
Chapter 6

Designing the
Modules

Shari L. Pfleeger
Joanne M. Atlee

4th Edition

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.2

Contents

6.1 Design Methodology
6.2 Design Principles
6.3 OO Design
6.4 Representing OO Designs in the UML
6.5 OO Design Patterns
6.6 Other Design Considerations
6.7 OO Measurement
6.8 Design Documentation
6.9 Information System Example
6.10 Real-Time Example
6.11 What this Chapter Means for You

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.3

Chapter 6 Objectives

• Design principles
• Object-oriented design heuristics
• Design patterns
• Exceptions and exception handling
• Documenting designs

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.4

6.1 Design Methodology

• We have an abstract description of a solution to our customer’s
problem, a software architectural design, a plan for
decomposing the design into software units and allocating the
system’s functional requirements to them

• No distinct boundary between the end of the architecture-
design phase and the start of the module-design phase

• No comparable design recipes for progressing from a software
unit’s specification to its modular design

• The process taken towards a final solution is not as important
as the documentation produced

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.5

6.1 Design Methodology
Refactoring

• Design decisions are periodically revisited and revised
• Refactoring
• Objective: to simplify complicated solutions or to

optimize the design

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.6

6.2 Design Principles

• Design principles are guidelines for decomposing a system’s
required functionality and behavior into modules

• The principles identify the criteria
– for decomposing a system
– deciding what information to provide (and what to conceal) in the resulting

modules

• Six dominant principles:
– Modularity
– Interfaces
– Information hiding
– Incremental development
– Abstraction
– Generality

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.7

6.2 Design Principles
Modularity

• Modularity is the principle of keeping separate the various unrelated
aspects of a system, so that each aspect can be studied in isolation (also
called separation of concerns)

• If the principle is applied well, each resulting module will have a single
purpose and will be relatively independent of the others
– each module will be easy to understand and develop
– easier to locate faults (because there are fewer suspect modules per

fault)
– Easier to change the system (because a change to one module affects

relatively few other modules
• To determine how well a design separates concerns, we use two concepts

that measure module independence: coupling and cohesion

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.8

6.2 Design Principles
Coupling

• Two modules are tightly coupled when they depend a great
deal on each other

• Loosely coupled modules have some dependence, but their
interconnections are weak

• Uncoupled modules have no interconnections at all; they are
completely unrelated

–Tightly coupled -
–many dependencies

–Loosely coupled -
–some dependencies

–Uncoupled -
–no dependencies

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.9

6.2 Design Principles
Coupling (continued)

• There are many ways that modules can be dependent
on each other:
– The references made from one module to another
– The amount of data passed from one module to another
– The amount of control that one module has over the other

• Coupling can be measured along a spectrum of
dependence

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.10

6.2 Design Principles
Coupling: Types of Coupling

• Content coupling
• Common coupling
• Control coupling
• Stamp coupling
• Data coupling

–TIGHT COUPLING

–LOOSE COUPLING

–LOW COUPLING

–Content coupling

–Common coupling

–Control coupling

–Stamp coupling

–Data coupling

–Uncoupled

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.11

6.2 Design Principles
Content Coupling

• Occurs when one component modifies an internal data item in
another component, or when one component branches into
the middle of another component

Module B

–Generate D
Call D

Module D

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.12

6.2 Design Principles
Common Coupling

• Making a change to the common data means tracing back to all
components that access those data to evaluate the effect of
the change

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.13

6.2 Design Principles
Control Coupling

• When one module passes parameters or a return
code to control the behavior of another module

• It is impossible for the controlled module to function
without some direction from the controlling module

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.14

6.2 Design Principles
Stamp and Data Coupling

• Stamp coupling occurs when complex data structures are
passed between modules
– Stamp coupling represents a more complex interface between modules,

because the modules have to agree on the data’s format and organization

• If only data values, and not structured data, are passed, then
the modules are connected by data coupling
– Data coupling is simpler and less likely to be affected by changes in data

representation

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.15

6.2 Design Principles
Cohesion

• Cohesion refers to the dependence within and among a
module’s internal elements (e.g., data, functions, internal
modules)

–LOW COHESION

–HIGH COHESION

–Coincidental

–Logical

–Temporal

–Procedural

–Communicational

–Functional

–Informational

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.16

6.2 Design Principles
Cohesion (continued)

• Coincidental (worst degree)
– Parts are unrelated to one another

• Logical
– Parts are related only by the logic structure of code

• Temporal
– Module’s data and functions related because they are used at the same

time in an execution (avoid it through object constructors and
destructors)

• Procedural
– Similar to temporal, and functions pertain to some related action or

purpose (module appears cohesive only in the context of its use)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.17

6.2 Design Principles
Cohesion (continued)

• Communication
– Operates on the same data set (the cure: place each data element in its

own module)

