
1

Localization for Wireless Sensor and Actor

Networks with Meandering Mobility
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Abstract

Environmental monitoring applications for wireless sensor and actor networks rely on position estimation in

order to process or evaluate the observed data. The absence of efficient positioning techniques for sensor nodes

operating in harsh environments calls for novel approaches. While monitoring the Amazon river, unprecedented

characteristics of the river and its surroundings challenge the node communications and drifting of the nodes makes

it difficult to use the existing positioning methods. To address these challenges, we propose a multi-hop localization

technique that takes advantage of sensor mobility with local information exchange. The collected information is

used to enrich the environmental data with location information. The maximum hop distance for actor affiliation

is also adapted according to network characteristics to improve energy consumption behavior. The motion of the

sensor nodes follows the advection of the fluid parcels in the river, which is modeled as a combination of a central

streamline with a meandering motion around the rough surface. This translates into a stretching topology with

correlated motion for sensor nodes. Through extensive simulations, we show that the nodes can be efficiently

positioned using the proposed approach, as our technique is compliant with the movement patterns of the sensor

nodes in the realistic mobility model of the river.

I. INTRODUCTION

Wireless sensor and actor networks (WSANs) are geographically distributed systems with large number

of tiny sensor nodes and a limited number of actors [1], [2]. Events in the environment are observed
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by the sensor nodes, which have limited processing and communication capabilities. The more powerful

actors collect information from the sensor nodes and react to the events with a physical action or by

taking network related decisions. WSANs have a broad range of applications such as environmental

monitoring, military surveillance, and intelligent transportation. Depending on the particular purpose of

each application, the sensor nodes are equipped with proper sensor adapters with functions such as motion

detection or temperature measurement for the accurate collection of any required data in their environment.

In addition to the accurate observation methods, most applications also require location information to be

associated with the collected data in order to deliver meaningful results [3]. Environmental monitoring is

an application area in which the location of the gathered data is critical.

Amazon river is the subject of the environmental monitoring application considered in this work.

Amazon is the largest river by waterflow in the world and it is also the second longest river with a

difference of only 2.3%. The bulk of the river flows through a giant tropical rain forest, which restricts

the access to the river. The massive volume with a drainage area of almost seven million square kilometers

and the harsh basin conditions make the river difficult to monitor by human operators or by employing

traditional methods such as sample collection. The utilization of a WSAN monitoring system would

increase the quality in observation, investigation, and the response.

In this paper, we propose a WSAN based solution, in which the actors are positioned at specific

accessible spots on the coastline of the river or on the small islands in the river, while the sensor nodes

float on the water (see Fig. 1). Our previous work in this area [4] is extended with a realistic mobility

model, an adaptation of the localization for this mobility model and an energy consumption analysis. As

the sensor nodes move, they collect information about the environment and transmit the collected data

to the actors. The collected data are analyzed at the actors to create time and location information and

provide the characteristics of the river to the users. To utilize the monitoring results efficiently, it is critical

in this environment to match the collected data with the position of a sensor node at any given time. In

many scenarios, the collected data becomes unusable if not associated with the position and time. The

paths of the nodes deliver additional information about the nodes and the environment such as current

speed, direction, structure of the terrain or the obstacles in the river.

The main contribution of this work is the multi-hop locality preserving localization algorithm design,

which enriches the collected environmental data with position information. For the creation of the hier-

archical network structure of sensor nodes and actors, a network organization algorithm is also designed
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Fig. 1. The river monitoring scenario with floating sensor nodes and stationary actor nodes on the accessible spots.

and used along with lateration for localization. The organization in the network is dynamically adapted

with the continuous change of the communication topology, turning mobility into an advantage for energy

efficiency by eliminating the requirement for extra control messages. The accuracy of the event localization

is improved by including path estimation in the algorithm. The affiliation area for each actor is also adapted

according to the distances to other actors in terms of hop counts. This adaptation reduces the packets

transmission and improves the energy consumption in the network.

The second contribution of this work includes the adaptation of a realistic mobility model [5] according

to the requirements of the river scenario. Since the sensor nodes drift in the river with the force of

the current and the use of a realistic current mobility model is critical to analyze the accuracy of the

localization algorithm. Amazon river has a high water load and low slopes over the river basin, resulting

in a meandering structure (see [6]). Therefore, a subsurface meandering current mobility model with

random surface motion is incorporated into our algorithm taking the requirements of our scenario into

consideration. To the best of our knowledge, this is the first example of using meandering current mobility

model with random surface motion for the simulation of sensor and actor networks operating on the surface

of a river.

Additionally, a basic directional mobility model is also created without considering the any specific

characteristics of the river. This basic model is used to analyze the effects of the realistic mobility on the

performance of the algorithm.

The remainder of this paper is organized as follows. Related work is summarized in Section II. The
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localization algorithm is presented with the network layout and the mobility model in Section III. The

validity and applicability of the proposed scheme is demonstrated with simulations in Section IV and we

finally conclude in Section V.

