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Abstract—Location estimation of sensor nodes is an essential
part of most applications for wireless sensor and actor networks
(WSAN). The ambiguous location information often makes the
collected data useless in these applications. Environmental mon-
itoring in particular, relies on an accurate position estimation in
order to process or evaluate the collected data. In this paper, we
present a novel and scalable approach for positioning of mobile
sensor nodes with the goal of monitoring the Amazon river. The
actors in the scenario are stationary and positioned at reachable
spots on the land alongside the river whereas sensor nodes are
thrown into the river to collect data such as water temperature,
depth and geographical features. The actors are not equipped
with positioning adaptors and they are only aware of their
distances from the other actors. The sensor nodes collect data
and forward it to the actors. While floating in the river, sensor
nodes are often multiple hops away from the actor nodes, which
makes it challenging to apply traditional positioning techniques.
Through extensive simulations, we show that the positioning
of the nodes is feasible using a multi-hop approach with local
information exchange only.

I. INTRODUCTION

Wireless sensor and actor networks (WSANs) are geograph-

ically distributed systems with large numbers of tiny sensor

nodes and a limited number of actors [1]. The sensor nodes

sense and observe the events in the environment and the

more powerful actors collect and process information from

the sensor nodes and react to the events. WSANs have a

broad range of applications such as environmental monitoring,

military surveillance and intelligent transportation. Besides

the proper sensor adapters that detect movements, measure

temperature or other environmental features, most applications

require location information to be associated with the collected

data in order to deliver meaningful results [2].

Positioning is defined as the process of estimating the po-

sitions of nodes in the environment. The positioning methods

generally use a priori information about the environment such

as the positions of some specific nodes or possible positions

in the environment that the nodes can be located at [3]. Other

sources for location estimation are the measurements made

by the nodes and the communication among the nodes. The

sensor nodes can gather various kinds of information when

equipped with appropriate measurement technologies [4]. The

measurements of distance between two nodes, network con-

nectivity and direction or angle of signal arrival are widely

used aids to support positioning in WSANs.

The environment considered in this work is a river going

through dense Amazon rain forest (see Fig. 1). The actors are

positioned at specific accessible spots on each side of the river,

while the sensor nodes are thrown into the water. As the sensor

nodes float, they collect information about the environment

and transmit the collected data to the actors. The data are

analyzed at the actors to map the characteristics of the river.

The positioning process is critical in this environment to match

the collected data with the position of a sensor node at a given

time. In many scenarios, the collected data become unusable

if not associated with the position and the time.

The river scenario introduces particular challenges such

as a continuous change of the communication topology. In-

terference techniques and time stamps are used in order to

overcome these challenges and to reveal the paths that the

sensor nodes follow through the river. Hence the main goal of

the positioning algorithm is not creating a self-awareness of

locations at sensor nodes but enriching the collected data with

positioning information.

The paths of the nodes deliver additional information about

the nodes and the environment such as speed, direction or

the structure of the terrain. For instance, the detection of a

significant change in the speed of a majority of the nodes in a

certain location of the river may indicate that either the terrain

is more inclined in that area or there exists a small waterfall.

Another example would be that if at a certain point of the

river, the differences among the speeds of the nodes are large,

some nodes may have run into obstacles while the others flow

through the river without any problems.

The main contribution of this work is the design of an algo-

rithm to enrich the collected data with localization information

even if the sensor nodes are multiple hops away from the actor

nodes. For this purpose, the sensor nodes create a hierarchical

network structure. The network organization is used along with

lateration for localization and it is dynamically adapted for

energy efficiency. The accuracy of the event localization is

improved by taking the estimation of the paths followed by

the nodes into consideration.

The remainder of this paper is organized as follows. Re-
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Fig. 1. The sensor nodes are floating in a river going through the dense
Amazon rain forest and the actors reside on the accessible spots.

lated work is given in Section II. The proposed algorithm

is presented in Section III. We demonstrate the validity and

applicability of our method with simulations in Section IV and

finally conclude in Section V.

II. RELATED WORK

Positioning in WSNs and WSANs has been attracting sig-

nificant interest in the last decade due to the realization of low-

cost and multifunctional sensor nodes and their deployments

in both indoor and outdoor environments [5]. Although the

positioning is significantly important in most of the deployed

systems, implementation of algorithms is challenging since

the positioning techniques in WSANs have their particular

constraints. For instance the deployment areas are generally

complex and they have issues such as accessibility, line-of

sight, and so on. The measurement method for the positioning

algorithm also needs to be selected according to the envi-

ronment, the limited capabilities of the sensor nodes and the

conditions of the scenario. The heterogeneous node structure

of WSANs is yet another challenge and requires a clear

differentiation in the roles of the nodes in the network.