• Functional (ideal degree)
– All elements essential to a single function are contained in one module, and all

of the elements are essential to the performance of the function

• Informational
– Adaption of functional cohesion to data abstraction and object-based

design

The design goal: put data, actions, or objects together only when they
have one common purpose (e.g., OO design component is cohesive if all
of the attributes, methods and action are strongly interdependent.)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.18

6.2 Design Principles
Interfaces

• An interface defines what services the software unit provides
to the rest of the system, and how other units can access those
services
– For example, the interface to an object is the collection of the object’s public

operations and the operations’ signatures, which specify each operation’s
name, parameters, and possible return values

• An interface must also define what the unit requires, in terms
of services or assumptions, for it to work correctly

• A software unit’s interface describes what the unit requires of
its environment, as well as what it provides to its environment

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.19

6.2 Design Principles
Interfaces (continued)

• A software unit may have several interfaces that make
different demands on its environment or that offer different
levels of service

–Data

–Operation 1

–Operation 2

–Module
–Interface A

–Operation 1 ()
–Operation 2 ()
–Operation 4 ()

–Interface B

–Operation 2 ()

–Operation 3 ()

–Operation 3

–Operation 4

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.20

6.2 Design Principles
Interfaces (continued)

• The specification of a software unit’s interface describes the
externally visible properties of the software unit

• An interface specification should communicate to other system
developers everything that they need to know to use our
software unit correctly
– Purpose (functionality of each access function)
– Preconditions (assumptions such as values of input parameters,

program libraries)
– Protocols (the order in which access function should be invoked)
– Postconditions (visible effects such as return values, raised exceptions,

changes to shared variables)
– Quality attributes

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.21

6.2 Design Principles
Information Hiding

• Information hiding is distinguished by its guidance for
decomposing a system:
– Each software unit encapsulates a separate design decision (e.g., data format,

operations on data, choice of algorithms) that could be changed in the future
– Then the interfaces and interface specifications are used to describe each software

unit in terms of its externally visible properties

• Using this principle, modules may show different cohesion levels
– A module that hides a data representation may be informationally cohesive
– A module that hides an algorithm may be functionally cohesive
– A module that hides the sequence in which tasks are performed may be procedurally

cohesive

• A big advantage of information hiding is that the resulting software
units are loosely coupled

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.22

6.2 Design Principles
Sidebar 6.2 Information Hiding in OO Designs

• In OO design, we decompose a system into objects and their abstract types
– In this sense, each object hides its data representation from other objects

– The only access that other objects have to a given object’s data is via a set of access functions that the
object advertises in its interface

– This information hiding makes it easy to change an object’s data representation without perturbing the
rest of the system

• However, data representation is not the only type of design decision we may want to
hide

– May need to expand our notion of what an object is, to include types of information besides data types

• Objects cannot be completely uncoupled from one another, because an object needs
to know the identity of the other objects so that they can interact.

– Might mean that changing the name of an object, or the number of object instances, forces us also to
change all units that invoke the object

– Such dependence cannot be helped when accessing an object that has a distinct identity but it may be
avoided when accessing an arbitrary object

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.23

6.2 Design Principles
Incremental Development

• Given a design consisting of software units and their
interfaces, we can use the information about the
units’ dependencies to devise an incremental
schedule of development

• Start by mapping out the units’ uses relation
– relates each software unit to the other software units on

which it depends

• Uses graphs can help to identify progressively larger
subsets of our system that we can implement and test
incrementally

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.24

6.2 Design Principles
Incremental Development (continued)

• Uses graphs for two designs
– Fan-in refers to the number of units that use a particular

software unit (high fan-in)
– Fan-out refers to the number of units used by particular

software unit (low fan-out)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.25

6.2 Design Principles
Incremental Development (continued)

• We can try to break a cycle in the uses graph using a
technique called sandwiching
– One of the cycle’s units is decomposed into two units, such

that one of the new units has no dependencies
– Sandwiching can be applied more than once, to break either

mutual dependencies in tightly coupled units or long
dependency chains

–(α) –(β) –(χ)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.26

6.2 Design Principles
Abstraction

• An abstraction is a model or representation that
omits some details so that it can focus on other
details

• The definition is vague about which details are left out
of a model, because different abstractions, built for
different purposes, omit different kinds of details

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.27

6.2 Design Principles
Sidebar 6.3 Using Abstraction

• Suppose that one of the system functions is to sort the elements
of a list L. The initial description of the design is:
Sort L in nondecreasing order
The next level of abstraction may be a particular algorithm:
DO WHILE I is between 1 and (length of L)–1:

Set LOW to index of smallest value in L(I),...,
L(length of L)

Interchange L(I) and L(LOW)

ENDDO

• The algorithm provides a great deal of additional information,
however, it can be made even more detailed

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.28

6.2 Design Principles
Sidebar 6.3 Using Abstraction (continued)

• The third and final algorithm describes exactly how the sorting operation will
work:
DO WHILE I is between 1 and (length of L)-1

Set LOW to current value of I

DO WHILE J is between I+1 and (length of L)

IF L(LOW) is greater than L(J)