II. RELATED WORK

Localization is defined as the process of estimating the positions of nodes in an environment and

it has been attracting significant interest in wireless sensor networks (WSN) research domain as the

multifunctional sensor nodes have been deployed in both indoor and outdoor environments [7]. The

implementations of localization techniques in WSNs and WSANs have their particular constraints. For

instance, WSANs are generally deployed in harsh environments and they have challenges related to these

harsh environments such as accessibility, line-of-sight, and so on. The heterogeneous node structure of

WSANs is yet another challenge and the solutions require a clear differentiation of the roles of different

node types in the network.

The localization methods in the literature generally use a priori information about the network or the

environment such as the positions of some specific nodes [8] or particular locations in the environment

where the nodes can be located at [9]. Localization algorithms also make use of diverse scientific

approaches such as graph theory [10], [11], multidimensional scaling [12], sequencing [13], distance

vectors (DV) [14], computational geometry [15], particle and Kalman filters [9], [16], [17], Gauss-Markov

parameter estimation [18], recursive systems [19], sub-area localization [20], range-free schemes [21],

viable kernel-based algorithms [22] and distributed Bayesian algorithms [23].

The measurements of different types of sensors on the nodes can also be used by localization algorithms.

Sensor nodes can gather various kinds of information when equipped with appropriate measurement

technologies. The main types of sensor measurements used in localization methods are time of arrival

(ToA) [24], time difference of arrival (TDoA) [25], angle of arrival (AoA) [26], received signal strength

(RSS) [27], [28], and distance related measurements [29]. The measurement technique is normally selected

according to the requirements of the environment and the scenario. Multiple techniques can also be

utilized in a single approach. Wang et al. [30] propose using multiple techniques for an unsupervised

indoor localization scheme, which identifies certain locations in an indoor environment with signatures

on multiple sensing dimensions. Michaelides and Panayiotou [31] use RSS at the sensor nodes to report

binary observations. The events are reported only when the measured signal strengths are above a threshold.

These binary observations are used in an estimation algorithm to construct the likelihood matrix.



5

In the literature, there are also localization techniques that do not mainly rely on sensor measurements.

For instance, Nagpal et al. [32] organizes a global coordinate system in the network by estimating

the Euclidian distance of a hop. This estimation algorithm uses the number of communication hops

of the sensor nodes and the position error is minimized with imperfect distance estimates. The important

theoretical results given by Nagpal et al. are the critical minimum average neighborhood size for sufficient

accuracy and the limit on the resolution of a coordinate system determined by local communication.

Some localization approaches are considered both centralized and distributed. Sheu et al. [33] use a

distributed technique to estimate the location of the regular nodes by gathering the positions of location-

aware nodes (anchor nodes) and the one-hop regular nodes whose locations are estimated from the anchor

nodes. The paired measurement localization (PML) strategy of Rahman and Kleeman [34] is another

distributed solution, which achieves accurate positioning by employing a theoretical minimum number of

four anchor nodes.

We use a multi-hop localization method [4] and there are several examples of such approaches. The

Ad-Hoc Positioning System (APS) by Niculescu and Nath [14] is a distributed hop-by-hop positioning

algorithm. APS works as an extension of distance vector routing and GPS positioning. The positions of

all nodes in the network are approximated by utilizing the information from a limited set of nodes, which

have self localization capabilities.

Xiao et al. [35] construct a table for minimum hop length estimation by using the results of empirical

studies. The threshold values in this table are used to filter out the unreliable anchors. Hence the sensor

nodes determine their positions utilizing the data from reliable anchors. Yi et al. [36] propose a sequential

Monte Carlo method based multi-hop localization technique for mobile networks with multiple sensor

nodes and few anchor nodes. Wu et al. [37] define a new measure to propose a range-free localization

method. The new metric is called regulated neighborhood distance (RND) and it is used to solve the

ambiguity problem in cases when a node has the same distance estimation to all of its one-hop neighbors.

RND relates the proximity of two neighboring nodes based on their neighbor partitions.

Our localization approach has unique characteristics, different from the previously discussed algorithms.

We aim to determine the locations of the sensor nodes at the actors rather than the sensor nodes themselves,

and the position information is not forwarded to the sensor nodes in contrast to previous work. Thus, our

approach has the ability to resolve the location of the collected data or the events in an energy-efficient

manner. The dynamic and continuous formation of the overlay network is another important part of our
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approach. The weights and the affiliated actors of sensor nodes are assigned by an overlay network. For

this purpose, the actor nodes are used as the clusterheads and the mobile sensor nodes are clustered by

a multi-hop scheme with a set of locally acting rules as in SOFROP [38].

There are various clustering algorithms for mobile ad hoc networks in the literature with features

specific to the application scenarios. The Weighted Clustering Algorithm (WCA) by Chatterjee et al.

[39] is a distributed clustering algorithm for multi-hop packet radio networks and uses the ideal degree,

transmission power, mobility, and battery power of mobile nodes for clustering decisions. Turgut et al.