The proposed algorithms in this field make use of various

approaches such as graph theory [6], multidimensional scaling

[7], distance vectors (DV) [8], particle filters (e.g. [9], [10],

[11]), recursive systems [12] and genetic algorithms [13].

These methods utilize diverse measurement techniques, the

main types of which are time of arrival (ToA) [14], angle of

arrival (AoA) [15], [16], received signal strength (RSS) [17],

and distance related measurements.

We adopt a multi-hop positioning approach for our algo-

rithm. There are many well known multi-hop algorithms such

as the distributed hop-by-hop positioning algorithm, APS, pro-

posed by Niculescu and Nath [8]. APS works as an extension

of distance vector routing and GPS positioning to provide

the approximate locations for all nodes in a network where

only a limited fraction of nodes have self location capabilities.

An alternative approach by Savvides et al. [18] uses the

sensor nodes, after their positions are estimated, as the anchor

nodes in a multilateration algorithm. This process is called

iterative multilateration, which is also employed by Savarese

et al. [19]. The critical observation in these algorithms, which

is also true for our algorithm, is that at least three actor

nodes are needed to determine the position of a sensor node.

Nagpal et al. [20] organizes a global coordination system in

the network by estimating the Euclidian distance of a hop.

The estimation algorithm uses the number of communication

hops of the sensor nodes and the position error is minimized

with imperfect distance estimates. The important theoretical

results given by Nagpal et al. are the critical minimum average

neighborhood size for sufficient accuracy and the limit on

the resolution of a coordinate system determined by local

communication.

In contrast to most of the discussed approaches, the po-

sitioning information of actor nodes do not need to be for-

warded in our algorithm. In other words, since providing self-

awareness for the sensor nodes is not an objective of the

algorithm, the sensor nodes are not informed of their position

information. The particular scenario discussed in the paper

has an additional distinct and important constraint, which is

the high mobility of the sensor nodes.

The organization of the overlay network scheme for assign-

ment of the hop-counts and affiliation with the actor nodes is

a critical part of our algorithm, where clustering is employed

as the solution. The actor nodes function as the permanent

clusterheads and the structure allows multi-hop clusters, which

is different than most of the existing clustering algorithms for

mobile ad hoc networks (eg. [21], [22], [23], [24]). KHOPCA

[25] is a multi-hop clustering scheme consisting of a set

of simple and easy-to-implement locally acting rules, which

has an approach similar to our algorithm, but it does not

fully satisfy the specific requirements of our scenario such

as predetermined clusterheads.

III. MULTI-HOP POSITION ESTIMATION

The proposed multi-hop position estimation is described in

detail in this section. It is important to note that the main

goal of the approach when estimating the locations of the

sensor nodes is to enhance the information collected from the

river. The system is not intended to detect a specific event

(e.g. fire or an intruder); instead it is used to monitor the

river for a period of time and to create a detailed set of data

for a complete analysis of the river. Therefore, different than

most of the existing localization algorithms, the sensor nodes

are not informed about their positions and no computation at

the sensor nodes is specifically required by the positioning

algorithm.

A. Network layout

The network, N , consists of a set of stationary actors A,

a set of mobile sensor nodes S and a sink node, which is

in charge of the data aggregation. The sensor nodes and the

actors have transmission ranges rs and ra, where ra > rs. Ob-

taining location information by recording positions manually

or through GPS are not viable options for sensor nodes due

to their limited resources. Additionally, thick forest structure

may block satellite communication from time to time as the



sensor nodes float in the river. On the other hand, the actors are

placed at predetermined accessible spots in the area. Therefore

only actors have a priori knowledge of their positions and each

sensor node can directly communicate only with its immediate

neighboring nodes.

The actors acquire additional knowledge about their posi-

tions either from an external source or the position information

is encoded as they are placed in the area. The actors are

positioned such that each one has at least one actor or sink in

its transmission range. Each actor uses its full transmission

range to communicate with the other actors and the sink.

The network among the actors and the sink is defined as

the backbone of the network. The backbone is formed by

selectively flooding a packet originated at sink among actors.

Thus, each actor node learns the neighboring actor, which is

set as the destination for packets forwarded to the sink.