THEN set LOW to current value of J

ENDIF

ENDDO

Set TEMP to L(LOW)

Set L(LOW) to L(I)

Set L(I) to TEMP

ENDDO

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.29

6.2 Design Principles
Generality

• Generality is the design principle that makes a
software unit as universally applicable as possible, to
increase the chance that it will be useful in some
future system

• We make a unit more general by increasing the
number of contexts in which can it be used. There are
several ways of doing this:
– Parameterizing context-specific information
– Removing preconditions
– Simplifying postconditions

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.30

6.2 Design Principles
Generality (continued)

• The following four procedure interfaces are listed in order of
increasing generality:
PROCEDURE SUM: INTEGER;

POSTCONDITION: returns sum of 3 global variables

PROCEDURE SUM (a, b, c: INTEGER): INTEGER;

POSTCONDITION: returns sum of parameters

PROCEDURE SUM (a[]: INTEGER; len: INTEGER): INTEGER

PRECONDITION: 0 <= len <= size of array a

POSTCONDITION: returns sum of elements 1..len in array a

PROCEDURE SUM (a[]: INTEGER): INTEGER

POSTCONDITION: returns sum of elements in array a

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.31

6.3 OO Design

• Object oriented methodologies are the most popular
and sophisticated design methodologies

• A design is object oriented if it decomposes a system
into a collection of runtime components called objects
that encapsulate data and functionality
– Objects are uniquely identifiable runtime entities that can be designated as the target of a

message or request
– Objects can be composed, in that an object’s data variables may themselves be objects,

thereby encapsulating the implementations of the object’s internal variables
– The implementation of an object can be reused and extended via inheritance, to define

the implementation of other objects
– OO code can be polymorphic: written in generic code that works with objects of different

but related types

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.32

6.3 OO Design
Terminology

• A class is a software module that partially or totally
implements an abstract data type

• If a class is missing implementations for some of its
methods, we say that it is an abstract class

• The class definition includes constructor methods that
spawn new object instances

• Instance variables are program variables whose
values are references to objects

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.33

6.3 OO Design
Terminology (continued)

• The runtime structure of an OO system is a set of
objects, each of which is a cohesive collection of data
plus all operations for creating, reading, altering, and
destroying those data

• An object’s data are called attributes, and its
operations are called methods

• An object may have multiple interfaces, each offering
a different level of access to the object’s data and
methods
– Such interfaces are hierarchically related by type: if one interface offers a strict subset of

the services that another interface offers, we say that the first interface is a subtype of
the second interface (the supertype)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.34

6.3 OO Design
Terminology (continued)

–addItem(Item)
–removeItem(product No.)
–computeSubtotal()
–computeTax()
–computeTotal()
–voidSale()

Sale

–subtotal : Money
–tax : Money
–total : Money

Date

–day: 1..31
–month : 1..12
–year : integer

Item

–product No.
–name
–description
–price : Money

sale date

1∗

∗

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.35

6.3 OO Design
Terminology (continued)

• Variables can refer to objects of different classes over
the course of a program’s execution, known as
dynamic binding

• The directed arrows in the figure below depict the
relationships between constructs, and the
adornments at the ends of each arrow indicate the
multiplicity (how many of an item may exist)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.36

6.3 OO Design
Terminology (continued)

• Four OO constructs: classes, objects, interfaces, and
instance variables

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.37

6.3 OO Design
Terminology (continued)

• Building new classes by combining component classes,
much as children build structures from building blocks
is done by object composition

• Alternatively, we can build new classes by extending
or modifying definitions of existing classes
– This kind of construction, called inheritance, defines a new

class by directly reusing (and adding to) the definitions of an
existing class

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.38

6.3 OO Design
Terminology (continued)

• Example of inheritance

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.39

6.3 OO Design
Terminology (continued)

• Polymorphism occurs when code is written in terms
of interactions with an interface, but code behavior
depends on the object associated with the interface at
runtime and on the implementations of that object’s
method

• Inheritance, object composition, and polymorphism
are important features of an OO design that make the
resulting system more useful in many ways

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.40

6.3 OO Design
Inheritance vs. Object Composition

• A key design decision is determining how best to
structure and relate complex objects

• In an OO system, there are two main techniques for
constructing large objects
– Inheritance
– composition

• A new class can be created by extending and
overriding the behavior of an existing class, or it can
be created by combining simpler classes to form a
composite class.