[40] have shown improvements on WCA’s performance by using a genetic algorithmic technique. The

problem formulation and the parameters are mapped to individual chromosomes to find the clusters for

the optimum MAC layer operation. WCA is also extended by simulated annealing algorithm [41], which

uses a random set of clusterheads and cluster members to determine the optimum solution defined by an

objective function. Overlapping Clusters Algorithm (OCA) by Aydin et al. [42] uses battery and bandwidth

capacity, transmission range, density, mobility, and buffer occupancy to determine the initial clusterheads.

The states of these parameters are then continuously monitored to update the topology through reclustering

when it is required. Hybrid Energy-Efficient Distributed (HEED) [43] clustering by Younis and Fahmy

periodically selects clusterheads according to a hybrid of residual energy and another parameter chosen

according to the requirements of the scenario.

High mobility of sensor nodes with the currents in the river is a distinct constraint of Amazon river

scenario and it is considered as a challenge in most of the existing localization methods. The realistic

modeling of the river and therefore the mobility of sensor nodes is an important part of our approach. We

modeled the mobility as a correlated motion with random perturbations on the surface of the water. There

have been studies on the formulation of the current mobility models. For subsurface ocean currents, Caruso

et al. [5] proposed Meandering Current Mobility (MCM) model, extended later by addition of random

surface motion by Erol et al. [44]. As an important difference compared to the ocean characteristics, the

subsurface currents have faster speeds. On the other hand, the force of the winds and the shape of the

terrain (rocks, depth/width variations) generate vortexes in a river, similar to oceans where the particles

meander similar to the meanders in the MCM model.
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III. LOCALIZATION

A. System model and mobility

We consider a wireless sensor and actor network N with the number of nodes |N | = n. N consists of

a set of actor nodes A and a set of sensor nodes S. Our model also includes a sink node responsible for

data aggregation and connection of the environmental monitoring network to a backbone network. The

sensor nodes and actors are assumed to have maximum transmission ranges rs and ra, respectively, with

circular transmission areas, where rs < ra due to better computation and communication capabilities of

the actors. Every node is able to communicate only with its current one-hop neighbors, forming a locality

preserving communication system.

Sensor nodes in the application scenario are deployed without any positioning adaptors. Positioning

devices such as GPS receivers are avoided to enable longer network lifetime with the limited resources

of sensor nodes. Besides long life-time requirements, the thick forest structure of Amazon is also a

disadvantage for satellite communication. Therefore obtaining location information by GPS is not a viable

option in Amazon river monitoring scenario. In our system, sensor nodes do not keep position information

and each sensor node directly communicates only with its immediate neighboring nodes. The neighboring

nodes of a sensor node can be both actor and sensor nodes. The local information of a sensor node is

forwarded to the actors via intermediate nodes. The actors acquire their positions either from an external

source or the position information is encoded in the deployment phase.

Actors are positioned on the coastline or on the islands of the river such that each one has at least one

actor in its transmission range. The selection of actor positions and the actor network affects the perfor-

mance of the localization approach. However, the main focus of this work is localization; therefore, actor

positioning is not analyzed in detail. Actors use their full transmission ranges only when communicating

with other actors. The network among the actors serves as the layout network for the processing of the

collected data. This layout network is formed by selectively flooding the network formation packet among

actor nodes. Each actor sets the neighboring actor in which the first network formation packet is received

from, as the destination for the collected monitoring data. Therefore the neighboring node of an actor is

another actor in this layout network. Then, an actor can receive additional network formation packets.

The actors, from which these packets are received from, are saved in a list to be used in cases such as a

change in the communication backbone.

When communicating with sensor nodes, the actor nodes use the same transmission range as the sensor
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TABLE I
MOBILITY PARAMETERS

B(t) Meander amplitude
ε Degree of chaotic advection
ζ Direction of flow
ξ Width of the jet
h Wave number
L Wavelength
cx Phase speed

nodes in order to have a bidirectional connection and save energy. The actor nodes continuously transmit

packets encoded with their IDs and exchange packets with the sensor nodes in their transmission ranges.

Sensor nodes retransmit the packets from actors to their direct neighbors. Each sensor node obtains its

current neighbor information as it receives these retransmitted packets. Therefore the neighbor a sensor

node can be both an actor or a sensor node.

The monitoring network aims to collect data from the unreachable parts of a river by allowing sensor

nodes to drift with the force of the river currents. This uncontrolled motion of the sensor nodes follow the

trajectories of the fluid parcels, making the mobility pattern more complex than the traditional random

way point mobility or the group mobility models. The behavior of the network in the natural conditions

of the river cannot be modeled with an assumption of a simple mobility pattern for the sensor nodes.

Therefore, the movements of the sensor nodes must be modeled according to the properties of the river

currents.