B. Weighing the nodes

There is no initial configuration on the sensor nodes to

affiliate them with the actors. Each sensor node keeps only

a “weight” value for each actor it is affiliated with, which

represents the minimum number of hops required to reach the

actor from that sensor node. The sensor node keeps the list of

the weights for its affiliated actors in a “weight table”.

The sensor nodes initially take random weight values be-

tween 0 and k − 1 while each actor node is assigned to a

constant weight k. The only data available for a sensor node s

as it floats in the river are the direct neighbors Neigh(s) and

their corresponding weights w(Neigh(si)). Hence, the sensor

nodes maintain and update only local information.

When communicating with the sensor nodes and creating

the affiliation areas, the actors use the same transmission

range, rs, as the sensor nodes and exchange packets only with

their neighboring sensor nodes. Each actor node encodes the

packets transmitted with its ID and weight k. These values

demonstrate that this packet is coming from an actor. Each

sensor node updates the weight values in its records via local

updates. Thus the information about each actor is distributed

to the affiliation area of that actor.

A sensor node keeps the maximum weight for each actor it

receives packets from, as depicted in Figure 2. Hence, a sensor

node is capable of being affiliated with multiple actors. When

a sensor node receives a packet from an actor, the packet is

retransmitted if the weight value on it is less than the sensor

nodes weight for that actor. Otherwise the sensor node drops

the packet to avoid unnecessary traffic and energy consumption

in the network.

The condition, in which a sensor node doesn’t receive any

weight updates, is defined as the “loss of connection” for the

sensor node. In that case, the sensor node sets its hop value to

the minimum value defined for the network. Then it operates

only in “listening” mode and does not transmit any packets.

Algorithm 1 describes the state transitions for the node

v depending on its actor affiliation. The weight w of each

affiliation corresponds to “k-hop distance” of a node v to an

actor a.

0 0

0

Actor C

Actor A Actor B

Actor   Weight

 A         k-3

 C         k-4

 B         k-2

Sensor node

Fig. 2. One sensor node affiliated with multiple actors. The sensor is
maintaining a list of actor affiliation and weight.

Algorithm 1 The state transitions of a node v

1: wa(v): The weight of node v for actor a

2: max(w(Neigh(va))): M
3: if v is a sensor node then

4: if v is not affiliated with an actor node then

5: wa(v) = 0
6: else if M = k then

7: wa(v) = k − 1
8: else if M ! = k & M > wa(v) then

9: wa(v) = M − 1
10: else if M < wa(v) then

11: wa(v) = wa(v)− 1
12: else if Neigh(va) = Empty then

13: wa(v) = 0
14: end if

15: else

16: wa(v) = k

17: end if

The hierarchical structure of the network is created with the

step, by which a sensor node continuously adapts its weight to

its local neighborhood. For each of its affiliated actor node, a

sensor node changes its weight to “the highest neighbor weight

– 1” unless it already has the same weight value. Hereby a

hierarchical structure is dynamically formed and updated.

The next step covers situations where higher weight nodes,

which are not actors and not affiliated with any actors, attract

surrounding nodes with lower weights. According to this step,

a higher weight node successively reduces its weight, finally

connecting to an existing actor or until its weight becomes

zero. In a case where node v is not affiliated to a particular

actor, its weight is set to zero.

Figure 3 shows an example of a sensor node’s weight

adaptation according to the algorithm described above. All the

other nodes in this example are assumed to be stationary and

k value for the network is set to four. The mobile node in the

figure is initially not affiliated to any actors, so its weight is

zero. Then the node becomes directly connected to an actor

and its weight becomes k− 1. As the node moves away from
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Fig. 3. Weight adaptation of a sensor node

the actor node and affiliates with another actor node, its weight

changes according to “the highest neighbor weight – 1” rule.

Finally, it ends up not being affiliated with any actor node, its

weight is decreased until it becomes zero and stays there as

stated in the last step.

C. Adapting k

One of the characteristics of our algorithm is that the nodes

use only local information. The sensor nodes update their data

locally as the network topology changes due to node mobility.

The sensor nodes affiliated with an actor form the “affiliation

area” of that actor. In other words, if the neighbors of a sensor

node which are affiliated with an actor, have zero weights, then

that sensor node cannot affiliate with that actor and it is out

of the coverage area.

When a sensor node is outside of all the affiliation areas, it is

called an “unconnected node”. Unconnected nodes with weight

zero are physically able to exchange packets with neighbors

that have weight zero, but there is no communication among

these nodes. Therefore the selection of the k value for the

actors is critical for the traffic and the energy consumption in

the network. In our algorithm, actor nodes adapt their k values

according to their observations. In order to find k, each actor

follows the following steps:

• The k is initialized with a high value (depending on the

size of the network area) at the actors. If the k value of

an actor changes, the actor announces this change to the

other actors via the backbone.