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.41

6.3 OO Design
Inheritance vs. Object Composition (continued)

• Each construction paradigm has advantages and disadvantages
• Composition is better than inheritance at preserving the

encapsulation of the reused code, because a composite object
accesses the component only through its advertised interface

• By contrast, using the inheritance approach, the subclass’s
implementation is determined at design time and is static

• The resulting objects are less flexible than objects instantiated
from composite classes because the methods they inherit from
their parent class cannot be changed at runtime

• The greatest advantage of inheritance is the ability to change
and specialize the behaviors of inherited methods, by
selectively overriding inherited definitions

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.42

6.3 OO Design
Inheritance vs. Object Composition (continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.43

6.3 OO Design
Law of Demeter

• Law of Demeter: Allows reducing dependencies by
including in each composite class methods for
operating on the class’s components

• Benefit: client code that uses a composite class needs
to know only about the composite itself and not about
the composites’ components

• Designs that obey the Law of Demeter have fewer
class dependencies, and classes with fewer
dependencies tend to have fewer software faults

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.44

6.3 OO Design
Law of Demeter (continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.45

6.3 OO Design
Dependency Inversion

• Used to reverse the direction of a dependency link between two classes
• Dependency inversion works by introducing interfaces

– Create an interface that the client can depend (include specifications of all the methods
the client expects from the server class).

– Package together the original client class and the new interface into a new client module
– Create a wrapper class for the server
– Advantage: client and server code depend only on the new ClientServerInterface

(increases maintainability)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.46

6.4 Representing OO Designs in the UML

• The UML is a suite of design notations that is popular
for describing OO solutions

• The UML can be used to visualize, specify, or
document a software design

• UML especially useful for describing different design
alternatives, and eventually for documenting design
artifacts

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.47

6.4 Representing OO Designs in the UML
UML in the Process

• Use case diagrams
• UML activity diagrams
• Domain model
• Component diagrams
• Deployment diagrams
• Class diagrams
• Interaction diagrams
• Sequence diagrams
• Communication diagrams
• Activity diagrams
• State diagrams
• Package diagrams

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.48

6.4 Representing OO Designs in the UML
UML in the Process (continued)

• How UML is used in the development process
–Requirements –Design–Architecture

–UML use
case

diagrams
–Scenarios

–UML
activity

diagrams

–UML
state

diagrams

–UML
class

diagrams

–UML
object

diagrams

–UML
sequence
diagrams

–UML
communicat

ion
diagrams

–UML
package

diagrams

–UML
component
diagrams

–UML
deploymen
t diagrams

–Domain models

–UML
activity

diagrams

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.49

6.4 Representing OO Designs in the UML
Sidebar 6.4 Royal Service Station Requirements

• Royal Service station provides three types of services
• The system must track bills, the product and services
• System to control inventory
• The system to track credit history, and payments overdue
• The system applies only to regular repeat customer
• The system must handle the data requirements for interfacing with other system
• The system must record tax and related information
• The station must be able to review tax record upon demand
• The system will send periodic message to customers
• Customer can rent parking space in the station parking lot
• The system maintain a repository of account information
• The station manager must be able to review accounting information upon demand
• The system can report an analysis of prices and discounts
• The system will automatically notify the owners of dormant accounts
• The system can not be unavailable for more than 24 hours
• The system must protect customer information from unauthorized access

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.50

6.4 Representing OO Designs in the UML
UML Class Diagram

• UML class diagrams describe the object types and
their static relationships
– Depict associations among objects and relationships between types and

subtypes
– Diagrams should illustrate the attributes of each object, their individual

behaviors, and the restrictions on each class or object

• Look for and seek
– Actors, physical objects, places, organizations, records, transactions,

collections of things, operations procedures, things manipulated by the
system to be built

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.51

6.4 Representing OO Designs in the UML
UML Class Diagram (continued)

• Royal Service Station use case diagram

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.52

6.4 Representing OO Designs in the UML
UML Class Diagram (continued)

• What needs to be “processed” in some way?
• What items have multiple attributes?
• When do you have more than one object in a class?
• What is based on the requirements themselves, not

derived from your understanding of the
requirements?

• What attributes and operations are always applicable
to a class or object?

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.53

6.4 Representing OO Designs in the UML
Initial Grouping of Attributes and Classes: Step 1

Attributes Classes
Personal check Customer
Tax Maintenance
Price Services
Cash Fuel
Credit card Bill
Discounts Purchase

Station manager

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.54

6.4 Representing OO Designs in the UML
Initial Grouping of Attributes and Classes: Step 2

Attributes Classes
Personal check Customer
Tax Maintenance
Price Services
Cash Parking
Credit card Fuel
Discounts Bill
Name Purchase
Address Maintenance reminder
Birthdate Station manager

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.55

6.4 Representing OO Designs in the UML
Guidelines for Identifying Behaviors

• Imperative verbs
• Passive verbs
• Actions
• Membership in
• Management or ownership
• Responsible for
• Services provided by an organization

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.56

6.4 Representing OO Designs in the UML
Initial Grouping of Attributes and Classes: Step 3

Attributes Classes

Personal check
Tax
Price
Cash
Credit card
Discounts
Name
Address
Birthdate

Customer
Maintenance
Services
Parking
Fuel
Bill
Purchase
Maintenance reminder
Station manager
Overdue bill letter
Dormant account warning
Parts
Accounts
Inventory
Credit card system
Part ordering system
Fuel ordering system