The motion of the subsurface currents in a river has several characteristic features. The advection in

a river is affected from the variations in water depth, channel geometry, and the surface conditions. In a

relatively short section of the river, the terrain can be assumed to force a higher volume of flow in the

center line. Therefore, the velocity of the particles or the sensor nodes at the central stream will be higher

than the ones closer to the boundaries. Furthermore, roughness of the surface may lead to eddies where

the sensor nodes will be captured for a while and then possibly released to join the remaining part of the

network. To model these properties, we adopt the motion of the subsurface currents, initially employed

in [5], [44]. Table I summarizes the parameters used in subsurface current mobility model.

The channel geometry of the river will mandate time varying meander amplitude which is denoted as

follows:
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B(t) = B0 + ε cos(ωt+ θ) (1)

Here, ε determines the degree of chaotic advection, where for relatively large ε, the particles are able

to cross the jet in north to south direction or vice versa [45]. To model the currents in a river, we select

ε such that the sensor nodes are allowed to mix with the jet stream. The direction of flow is denoted by

ζ and it is defined as follows:

ζ = tan−1{B(t)h cos[h(x− cxt)]} (2)

Then, the motion of the sensor nodes can be defined with the following standard stream function [46]:

Γ(x, y, t) = Γ0

{
1− tanh

[
y − η

ξ/cos(ζ)

]}
(3)

where ξ is the width of the jet and 2Γ0 is the total eastward transport.

The time-varying central streamline is defined by η and it is given by the following equation:

η = B(t) sin[h(x− cxt)] (4)

where h is the wave number defined in relation to the wavelength L, as h = 2π/L, and cx is the phase

speed of the sinusoidal meander [47].

Eq. (3) represents the velocity field for an isopycnal surface where it is relevant to assume that sensor

nodes can easily adapt to pressure changes since they already carry pressure sensor nodes as part of their

monitoring task. To obtain the non-dimensional eastward moving frame, we substitute x′ = x− cxt in ξ

and in Eq. (4). Thus, Eq. (3) takes the following form:

Γ(x′, y′) = Γ0

{
1− tanh

[
y′ − η′

ξ/cos(ζ ′)

]}
+ cxy

′ (5)

From Eq. (5), the velocity of a sensor node is computed by a simple derivation as follows:

u =
dx

dt
= −∂Γ

∂y
, v =

dy

dt
=
∂Γ

∂x
. (6)

In addition to the subsurface current mobility model, a basic directional mobility model is used to
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investigate the performance of the localization algorithm in different mobility conditions. In this second

mobility model, each sensor node floats in the watercourse from a predetermined origin on one side of

the river to a randomly chosen destination on the other side on a linear path.

B. Location estimation

The main goal of our location estimation approach is to enhance the environmental monitoring infor-

mation collected from the river and create a detailed set of data with location and time information for

a complete analysis of the river characteristics. Therefore, in contrast to most of the existing localiza-

tion algorithms, the sensor nodes are not informed about their positions. This way, no computation is

specifically required by the localization algorithm at the sensor nodes.

The mechanism for actor affiliation utilizes the “weight” values of the nodes. Each actor is assigned to

a weight k, which is initialized with the same value for all actors in the beginning of system deployment.

The initial k value is based on the characteristics of the network such as the communication ranges of the

nodes or the physical constraints of the environment. Sensor nodes store weight values for the actors they

are affiliated with. There is no initial configuration on the sensor nodes to affiliate them with the actors.

The only data available for a sensor node s as it floats in the river are the direct neighbors Neigh(s) and

their corresponding weights, w(Neigh(si)).

The list of the weights for the actors, which a sensor is affiliated with, is stored in a “weight table”.

The sensor nodes initially take random weight values between 0 and k − 1. The weight value of each

affiliation is updated according to “hop distance”, h, of the node to the actor in which it gets updates

from. Therefore the weight wa(v) of a sensor node v for an actor a is as follows:

wa(v) = ka − ha(v)

The actors exchange packets with the sensor nodes in their transmission ranges. Each actor encodes

the transmitted packets with its ID and weight k, denoting that the packet is originated at an actor. Each

sensor node updates the weight values in its record via local updates. Thus the information about each

actor is distributed and updated at the affiliation area of that actor.

A sensor node is capable of being affiliated with multiple actors and keeps the maximum weight for

each actor it receives the packets from, as depicted in Fig. 2. The structure of the network is created as the

sensor node continuously adapts its weight according to its local neighborhood. For each of its affiliated
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Fig. 2. Sensor node affiliated with multiple actors.

actor nodes, a sensor node’s weight depends on the highest neighbor weight, M for that actor. The sensor

node is assigned with the weight value of M − 1 unless it already has the same weight value. Hereby a

hierarchical structure is dynamically formed and updated by creating an ordered tree structure. Therefore

a sensor retransmits a packet received from an actor only if the weight value is less than the sensor node’s

weight for that actor. Otherwise the sensor node drops the packet to avoid unnecessary traffic and energy

consumption in the network.

If the neighbors of a sensor node affiliated with an actor, have zero weights, then that sensor node

cannot affiliate with that actor and it is out of the coverage area. When a sensor node loses its connection

with all the actors and doesn’t receive any weight updates, it operates only in “listening” mode. Listening

nodes are physically able to exchange packets with neighbors having weight zero; however, there is no

communication among these nodes. Algorithm 1 describes the state transitions for a node depending on

its actor affiliation.

