
as classrooms or food courts are mostly crowded places with
high encounter frequencies between pairs of nodes. When a
person leaves the waiting location we expect that the nodes
encounter frequency will decrease. In addition, based on the
routine nature of the campus environments, the person may
encounter with nearly the same people such as classmates.
Another example might be the person seeing the same group
of friends at the cafeteria at noon.

The message transmission procedure (i.e., sessions) is
similar to the Epidemic routing [2]. Nodes act with either a
sender or a receiver role. When two nodes encounter with each
other, two nodes open a session. The sender node first sends
the message vector (i.e., simply a packet that holds the IDs of
the messages that the sender has) to the receiver node. Each
message has an expiration date. The receiver node replies by
sending another message vector that holds the message IDs
that receiver does not have. Sender then sends the messages
whose IDs are stated in the previous transmission. The two
nodes also switch their roles as sender and receiver and open
a new session.

In our routing method, each node can be in either idle or
active state. If the node encounters many nodes in a small
period of time comparing with its past encounter frequencies,
then we suppose that the node is in a waiting place or in a
hot-spot. If the node is in active state, it means that the node is
either walking or at a some place where encounter frequency
is lower.

Fig. 2 illustrates the state changes of a mobile node for
an example case based on the mobility traces we collected in
the UCF campus. In the case shown in this figure, the node
S1 enters into a hotspot (e.g., food court, restaurant) to have a
lunch at 12:30pm and encounters with another node S2, which
was already in the hotspot. S1 later starts waiting at the pause
point P1. Before entering the place S1 is in the active state and
the node has higher probability of forwarding packets. When
the node starts to encounter with other nodes such S2 and
S3 in a short period of time, it changes its state to idle. In
the idle state, probability of S1 to forward packets decreases
to prevent excessive packet transmission traffic in the hotspot.
S1 stays in idle state in the waiting time of one hour. When it

leaves the hotspot, its state changes back to active. This means
that S1 is not encountering with as many nodes as it used to
in the hotspot and therefore it should be actively forwarding
messages whenever possible. Node’s probability to forward
packets increase in the active state and it will stay active till
it gets to another hotspot. In other words, it will send packets
to its neighbors with a higher probability as it moves between
hotspot locations. Fig. 2 illustrates a concrete example of a
lunch break but it is also possible that this hotspot might be a
library or a classroom building.

The condition for deciding if a state s of a node is idle is
given by the equation below. The node will stay idle (s = 1)as
long as the inequality stays true. If the inequality becomes
false, the node changes its state to active and stays active as
long as the inequality stays false.

s =


1

Tlast − Tprev

Tcurrent − Tlast
> 2

0 otherwise

If the node is in active state, its delivery probability
increases as it encounters with other nodes. Pf (probability to
forward) value quickly approaches to Pwanted as it encounters
with other nodes. When a node encounters with another node,
it opens a session with the other node with a probability Pf .
Whether the node has opened the session with the other node
or not, the node will update its Pf value.

If the node is in idle state, Pf decreases fast as the
time passes while it does not become 0 at any time. Unlike
PROPHET [5], each node has one Pf value that applies for
all the encountered nodes. In this situation, we suppose that
the node is in a crowded waiting place. In that case we expect
the node’s encounter frequency with other nodes to increase. If
the node leaves the waiting place then it will change its state
to active again. In that case Pf value starts to be updated
according to being in active state.

The probability to forward a message of an idle node is
given as follows.

Pfnew = (α2 × Pfold + (1− α)× Pwanted)× λ (1)

The probability to forward a message of an active node is
given as follows.

Pfnew = α2 × Pfold + (1− α)× Pwanted (2)

Every node holds the last contact start time Tlast and the
one before last encounter Tprev. The current encounter time
is defined as Tcurrent. When a node encounters with another
node, intercontact time differences are calculated to decide if
the node is idle.

In the Equation 2, α is a constant ageing parameter which
we empirically set the best value using the encounter datasets.
Pwanted is also a constant parameter which defines the wanted
probability value. Pf is expected to approach to Pwanted. The
best possible Pwanted value is also found empirically for campus
environments. The equation brings the Pf to Pwanted in a fast
way. This is because if a person is waiting in a hot-spot (e.g.,
restaurant, class, library), then we expect him or her to stay



there for a time period. Pf is not becoming 0 as we would like
to use the possibility of sending message all the time while
limiting the excessive message transmissions. Although we
expect that the person mostly contacts with the same people,
new nodes may arrive to the waiting place.