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.57

6.4 Representing OO Designs in the UML
First Cut at Royal Service Station Design

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.58

6.4 Representing OO Designs in the UML
Types of Class Relationships

–association

–composition

–aggregation

–dependency

–navigation

–generalization

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.59

6.4 Representing OO Designs in the UML
Other UML Diagrams

• Class description template
• Package diagrams
• Interaction diagrams
• Sequence diagrams
• Communication diagrams
• State diagrams
• Activity diagrams

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.60

6.4 Representing OO Designs in the UML
Other UML Diagrams – Class Description Template

Class name: Refuel
Category: service
External documents:
Export control: Public
Cardinality: n
Hierarchy:

Superclasses: Service
Associations:

<no rolename>: fuel in association updates
Operation name: price

Public member of: Refuel
Documentation:

// Calculates fuel final price
Preconditions:

gallons > 0
Object diagram: (unspecified)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.61

6.4 Representing OO Designs in the UML
Other UML Diagrams – Class Description Template (cont)

Semantics:
price = gallons * fuel.price_per_gallon
tax = price * purchase.tax_rate
Object diagram: (unspecified)

Concurrency: sequential
Public interface:

Operations:
price

Private interface:
Attributes:

gallons
Implementation:

Attributes:
gallons

State machine: no
Concurrency: sequential
Persistence: transient

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.62

6.4 Representing OO Designs in the UML
Second Cut at Royal Service Station Design

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.63

6.4 Representing OO Designs in the UML
Final Cut at Royal Service Station Design

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.64

6.4 Representing OO Designs in the UML
Other UML Diagrams – Package Diagram

• UML package diagrams allow viewing a system as a small collection of
packages each of which may be expanded to a larger set of classes

• Shows the dependencies among classes that belong to different
packages – important during testing

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.65

6.4 Representing OO Designs in the UML
Other UML Diagrams – Sequence Diagram

• Shows the sequence of activities or behavior occur (e.g.,
example of Refuel class of Royal Service Station)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.66

6.4 Representing OO Designs in the UML
Other UML Diagrams – Communication Diagram

• A communication diagram depicts a sequence of
messages between objects, but it is superimposed on an
object and uses the links between object as implicit
communication channels

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.67

6.4 Representing OO Designs in the UML
Other UML Diagrams – StateDiagram

• A state diagram shows the possible states an object can
take, the events that trigger the transition between one
state to the next, and the actions that result from each state
change

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.68

6.4 Representing OO Designs in the UML
Other UML Diagrams – State Diagram (continued)

State diagram for Fuel class in the Royal Service Station

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.69

6.4 Representing OO Designs in the UML
Other UML Diagrams – Activity Diagram

• Activity diagrams are used to model the flow of
procedures or activities in a class

• A decision node is used to represent a choice of which
activity to invoke

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.70

6.4 Representing OO Designs in the UML
Other UML Diagrams – Activity Diagram (continued)

• Activity diagrams are
used to model the flow
of procedures or
activities in a class

• An activity diagram for
the inventory class

• It may have two
decisions
– to verify that there are

enough fuel
– to verify that a part is in

stock

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.71

6.5 OO Design Patterns

• A design pattern codifies design decisions and best practices for
solving a particular design problem according to design principles

• Design patterns are not the same as software libraries; they are
not packaged solutions that can be used as is. Rather, they are
templates for a solution that must be modified and adapted for
each particular use

• Design patterns provide more specific guidance than design
principles do, but they are less detailed than software libraries

• The main goal is to improve a design’s modularity
• Added complexity (e.g., extra classes, associations) improves

modularity at the expense of quality parameters (e.g.,
performance, ease of development)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.72

6.5 OO Design Patterns
Template Method Pattern

• The Template Method pattern aims to reduce the amount of
duplicate code among subclasses of the same parent class
– It is particularly useful when multiple subclasses have similar but not identical

implementations of the same method
– This pattern addresses this problem by localizing the duplicate code structure in

an abstract class from which the subclasses inherit

• The abstract class defines a template method that implements
the common steps of an operation, and declares abstract
primitive operations that represent the variation points

• The subclasses override the primitive operations to realize the
subclass-specific variations of the template method

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.73

6.5 OO Design Patterns
Template Method Pattern (continued)

• Create “list_line_item()” method in Services class that prints the line
item fields. This method calls a local abstract method class “price()” to
print the item’s price. Each of the service subclasses overrides the
“price()” method to reflect how the price for that service is computed

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.74

6.5 OO Design Patterns
Factory Method Pattern

• The Factory Method pattern is used to encapsulate the code that creates objects
• The similar but not identical methods are the constructor methods that

instantiate objects. Create an abstract class that defines an abstract constructor
method (Factory Method) and subclasses override the Factory Method to
construct specific objects

• Example: Injection molding presses demonstrate this pattern. Manufacturers of
plastic toys process plastic molding powder, and inject the plastic into molds of
the desired shapes. The class of toy (car, action figure, etc.) is determined by the
mold.