Algorithm 1 Sensor node weight assignment
1: wa(v): The weight of node v for actor a
2: max(w(Neigh(va))): M
3: if v is not affiliated with an actor node then
4: wa(v) = 0
5: else if M = k then
6: wa(v) = k − 1
7: else if M ! = k & M > wa(v) then
8: wa(v) = M − 1
9: else if M < wa(v) then

10: wa(v) = wa(v)− 1
11: else if Neigh(va) = ∅ then
12: wa(v) = 0
13: end if

When floating in the river, some sensor node groups can lose connection to the actors and particular
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Fig. 3. Weight adaptation for a group of sensor nodes.

nodes in the group can have weights higher than all of their neighbors without having any affiliations to

the actors. According to the hierarchical clustering weight, these nodes attract surrounding sensor nodes

with lower weights, which would cause unnecessary data traffic since nodes with lower weights would

transmit monitoring data towards the nodes with higher weights. This is prevented in the algorithm by

successively reducing the weight of a node when it has the highest weight among its neighbors. The

weight adaptation continues until connecting to an existing actor or until the weight of the node becomes

the minimum value for the network.

Fig. 3 shows an example of a group of listening sensor nodes and their weight (depicted as w in Fig.

3) adaptation. All the nodes in this example are assumed to preserve their hop-distance to their neighbors

during the specified period of time and k value for the network is set to five. The situation in Fig. 3 can

be considered as the time when this group of four nodes just lost connection to an actor. Therefore none

of the nodes is affiliated with an actor. As can be seen in Fig. 3 the weight adaptation terminates at sixth

step when all the nodes have w = 0. In a realistic river environment, the neighbors of the nodes change

continuously with mobility.

The sensor nodes update their position related data locally as the network topology changes due to node

mobility. The sensor nodes affiliated with an actor form the “affiliation area” of that actor. Therefore, the

selection of the k value for the actors is critical for the energy consumption in the network. In our

algorithm, actor nodes adapt their k values according to their observations.

Each actor initializes k with a predetermined value (depending on the size of the network area). If the

k value of an actor changes, the actor announces this change to the other actors. As the sensor nodes

float into the reception range of actor nodes, they start to form and update their weight tables as shown
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Fig. 4. The weight tables of sensor nodes affiliated with two actors.

in Fig. 4. Actors also keep weight values for the other actors with the same method. Then, each actor

computes ku value for all of its neighboring actors as follows:

ku =
kn − wn

2

where kn is the k value stored for the neighbor actor n and wn is the weight value of the neighboring

actor n. Hence, ku value for each neighbor actor is calculated according to the minimum number of

hops between two actors. The ku values are updated continuously such that the minimum is stored in the

records for each neighbor actor.

The actor’s k value is updated with the maximum of the ku values. Actors have their location infor-

mation, so the distance (d) between two actors, i = 1, 2, is calculated simply by using the Pythagoras

theorem:

d2 = (x1 − x2)2 + (y1 − y2)2

The adaptation of k arranges the size of the affiliation area for each actor according to the distances to

other actors.

A decrease in the number of packets transmitted in turn reduces the total energy consumption in the

network. Each sensor node communicates only with its 1-hop neighbors and the energy consumed to

convey the collected information to an actor depends on the hop count of the node.

The packets originated from a sensor node v are transmitted to an actor a over a path of ha(v) hops.

Hence the maximum number of transmissions in the actor area of a with n sensor nodes would be defined

as
∑n

i=1 ha(vi) when each sensor node transmits a packet. Then the improvement of the consumed energy

in an actor area can be defined as follows:

Ei =
n∑

i=1

hi −
n∑

j=ka

hj
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The number of nodes in an actor area (n) decreases as the k value is adapted according to the neighbor

actors. If the distance to the furthest neighbor actor is da, the adapted k value (ka) can be assumed to be

da
2

. Then the number of sensor nodes affiliated with an actor can be approximated in proportion to the

change in the actor area, as n da
2

4r2k2
improvement of the consumed energy in an actor area is denoted as

follows:

Ei = hav(n− n
da

2

4rs2k2
)

where hav is the average hop value of the sensor nodes, which are not affiliated with the actor a with the

adaptation of k. In a uniform distribution of the sensor nodes, hav is greater than 1
2
(̇ d
2rs

+ k). Hence the

improvement in energy can be approximated as follows:

Ei =
1

2

(
da
2rs

+ k

)(
n− n da

2

4rs2k2

)
(7)

=
nda
4rs

(
1− (

da
2rsk

)2 − da
rsk

)
+
nk

2

The adaptation of k is also important for the hop-distance estimation since the values calculated with

this method are used when estimating the locations of the sensor nodes. The adaptation of k forces

sensor nodes to be affiliated only with actors in close proximity which reduces the negative impact of the

dynamically changing topology.