• As the sensor nodes float into the reception range of actor

nodes, they start to form and update their weight tables

as shown in Figure 4. Actors also keep weight values for

the other actors with the same method.

• Each actor computes a ku value for all of its neighbor

actors as follows:

ku =
kn − wn

2

where kn is the neighbor’s k value and wn is the weight

value of the actor for that neighbor actor. ku represents

the minimum number of hops between two actors. The ku
values are updated continuously such that the minimum

is kept in the records for each neighbor actor.

0 0

Actor A Actor B

Sensor 3

Sensor 2

Sensor 1

Actor Weight

    A      3

    B      1

Actor Weight

    A      2

    B      2

Actor Weight

    A      1

    B      3

Actor Weight

    A      4

    B      0

Actor Weight

    A      0

    B      4

Fig. 4. The weight tables of sensor nodes affiliated with two actors.

• The distances from the neighbor actors are calculated.

Actors have their location information, so the distance

(d) between two actors, i = 1, 2, is calculated simply by

using the Pythagoras theorem:

(x1 − x2)
2 + (y1 − y2)

2 = d2

• The actor’s k value is updated with the maximum of the

ku values.

There are several aspects of k-adaptation which are critical

for the algorithm. First, an actor’s affiliation area is limited

by adapting k, which reduces the number of packets that

sensor nodes transmit as they update their weights since

they have fewer actors to keep weights for. As the packet

transmission drops, the energy consumption also decreases in

the network. The other important aspect of k-adaptation is the

hop-distance estimation since the values calculated with this

method are used when estimating the locations of the sensor

nodes. Moreover, many multi-hop localization algorithms in

the literature become ineffective as the topology becomes

irregular. Our algorithm’s adaptation of k forces sensor nodes

to be affiliated only with actors in close proximity which

reduces the negative impacts of the irregular topology.

D. Positioning the nodes

Each actor in the network estimates the 1-hop distance

(ku) for each actor it keeps a weight value for. The method

described in the previous section is used by the actors for

this purpose. The average of the calculated ku values are used

as the 1-hop distance value. Then the average 1-hop-distance,

estimated as d

2ku

, is used for localization purposes.

Since the sensor nodes dynamically keep and update their

weights, the hop-distances of the sensor nodes to the actor

nodes are known in the network. The sensor nodes piggyback

their weight tables to the data packets to inform the actor

nodes. These weight tables are used to calculate the location

estimation for nodes. The estimated distance of a sensor node

to an actor A is calculated as follows:

dA = wA ∗ hA

where dA is the estimated distance to the actor A, wA is the

weight of the sensor node for the actor A and hA is the average

1-hop distance of actor A.



The distance estimation is based on the number of hops

needed to reach from the sensor nodes to the actor ndoes.

Therefore it’s similar to the distance vector (DV) based ap-

proach of Niculescu and Nath’s model [8]. However, Niculescu

and Nath’s model is designed for static networks and ad-

ditionally, in most of the DV-based solutions, sensor nodes

need to assign a fixed memory to save the locations of all

the landmarks, hop-counts to these landmarks and average

hop-distance values. In our approach, a sensor node keeps

only the weight values for its affiliated actor nodes. All the

other computation and memory requirements of the algorithm

are handled by the actors and the sink, which is a better-

fit for WSAN structure in terms of the usage of memory,

computational resources and energy. Hereby, the information

flooding, which is common and intense in DV-based solutions,

is also minimized.

When the sensing sensor node transmits its weight values

for three actors, its distances to these actors are estimated

according to the “1-hop distance” value and the weights. Then,

its position is calculated based on the acquired distances and

the localization information obtained by the lateration.

The estimated distance of the sensor node is calculated for

each of its affiliated actor and then these values are plugged

into the lateration operation for the estimation of the sensor

nodes position. When a sensor node is affiliated with multiple

actor nodes, its position estimation can be represented with a

system of equations, written in matrix form as follows:







2(xn − x1) 2(yn − y1)
...

...

2(xn − xn−1) 2(yn − yn−1)







[

xs

ys

]

=







(d2
1
− d2n)− (x2

1
− x2

n)− (y2
1
− y2n)

...