In the SCR method, a node keeps only the last two
encounter times in its buffer unlike methods such as PROPHET
that holds all the delivery probabilities of the encountered
nodes. For a network setting with thousands of nodes, SCR
does not require the nodes to keep track of many delivery
probability values in the buffers of the nodes. In addition,
sending all the delivery probabilities of a node to the other
nodes may bring an extra communication overhead. In other
words, crowded environments can bring another overhead to
the protocols such as PROPHET while this is not the case
for SCR. Therefore, SCR can be considered as a lightweight
routing protocol.

V. SIMULATION STUDY

A. Data Description

We use two datasets in our simulation study. The datasets
contains mobility traces collected from people at University of
Milano and University of Cambridge.

1) University of Milano Campus dataset: [15] Milano
campus mobility data is taken from the CRAWDAD archive.
Researchers have given Pocket Mobile Trace Recorders
(PMTRs) to 49 people. The carriers of the devices were
faculty members, doctoral students, and technical staff. The
PMTR devices do not have Bluetooth connection but they
have 10 meters connectivity range which is similar to the
Bluetooth transmission range. The data contains the encounter
information between the nodes. Each encounter data contains
the node IDs and start and end time of the connection. Total
encounter data has 11895 entries. 5 users having no encounter
data are filtered out, leaving us 44 users.

2) University of Cambridge Campus dataset: [16] The
mobility dataset contains 4228 entries that contains similar
encounter information. The data contains 6 days of encounter
data. Researchers have given iMote devices to 12 doctoral
students at the System Research Group to keep track of their
encounter data. These devices have Bluetooth connectivity
with 10 meter contact range. The original dataset contains
traces of 12 participants with any other Bluetooth enabled
devices. On the other hand, they have information regarding
to other encountered people (non-participants). Under this
condition it is not possible to know if a non-participant has
forwarded the its packets to other nodes so we filtered out the
data of the non-participants.

B. Metrics and Simulation Setup

We use three metrics in our simulation study: success rate
(i.e., message delivery success ratio), message delay and num-
ber of packets. Success Rate shows the distribution percentage
of the messages. Message Delay shows the average delivery
latency of the messages. Number of packets sent metric is
the main identifier of the energy consumption of the mobile
devices.

Let us briefly summarize the assumptions in our simula-
tions. We assume that the messages in the network are text-
based and with a limitation of 200 characters such as an
SMS message. We have set the error rate of the transmissions
as 10%. Error rates follow uniform distribution through the
simulation. Our simulator is also mainly based on message
exchanges between the nodes. For instance, there is no ac-
knowledgement requirement. Specific protocol related packets
(e.g., TCP, UDP) for opening or closing a session are also not
taken into account.

We have developed a custom simulator for our routing
strategy. Our simulator accepts the aforementioned trace-file
content. In each simulations run, 100 distinct messages are
generated randomly by various nodes in the mobility trace data
at uniformly distributed times. All the created messages have
48 hours TTL (Time To Live) value which makes a packet
expired after creation time of the first copy of the message.
Each result in the simulation study is based on 100 simulation
runs for significance.

The outcomes of the proposed routing strategy is compared
with epidemic, epidemic with TTS, PROPHET and random
routing strategies. Let us briefly describe the routing strategies
that are used for analysis in the simulation study. Epidemic
with TTS is a routing scheme such that each node can only
forward certain copies of a given message [17] according to the
TTS value. Every time a node sends a copy of the message to
the receiver node, the TTS of the message is decreased by one.
The node can not send more copies of a message if the TTS
value of this message reaches to 0 or 48 hours of expiration
time passes. We set the TTS value to 2 in epidemic with
TTS. Random routing is a variation of the epidemic routing.
In random routing, for each encounter, every node sends the
message with some predetermined and static probability. We
compare SCR with random routing with probability to forward
value of 0.1. In PROPHET routing strategy, whenever an
encounter happens, each node updates delivery predictability
(i.e., delivery probability) between itself and its neighbour. Pinit
is set to 0.75, with γ = 0.98 and β = 0.25 as suggested in [5].
We empirically set the α parameter of SCR as 0.25 and Pwanted
parameter of SCR as 0.99. The best λ value producing the
least amount of sent messages without having significant loss
in success rates and increase in message delays is 0.99.