An actor keeps different k values for all the other actors that they store weight values for. These values

are used in the calculation of “1-hop distance”. The average 1-hop-distance value is estimated as d
2ku

and

this calculated value is used for localization purposes. The sensor nodes dynamically store and update

their weights as they float in the network. Actors collect weight information when the data packets are

transmitted to the actors. Sensor nodes piggyback their weight tables to the data packets and these tables

are used to estimate the distances of the nodes to the actors. The estimated distance of a sensor node to

an actor A is calculated as follows:

dA = (kA − wA) ∗ hA
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where dA is the estimated distance to the actor A, wA is the weight of the sensor node for the actor A

and hA is the average 1-hop distance of actor A.

The distance estimation is based on the number of hops needed to reach from the sensor nodes to the

actor nodes. Therefore it’s similar to the distance vector (DV) based approach of Niculescu and Nath’s

model [14]. However, their model is designed for static networks and additionally, in most of the DV-

based solutions, sensor nodes need to assign a fixed memory to save the locations of all the landmarks,

hop-counts to these landmarks and average hop-distance values. In our approach, a sensor node stores

only the weight values for a small set of actor nodes. All the other computation and memory requirements

of the algorithm are handled by the actors and the sink, which is a better-fit for WSAN structure in terms

of the usage of memory, computational resources and energy. Hereby, the information flooding, which is

common and intense in DV-based solutions, is also minimized.

When a sensor node’s weight values are collected for three actors, its distances to these actors are

estimated according to the “1-hop distance” value and the weights. The estimated distance of a sensor

node is calculated for each of the actors it’s affiliated with and then these values are plugged into the

lateration operation for the estimation of the sensor nodes position. When a sensor node is affiliated with

multiple actor nodes, its position estimation can be represented with a system of equations, written in

matrix form as follows:


2(xn − x1) 2(yn − y1)

...
...

2(xn − xn−1) 2(yn − yn−1)


xs
ys

 =


(d21 − d2n)− (x21 − x2n)− (y21 − y2n)

...

(d2n−1 − d2n)− (x2n−1 − x2n)− (y2n−1 − y2n)



where (xi, yi), (i = 1, ...n), are the positions of the n actors and di, (i = 1, ...n), are the estimated distance

values.

The solution pair of this system, (xs,ys), minimizes ‖Ax − B‖2 value. This pair also minimizes the

mean square error, where 0.5A is the left hand side matrix, B is the right hand side matrix and x is the

vector for (xs,ys) pair. Since ‖.‖2 is minimized, the system is solved with minimum average error for all

positions of the actors that the sensor is affiliated with.

For any vector v, ‖v‖22 is equal to vTv, which can be used to find a solution for x. Therefore, if the

same expression is written for ‖Ax − B‖, an equation for x can be found:
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‖Ax − B‖22 = xTATAx− 2xTATB + BTB

This expression is minimized when the mean square error is minimized. Therefore, the gradient of the

expression must be set to zero considering it as a function of x:

2ATAx− 2ATB = 0⇔ ATAx = ATB

This is the normal equation for the linear least squares problem and it has a unique solution. We use

the Cholesky factorization to solve this equation and to get the estimations for x and y coordinates of the

sensor nodes. Accordingly, the resulting matrix is given by:

x = (AAT )−1ATB

The estimations for the coordinates of the sensor nodes are calculated by this method for each time

instance and recorded. Since our goal is not an online location-awareness for the sensor nodes, the paths

followed by the nodes are estimated after these points are calculated. Essentially, the paths are estimated

using the interpolation of these coordinates. Hence, the effect of the errors in the individual estimates to

the paths of the sensor node is minimized.

IV. SIMULATION STUDY

In this section, we evaluate our approach by measuring how the errors in the estimated locations vary

with the characteristics of the localization algorithm and the mobility model in use. The simulation study

is conducted in OPNET Modeler [48]. Table II summarizes the parameters used in our simulation study.

The settings are chosen according to the requirements of Amazon scenario. The actor nodes are stationary,

deployed in an area uniformly at random with the constraint that they are able to form a connected graph.

Sensor nodes are mobile and they are flowing in the watercourse. The basic directional mobility model

and the meandering mobility model are used in different experiments to define the movement of the

sensor nodes. The communication links among the sensor nodes are assumed to be prone to failures due

to shadowing and multipath caused by the river environment.
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TABLE II
SIMULATION PARAMETERS

Number of sensor nodes 100
Number of actor nodes 25
k value 1-5
Terrain size 200×1400 m
Sensor node transmission range 40 m
Average jet speed 1-7 m/s
Degree of chaotic advection 0.3
Frequency of time dependent meanders 0.4
Simulation time 3600 s

A. Clustering

Clusters formed as the sensor nodes move in the network play an important role for localization

accuracy. The number of actors, which a sensor node can be affiliated to, increases with increasing

k. These affiliations and the parameter k are included in the hop distance estimations. Therefore, the

localization accuracy is affected by their values.