Reference: https://sourcemaking.com/design_patterns/factory_method

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.75

6.5 OO Design Patterns
Strategy Pattern

• The Strategy pattern allows algorithms to be selected at runtime
since the choice of best algorithm may not be known till application
is running

• Examples: user-authentication algorithm to use depends on the
login request (left) and modes of transportation to an airport (right)

Reference: https://sourcemaking.com/design_patterns/strategy

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.76

6.5 OO Design Patterns
Decorator Pattern

• Extend an object’s functionality at
runtime
– Decorator is a subclass of the object it

decorates
– Decorator contains a reference to the

object it decorates

• Flexible alternative to using
inheritance at design time to create
subclasses that support new features

• Example: System for movie rental -
base object (Account), each possible
feature of an account is a subclass of
Decorator class.

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.77

6.5 OO Design Patterns
Decorator Pattern – More examples

Reference: https://sourcemaking.com/design_patterns/decorator

Design 1 Design 2

Analogy: wrapping a gift, putting in a box, and wrapping the box
Example: Interested in adding borders and scrollbars to the windows

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.78

6.5 OO Design Patterns
Observer Pattern

• An application of the publish–subscribe architecture style

• Useful when software needs to notify multiple objects of key events. Defines a one-to-
many dependency between objects so that when one object changes state, all its
dependents are notified and updated automatically

• Examples: text editor offering multiple views of a document being edited (left) and
auctions (right). Each bidder has a paddle used to indicate a bid. The auctioneer starts the
bidding, and "observes" when a paddle is raised to accept the bid. The acceptance of the
bid changes the bid price which is broadcast to all the bidders in the form of a new bid.

Reference: https://sourcemaking.com/design_patterns/observer

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.79

6.5 OO Design Patterns
Composite Pattern

• A composite is an object designed as a
composition of one or multiple objects
with similar functionality

• Composes objects in terms of a tree
structure to represent part (or whole)
of the hierarchy

• The composite pattern promotes the
uses of a single uniform interface (e.g.,
Expr class)

• Useful whenever we have "composites
that contain components, each of
which could be a composite“

• For instance, menus that contain menu
items, each of which could be a menu
or directories that contain files, each of
which could be a directory

• Example: mathematical expressions modeled
as tree structure in which nodes represent
various operators and variable operands

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.80

6.5 OO Design Patterns
Visitor Pattern
• Collects and encapsulates operation fragments into their own classes

• Each operation is implemented as a separate subclass of abstract Visitor class

• New operations can be added without changing the composite object’s code

• Operations can be performed on elements of an object structure without changing the classes on
which it operates

Reference: https://sourcemaking.com/design_patterns/visitor

• Example: When a person calls a taxi company
(accepting a visitor), the company dispatches a
cab to the customer. Upon entering the taxi, the
customer, or Visitor, is no longer in control of his
or her own transportation, the taxi (driver) is.

• Example: accept(Visitor) – single class for performing
operations. For instance, accept() method in Divide always
calls VisitorDivide().

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.81

6.6 Other Design Considerations
Data Management

• Data management takes into account the system
requirements concerning performance and space

• Four steps:
– Identify the data, data structures, and relationships among them
– Design services to manage the data structures and relationships
– Find tools, such as database management systems, to implement some of the

data management tasks
– Design classes and class hierarchies to oversee the data management functions

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.82

6.6 Other Design Considerations
Data Management for the Royal Service Station

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.83

6.6 Other Design Considerations
Exception Handling

• Allows making programs become more robust
• Helps separate error checking and recover from a

program’s main functionality

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.84

6.6 Other Design Considerations
Exception Handling (continued)

attempt_transmission (message: STRING) raises TRANSMISSIONEXCEPTION
// Attempt to transmit message over a communication line

using // the low-level procedure unsafe_transmit, which may fail,
//triggering an exception.
// After 100 unsuccessful attempts, give up and raise an
exception

local
failures: INTEGER

try
unsafe_transmit (message)

rescue
failures := failures + 1;
if failures < 100 then

retry
else

raise TRANSMISSIONEXCEPTION
end

end

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.85

6.6 Other Design Considerations
Designing User Interfaces

• Must consider several issues:
– identifying the humans who will interact with the system
– defining scenarios for each way that the system can

perform a task
– designing a hierarchy of user commands
– refining the sequence of user interactions with the system
– designing relevant classes in the hierarchy to implement the

user-interface design
– decisions
– integrating the user-interface classes into the overall system

class hierarchy

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.86

6.6 Other Design Considerations
Designing User Interfaces (continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.87

6.6 Other Design Considerations
Designing User Interfaces (continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.88

6.6 Other Design Considerations
Frameworks

• A framework is a large reusable design for a specific application
domain

• GUI editors, web applications, accounting systems
• Different from software product lines

• Product lines are developed by a company for its own use
• Frameworks tend to be publically available resources like

toolkits
• High-level architectures whose low-level details need to

be filled-in

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.89

6.7 OO Measurement
OO Size Measures

• Objects and methods as a basic size measure
• Lorenz and Kidd’s nine aspects of size