C. Performance Results

1) Success Rates: Let us first start our discussion of the
experimental results with the cumulative distribution function
(CDF) of success rates for the University of Milano and
University of Cambridge Dataset. Although the size of the
University of Cambridge dataset is smaller it shows similar
results with University of Milano. University of Milano results
for success rates fits a curve more than University of Cam-
bridge. The reason can be relatively small size of University
of Cambridge data. SCR, epidemic and PROPHET shows very
similar message delivery success rates. Epidemic with TTS
showed results close to Epidemic, PROPHET and Epidemic
with TTS by showing very small difference. Random routing
showed the worst results for both of the campuses. 60% or
more success rates form about 50% of result data for SCR,
epidemic, PROPHET and epidemic with TTS. On the other
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Fig. 3. CDF of message delivery success for the University of Milano dataset.
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Fig. 4. CDF of message delivery success for the University of Cambridge
dataset.

hand the result data’s percentage that contains 60% or more
success rates is about 20% for random routing.

2) Message Delays: We continue our discussion of the
experimental results with the analysis of the message delay
performances. Fig. 5 shows the CDF results of the routing
protocols for the University of Milano dataset. The ratio of
messages for smaller message delays is less for the random
routing compared to the other four protocols. On the other
hand, all the other protocols provide a better but similar
performance in terms of the message delays. Delays more than
85000 seconds (about 24 hours) forms about 45% of the result
data of random routing whereas about 35% of the other routing
protocols.

We analyze the message delays for the University of
Cambridge dataset in Fig. 6. As it can be seen in this figure,
SCR, epidemic, epidemic with TTS and PROPHET shows
similar message delays. Random routing shows the maximum
message delays. On the results of this dataset, the message
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Fig. 5. CDF of message delays for the University of Milano dataset.
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Fig. 6. CDF of message delays for the University of Cambridge dataset.

delays of protocols are not as similar as each other unlike the
case in University of Milano. This may be because of again
the relatively smaller size of the University of Cambridge data.
Delays more than 85000 seconds (about 24 hours) forms about
28% of the result data of random routing whereas about 12%
of the other routing protocols.

3) Number of Transmitted Packets: Lastly, we analyze the
number of packets that are transmitted among the nodes of the
network. Fig. 7 shows the results for the University of Milano
dataset. Despite having similar message delay and success rate
performances, we find that SCR has sent significantly less
(about 25%) amount of packets than the epidemic routing and
20% less than PROPHET. For the University of Cambridge
dataset, as shown in Fig. 8, SCR has sent about 30% less
amount of packets than the epidemic routing and 20% less than
PROPHET. For the simulations done in both of the datasets,
epidemic with TTS has a worse performance in terms of packet
transmissions compared to SCR and PROPHET. As expected,
epidemic has the worst performance due to the fact that data is
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forwarded in every encounter without any limitation. Random
routing sent the least amount of packets for both datasets.

The number of packets sent in the simulations for Uni-
versity of Milano is higher than the ones for University of
Cambridge. This is an expected result since the Milano dataset
was about 3 times larger than the other. This ratio can also
be seen in both Fig. 7 and Fig. 8. The ratio of the standard
deviations for the number of transmissions decreases as the
dataset gets larger. In that sense, the use of the University of
Milano dataset provides more satisfying and consistent results.
Compared to Epidemic, PROPHET and Epidemic with TTS,
SCR has the least amount of packet transmissions for the
simulations with both datasets, showing that SCR is the most
energy efficient routing protocol among the tested protocols
with the two datasets.

VI. CONCLUSION

In this paper, we propose an opportunistic networking
strategy for campus environments. In our application scenario,
messages are broadcasted to the students in a university
campus via wireless transmission between mobile devices. We
propose the SCR protocol for efficiency in terms of number of
transmissions, message delays and the delivery success rates.
The performance of the proposed approach is analyzed in
comparison with epidemic, PROPHET, epidemic with TTS and
random routing methods.
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