(d2n−1
− d2n)− (x2

n−1
− x2

n)− (y2n−1
− y2n)







where (xi),yi), i = 1, ...n, are the positions of the n actors and

di, i = 1, ...n, are the estimated distance values. The solution

pair of this system, (xs,ys),which minimizes ‖Ax − B‖2, is

the pair that minimizes the mean square error, where 0.5A is

the left hand side matrix, B is the right hand side matrix and

x is the vector for (xs,ys) pair. Since ‖.‖2 is minimized, the

system is solved with minimum average error for all positions

of the actors that the sensor is affiliated with.

For any vector v, ‖v‖2
2

is equal to v
T
v, which can be used

to find a solution for x. Therefore, if the same expression is

written for ‖Ax − B‖, an equation for x can be found:

‖Ax − B‖2
2
= x

T
A

T
Ax− 2xT

A
T
B +B

T
B

This expression is minimized when the mean square error

is minimized. Therefore, the gradient of the expression has to

be set to zero considering it as a function of x:

2AT
Ax− 2AT

B = 0 ⇔ A
T
Ax = A

T
B

This is the normal equation for the linear least squares

problem and it has a unique solution. We use the Cholesky

TABLE I
SIMULATION PARAMETERS

number of sensor nodes 1-25

number of actor nodes 25-50

k value 1-5

total area 250x250 meters

sensor node transmission range 40 meters

sensor node floating speed 1,25-1,5 m/s

factorization to solve this equation and to get the estimations

for x and y coordinates of the sensor nodes. Accordingly, the

resulting matrix is given by:

x = A
T (AA

T )−1
B

The estimations for the coordinates of the sensor nodes are

calculated by this method for each time instance and recorded.

Since our goal is not an online location-awareness for the

sensor nodes, the path the nodes followed is estimated after

all of these points are calculated. Essentially, the paths are

estimated using the interpolation of these coordinates. Hence,

the effect of the errors in the individual estimates to the paths

of the sensor node are minimized.

IV. SIMULATION STUDY

In this section, we evaluate our approach by measuring how

the estimated location errors vary with different network and

algorithm characteristics. The transmission range of a sensor

node is set to 40 meters, a realistic range for a sensor node

(Cerpa et al. [25]). The number of the nodes and the value of

k are used as the simulation parameters in the experimental

setup. The communication graph is built according to the

system properties specified in Section 3. The actor nodes are

stationary, deployed in the area uniformly at random with the

constraint that they are able to form a connected graph for

communication among themselves. Sensor nodes are mobile

and they are flowing from left to right in the watercourse.

The communication links among the sensor nodes are open to

failure. Table I summarizes the simulation parameters used in

our simulation study.

A. Experiment 1

1) 1-hop clustering: In order to investigate the affect of

clustering on the performance of the proposed algorithm, a

scenario with only a single sensor node and 25 actor nodes

is considered. The main purpose of this experiment is to

observe the performance difference between 1-hop clustering

and multi-hop clustering. In this scenario, a single sensor node

floods from left to right with a speed between 1.25 to 1.5

m/s and connects to the actor nodes whenever it is in the

transmission range. Hence the sensor node can be connected

to multiple actors and the parameter k has no influence on the

location estimation in this experiment.

Figures 5 and 6 show the exact trajectory of the node on

the x and y coordinates respectively. The x-axis of the figures

represents the time steps. The node is moving from 0 to

250m in x coordinate and for y coordinate the node stays
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Fig. 5. Estimated x-coordinates and the real trajectory of a sensor node for
the experiment 1 with 1 sensor node and k=1.

on the position around 110m. The network density is high

enough that a position could be calculated for each time step.

In other words, the node was affiliated with four actors for

most of the time. In Figures 5 and 6, the estimated trajectory

has been produced using linear regression over the data set

of the estimated positions. The estimated positions are with

an error of 30 meters according to the exact trajectory, but

most estimated positions show much less error. The error is

as expected since the transmission range is 40 meters and the

estimation is based on the estimated hop-distance. However,

the estimated trajectory of the considered sensor nodes is

within a range of at most 10 meters, but mainly within 5

meters or less.