In the first set of experiments, the parameter k is set to a small value (k = 2) to observe the performance

of the algorithm in a low clustering scenario. This value minimizes the influence of clustering by limiting

the maximum number of hops between a sensor node and its affiliated actor node. Therefore, in this case,

only the sensor nodes, which can reach the actor through one or two hops are allowed for affiliation. The

experiments are conducted for both the meandering and the basic directional mobility models. The error

distribution of localization with the basic directional mobility is illustrated in Fig. 5. The error distribution

when using meandering mobility model with average jet speed of 1.5 m/s is shown in Fig. 6.

In the second set of the experiments, the value of the parameter k is increased to five. The goal of these

experiments is to observe the influence of clustering in the location estimation by comparing the results

of the first set to the second set of experiments. The location estimation error distributions are illustrated

in Fig. 7 and Fig. 8 for basic directional and meandering mobility models, respectively.

The localization error has a normal distribution for both values of the parameter k. When k = 2, the

range of the error is between -25 and 25 meters for both mobility models. The estimation errors are equal

to or below 15 meters for ∼ 93% of the results in basic directional mobility and ∼ 97% of the results

in meandering mobility model. When k is increased to five, the range of the error results is more than

the results observed in the first experiment. Since the number of affiliations increases as k increases, we

also observe that the number of estimated points is higher when k is five. When the meandering mobility
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Fig. 5. The error distribution of the estimation results with basic directional mobility and k = 2.
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Fig. 6. The error distribution of the estimation results with meandering mobility and k = 2, average jet speed = 1.5 m/s.

model is used, the error is below 40 meters for 73% of the results. These simulation results show that as

the length of communication paths are allowed to become larger, more positions can be estimated with

a cost on the accuracy. When the number of estimated positions doesn’t satisfy the requirements of an

application scenario, a larger k value may be preferred for the next set of observations. Therefore, the

selection of the maximum hop number depends on the requirements of the network under consideration

and the scenario.
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Fig. 7. The error distribution of the estimation results with basic directional mobility and k = 5.
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Fig. 8. The error distribution of the estimation results with meandering mobility and k = 5, average jet speed = 1.5 m/s.

B. Mobility model

In this experiment set, the impact of the mobility model on the performance of the localization algorithm

is evaluated. The movement of sensor nodes is modeled with meandering and the basic mobility models,

where the parameter k is set to three and the average jet speed used is 1.5 m/s. The error distribution results

are illustrated in Fig. 9 and Fig. 10 for basic directional and meandering mobility models, respectively.

Using the results of this experiment set and the previous one, from Fig. 5 to Fig. 10, we observe that the

error has a normal distribution for both models, while the number of data points is larger for meandering

mobility model. The difference in the number of data points is higher for low error values in favor of the
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Fig. 9. The error distribution of the estimation results with basic directional mobility and k = 3.
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Fig. 10. The error distribution of the estimation results with meandering mobility and k = 3.

experiments with meandering mobility model, which shows that the accuracy of the algorithm is better

with meandering mobility model.

The location estimation is also demonstrated for particular sensor nodes in the experiments to observe

the accuracy of the algorithm. Fig. 11 and Fig. 12 show the exact trajectory of one of the sensor nodes

on the x coordinate and the estimations of our algorithm for both mobility models. Fig. 13 and Fig. 21

show the results of the experiment for y coordinate.

As it was observed with the error distribution results, the accuracy of the estimation results is higher

with meandering mobility model. This is because of a stretching topology with correlated motion where
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Fig. 11. Estimated x-coordinates and the real trajectory of a sensor node with basic directional mobility.
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Fig. 12. Estimated x-coordinates and the real trajectory of a sensor node with meandering mobility.

some sensor nodes float behind others supplying reach for more actors when compared to random floating

of the nodes in basic directional mobility. The localization algorithm gives better results when the sensor

nodes move with meandering mobility. This is an advantage of the localization algorithm and denotes

that the algorithm would have better performance in a real life scenario compared to a random mobility

simulation due to realistic characteristics of the meandering mobility model.

The cost of our localization approach in terms of energy consumption is demonstrated in Fig. 15

with 95% confidence interval for different values of k. The energy consumption is observed for basic

directional mobility model (BDM) and for meandering mobility model with (MMk) and without (MM) k
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Fig. 13. Estimated y-coordinates and the real trajectory of a sensor node with basic directional mobility.

0 500 1000 1500 2000 2500 3000 3500
100

120

140

160

180

200

220

240

260

280

300

time (s)

y
−

c
o
o
rd

in
a
te

Trajectory

Estimated Locations

Fig. 14. Estimated y-coordinates and the real trajectory of a sensor node with meandering mobility.

adaptation. The energy consumption parameters of this simulation set are chosen from the multi-sensor

system, which was deployed in the River Lee Co. Ireland [49]. Similar to our application scenario, this

multi-sensor system is used to monitor water quality parameters such as pH, temperature or dissolved

oxygen. According to the power consumption analysis of Regan et al. [49], the power consumption of a

node in the simulation is 96.2 mW when the transceiver is active and 0.054 mW when the transceiver is

not active.