– Number of scenario script (NSS)
– Number of key classes
– Number of support classes
– The average number of support classes per key classes
– Number of subsystems
– Class size
– Number of operations overridden by a subclass (NOO)
– Number of operation added by a subclass
– Specialization index = (NOO X depth) / (total class methods)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.90

6.7 OO Measurement
Lorenz and Kidd Metrics Collection in Different Phases of Development

Metric
Requirements
Description

System
Design

Program
Design Coding Testing

Number of scenario script X

Number of key classes X X
Number of support classes X
Average number of support
classes per key class X

Number of subsystem X X

Class size X X X

Number of operations overridden
by a subclass X X X X

Number of operations added by a
subclass X X X

Specialization index X X X X

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.91

6.7 OO Measurement
Use Case Diagram of the Royal Service Station

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.92

6.7 OO Measurement
Class Hierarchy for the Royal Service Station

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.93

6.7 OO Measurement
OO Design Quality Measures

• Chidamber and Kemerer have also devised a suite of
metrics for object-oriented development

• Focused on design quality (not size)
– Weighted methods per class = Σn

i=1 ci

– n: number of methods and c: complexity of each method
– Depth of inheritance
– Number of children
– Coupling between objects
– Response for a class
– Lack of cohesion of methods

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.94

6.7 OO Measurement
Chidamber-Kemerer Metrics applied to the Royal Service Station’s System Design

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.95

6.7 OO Measurement
Calculating the Degree of Cohesion

• Given class C with n methods, M1 through Mn
• Suppose {Ij} is the set of instance variables used by

the method M
• We can define P to be collection of pairs (Ir , Is) where

Ir and Is, share no common members
– P = {(Ir , Is) | Ir ∩ Is = Ø}

• Q is the collection of pairs (Ir , Is) where Ir and Is,
share at least one common member
– Q = {(Ir , Is) | Ir ∩ Is ≠ Ø}

• Lack of cohesion in methods for C to be
– |P|-|Q| if |P| > |Q|
– Zero if otherwise

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.96

6.7 OO Measurement
Measuring From a Sequence Diagram

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.97

6.7 OO Measurement
Where to Do OO Measurement

• Measurement is only valuable when it increases our
understanding, prediction, or control

• Metrics are available for many types of documents
including
• Use cases
• Class diagrams
• Interaction diagrams
• Class descriptions
• State diagrams
• Package diagrams

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.98

6.7 OO Measurement
Where to Do OO Measurement (continued)

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.99

6.9 Information System Example
Data Model of Opposition Programs
Broadcast by Piccadilly’s Competition

• Domain elements and relationships that the Piccadilly database
will maintain

• A closer examination will reveal that there are considerable
commonality

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.100

6.10 Real-Time Example
Design by Contract

• Had Ariane-5 been implemented using an object-oriented
approach, the reuse would have been either in terms of
composition or inheritance

• In composition approach: the SRI (inertial reference software)
is viewed as a black box and called from the main system

• In inheritance approach: the SRI structure and behavior are
open to view, inheriting as much structure and behavior from
parent classes as possible

Pfleeger and Atlee, Software Engineering: Theory and Practice Chapter 6.101

6.11 What This Chapter Means For You

• The design process describes the system components using a
common language with which to communicate

• Object orientation is a particularly appealing basis for such
design, because it allows us to describe and reason about the
system from its birth to its delivery in the same terms: classes,
objects, and methods

• Consistent notation makes it easier for your team to
understand the implications of using a particular object or class
– Consistency assists the maintainers and testers, enabling them to build test

cases and monitor changes more easily
– Because the requirements, design, and code are expressed in the same way, it is

easier for you to evaluate the effects of proposed changes to the requirements
or designs