2) k-hop clustering: The settings in the 1-hop clustering

experiment have been modified such that 25 actors and 25

sensor nodes are participating in the simulation area and the

parameter k is set to three. In this case, the maximum length

from a sensor node to an actor node can be three hops. In

similar illustrations as in Figures 5 and 6, the accuracy of the
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Fig. 6. Estimated y-coordinates and the real trajectory of a sensor node for
the experiment 1 with 1 sensor node and k=1.
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Fig. 7. Estimated x-coordinates and the real trajectory of a sensor node for
the experiment 1 with k=3

0 20 40 60 80 100 120 140 160 180 200

50

100

150

200

250

time (s)

y
−

c
o

o
rd

in
a

te

Estimated positions

Exact trajectory

Fig. 8. Estimated y-coordinates and the real trajectory of a sensor noder for
the experiment 1 with k=3

location estimation of one of these 25 nodes under the use

of local k-hop clustering information is shown in Figures 7

and 8. The sensor node is connected to the actor networks

via intermediary nodes, where k=3, for most of the time in

this experiment. Therefore multi-hop information is used. The

applied algorithm estimated the hop-distances using far less

accurate data. However the results show that the estimated

positions are very close to the exact trajectory. Compared to

the previous experiment, the error is only slightly higher. The

main difference is that there are more time steps where there

is not enough information that could be collected to estimate

the position. It should be noted that this result also depends

on the real trajectory of the individual sensor node.

B. Experiment 2

In this scenario, the number of nodes is 50, 25 of which

are the actors and 25 are the sensor nodes. However, in order

to get the accuracy for single hop settings, the parameter k

is set to 1. The error distribution is illustrated in Figure 9.

The error has a normal distribution and it ranges from -30 to
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Fig. 9. The error distribution of the estimation results for the experiment 2
with k=1

30 meters. Hence this error is for the x-coordinate estimation.

Since the nodes are floating almost horizontally, the accuracy

on the y-coordinate is relatively good. We can also observe that

the number of estimated points is not as high as the previous

experiment.

C. Experiment 3

The multi-hop clustering approach for location estimation is

a core part of the contribution of this paper. In this experiment,

in order to investigate the usage of multi-hop clustering, the

number of sensor nodes is increased while the number of

actor nodes remains equal. Thus actors that are not in the

transmission range of a single mutual sensor node must make

use of the multi-hop information provided by the passing

sensor nodes. The k parameter is set to three allowing the

nodes to connect to an actor through another sensor node. The

resulting Figure 10 shows that the error distribution is similar

to the Figure 9 where the sensor nodes were connected directly

to the actor nodes. The error rate is again normal distribution.

However, there are two differences: (i) more positions could

be estimated which means that the local multi-hop approach

applied in our algorithm is able to gather more localization

estimation than it does with a traditional approach, and (ii) the

estimation accuracy is decreasing. Compared to the experiment

2, where the distribution was in between -30 and 30 meters,

the distribution is now in between -60 and 60 meters.

We observe that higher the value of k is, more positions

can be estimated by our algorithm. However, the accuracy

decreases at the same time with the increasing k. Therefore

the selection of k is an important issue for the network, which

depends on the number of nodes, the environmental conditions

and the application requirements.

D. Experiment 4

In this experiment, the settings remained the same as the

experiment 3 except for the value of k. The value of k is

increased to five, so clusters with more hops compared to the

experiment 3 are allowed in the network. The error distribution
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Fig. 10. The error distribution of the estimation results for the experiment
3 with k=3
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Fig. 11. The error distribution of the estimation results for the experiment
4 with k=4

of the experiment is given in Figure 11. Similarly, Figure 11

shows that as the value of k becomes higher, the accuracy

decreases further while the number of estimations increases

due to further connection chains in the network.

V. CONCLUSION

In this paper, a novel and scalable algorithm for multi-hop

localization of mobile sensor nodes is proposed. The goal of

the proposed algorithm is to improve the on-site monitoring

of a river in dense Amazon forest structure with a scalable

approach. The particular scenario has its own challenges,

which require robustness and high adaptability to failures

and/or additional sensors. In order to overcome these chal-

lenges, the proposed approach does not create a self awareness

of locations at sensor nodes since all communication in the

system is locality preserving. The hop-counts, sensor node

IDs and sequence numbers are used as the information related

to localization. The algorithm is kept simple considering the

limited lifetime of the WSANs, but it is possible to integrate an

additional feature such as RSS to increase the accuracy of the

results. Through extensive simulations, we have shown that the



localization estimation can be realized using local multi-hop

information. In overall, as the multi-hop chains are allowed to

become longer, more positions can be estimated with the cost

of the accuracy. The selection of the maximum hop number is

therefore an issue depending on the requirements of network.

As for the future work, we can employ the proposed

algorithm to animal monitoring application. We also intend

to use the localization information gained by the algorithm

for data aggregation and dissemination within the network.
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