One of the important results denoted in Fig. 15 is the effect of k in the energy consumption. The energy

consumption increases with the increasing values of k. As shown in the results of error distribution exper-
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Fig. 15. Energy consumption for basic directional mobility, meandering mobility and meandering mobility with different k values.

iments, the collected data also increase with larger k values. Therefore, the number of data receptions and

transmissions is larger for larger k values with the cost of an increase in energy consumption. Additionally,

the energy consumption is higher for meandering mobility model and the difference accumulates as the

value of k increases. Hence the higher clustered structure created by the meandering mobility model results

in more data transmission and more energy consumption. The improvement in energy consumption by

the adaptation of k is also observed in Fig. 15 and this effect becomes more apparent as k increases.

C. Meandering mobility

In the meandering mobility model, the average jet speed is an important factor to define the charac-

teristics of the meandering behavior of the river current. For a comprehensive evaluation of the proposed

localization approach, the average jet speed parameter of the meandering mobility model is varied in the

next set of simulations.

Fig. 16 shows the paths for all sensor nodes in two examples from each of the simulation sets with

average jet speed values varying from one to seven meters per second. Fig. 16 (a) and Fig. 16 (b) show

the paths of nodes with the average jet speed of one meter per second. When the average jet speed is

increased to three meters per second as presented in Fig. 16 (c) and Fig. 16 (d), the effect of this increase

can be observed particularly in the meander amplitude. The jet speed is further increased to five meters

per second in Fig. 16 (e) and Fig. 16 (f) and seven meters per second in Fig. 16 (g) and Fig. 16 (h).

The variance in the y-coordinates of the sensor node positions decreases as the jet speed is increased.
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(a) Average jet speed = 1 m/s (b) Average jet speed = 1 m/s

(c) Average jet speed = 3 m/s (d) Average jet speed = 3 m/s

(e) Average jet speed = 5 m/s (f) Average jet speed = 5 m/s

(g) Average jet speed = 7 m/s (h) Average jet speed = 7 m/s

Fig. 16. Examples for the paths of 100 nodes with varying average jet speed values.

This characteristic of the mobility model can be used to adjust the values of the localization algorithm

parameters for the specific requirements of different application scenarios.

Figs. 17-20 show the error distribution results of the location estimation for meandering mobility with

the average jet speed values 1m/s, 3m/s, 5m/s and 7m/s, respectively.

The localization errors collected for the experiments with different average jet speed values have results

close to each other. However the results also show that the accuracy of the position estimation increases

for these four values with the increasing jet speed. The number of data points collected also increases

as the meander amplitude decreases. This result can be explained with the additional stretching in the

topology when the meandering jet amplitude decreases.
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Fig. 17. The error distribution of the estimation results with average jet speed of 1 m/s and k = 3.
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Fig. 18. The error distribution of the estimation results with average jet speed of 3 m/s and k = 3.

The effect of the variation in the average jet speed parameter of the meandering mobility model is also

tested for the energy consumption. Fig. 15 shows the average energy consumption with 95% confidence

interval for different values of average jet speed. When these results are combined with the results in

Fig. 15, we observe that the energy consumption increases with the increasing values of both k and jet

speed, and the selection of k value is more influential in terms of energy when utilizing the localization

approach.

V. CONCLUSION

In this paper, a novel localization algorithm for wireless networks with mobile sensor nodes and

stationary actors is proposed. The goal is to improve the on-site monitoring of Amazon river with a
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Fig. 19. The error distribution of the estimation results with average jet speed of 5 m/s and k = 3.
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Fig. 20. The error distribution of the estimation results with average jet speed of 7 m/s and k = 3.

lightweight localization extension. The particular scenario has its own challenges, which require high

adaptability to failures and high mobility of sensor nodes. The proposed localization algorithm overcomes

these challenges by a locality preserving approach complemented with an idea that benefits from the

motion pattern of the sensors. The algorithm aims to retrieve location information at the actor nodes

rather than the sensors and it adopts 1-hop localization approach in order to address the limited lifetime

of the WSAN. The accuracy of the proposed algorithm can be further improved with RSS or other

measurement techniques at the expense of increased energy consumption. The selection of a realistic

mobility model is critical for performance evaluation of a localization algorithm. As another contribution

of the paper, a subsurface current mobility model is adopted and tailored according to the requirements of
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Fig. 21. Energy consumption for meandering mobility with different average jet speed values.

the scenario. Through extensive simulations, we have shown that the localization estimation can be realized

using local multi-hop information. In overall, as the multi-hop chains are allowed to become longer, more

positions can be estimated with the cost of lower accuracy. The selection of the maximum hop number is

therefore an issue depending on the requirements of network. As future work, we are planning to integrate

an actor positioning strategy with our approach since the actor positions and the communication in the

network among actors affect the performance of localization. We intend to improve the routing and energy

consumption by using the localization information for data aggregation and dissemination.
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