	Chapter 6
	Contents
	Chapter 6 Objectives
	6.1 Design Methodology
	6.1 Design Methodology�Refactoring
	6.2 Design Principles
	6.2 Design Principles�Modularity
	6.2 Design Principles�Coupling
	6.2 Design Principles�Coupling (continued)
	6.2 Design Principles �Coupling: Types of Coupling
	6.2 Design Principles �Content Coupling
	6.2 Design Principles �Common Coupling
	6.2 Design Principles �Control Coupling
	6.2 Design Principles �Stamp and Data Coupling
	6.2 Design Principles �Cohesion
	6.2 Design Principles �Cohesion (continued)
	6.2 Design Principles �Cohesion (continued)
	6.2 Design Principles �Interfaces
	6.2 Design Principles �Interfaces (continued)
	6.2 Design Principles �Interfaces (continued)
	6.2 Design Principles �Information Hiding
	6.2 Design Principles �Sidebar 6.2 Information Hiding in OO Designs
	6.2 Design Principles �Incremental Development
	6.2 Design Principles �Incremental Development (continued)
	6.2 Design Principles �Incremental Development (continued)
	6.2 Design Principles �Abstraction
	6.2 Design Principles �Sidebar 6.3 Using Abstraction
	6.2 Design Principles �Sidebar 6.3 Using Abstraction (continued)
	6.2 Design Principles �Generality
	6.2 Design Principles �Generality (continued)
	6.3 OO Design
	6.3 OO Design�Terminology
	6.3 OO Design�Terminology (continued)
	6.3 OO Design�Terminology (continued)
	6.3 OO Design�Terminology (continued)
	6.3 OO Design�Terminology (continued)
	6.3 OO Design�Terminology (continued)
	6.3 OO Design�Terminology (continued)
	6.3 OO Design�Terminology (continued)
	6.3 OO Design�Inheritance vs. Object Composition
	6.3 OO Design�Inheritance vs. Object Composition (continued)
	6.3 OO Design�Inheritance vs. Object Composition (continued)
	6.3 OO Design�Law of Demeter
	6.3 OO Design�Law of Demeter (continued)
	6.3 OO Design�Dependency Inversion
	6.4 Representing OO Designs in the UML
	6.4 Representing OO Designs in the UML�UML in the Process
	6.4 Representing OO Designs in the UML�UML in the Process (continued)
	6.4 Representing OO Designs in the UML �Sidebar 6.4 Royal Service Station Requirements
	6.4 Representing OO Designs in the UML�UML Class Diagram
	6.4 Representing OO Designs in the UML�UML Class Diagram (continued)
	6.4 Representing OO Designs in the UML�UML Class Diagram (continued)
	6.4 Representing OO Designs in the UML�Initial Grouping of Attributes and Classes: Step 1
	6.4 Representing OO Designs in the UML�Initial Grouping of Attributes and Classes: Step 2
	6.4 Representing OO Designs in the UML�Guidelines for Identifying Behaviors
	6.4 Representing OO Designs in the UML�Initial Grouping of Attributes and Classes: Step 3
	6.4 Representing OO Designs in the UML�First Cut at Royal Service Station Design
	6.4 Representing OO Designs in the UML�Types of Class Relationships
	6.4 Representing OO Designs in the UML�Other UML Diagrams
	6.4 Representing OO Designs in the UML�Other UML Diagrams – Class Description Template
	6.4 Representing OO Designs in the UML�Other UML Diagrams – Class Description Template (cont)
	6.4 Representing OO Designs in the UML�Second Cut at Royal Service Station Design
	6.4 Representing OO Designs in the UML�Final Cut at Royal Service Station Design
	6.4 Representing OO Designs in the UML�Other UML Diagrams – Package Diagram
	6.4 Representing OO Designs in the UML�Other UML Diagrams – Sequence Diagram
	6.4 Representing OO Designs in the UML�Other UML Diagrams – Communication Diagram
	6.4 Representing OO Designs in the UML�Other UML Diagrams – StateDiagram
	6.4 Representing OO Designs in the UML�Other UML Diagrams – State Diagram (continued)
	6.4 Representing OO Designs in the UML�Other UML Diagrams – Activity Diagram
	6.4 Representing OO Designs in the UML�Other UML Diagrams – Activity Diagram (continued)
	6.5 OO Design Patterns
	6.5 OO Design Patterns�Template Method Pattern
	6.5 OO Design Patterns�Template Method Pattern (continued)
	6.5 OO Design Patterns�Factory Method Pattern
	6.5 OO Design Patterns�Strategy Pattern
	6.5 OO Design Patterns�Decorator Pattern
	6.5 OO Design Patterns�Decorator Pattern – More examples
	6.5 OO Design Patterns�Observer Pattern
	6.5 OO Design Patterns�Composite Pattern
	6.5 OO Design Patterns�Visitor Pattern
	6.6 Other Design Considerations�Data Management
	6.6 Other Design Considerations�Data Management for the Royal Service Station
	6.6 Other Design Considerations�Exception Handling
	6.6 Other Design Considerations�Exception Handling (continued)
	6.6 Other Design Considerations�Designing User Interfaces
	6.6 Other Design Considerations�Designing User Interfaces (continued)
	6.6 Other Design Considerations�Designing User Interfaces (continued)
	6.6 Other Design Considerations�Frameworks
	6.7 OO Measurement�OO Size Measures
	6.7 OO Measurement� Lorenz and Kidd Metrics Collection in Different Phases of Development
	6.7 OO Measurement�Use Case Diagram of the Royal Service Station
	6.7 OO Measurement�Class Hierarchy for the Royal Service Station
	6.7 OO Measurement�OO Design Quality Measures
	6.7 OO Measurement�Chidamber-Kemerer Metrics applied to the Royal Service Station’s System Design
	6.7 OO Measurement�Calculating the Degree of Cohesion
	6.7 OO Measurement�Measuring From a Sequence Diagram
	6.7 OO Measurement�Where to Do OO Measurement
	6.7 OO Measurement�Where to Do OO Measurement (continued)
	6.9 Information System Example�Data Model of Opposition Programs�Broadcast by Piccadilly’s Competition
	6.10 Real-Time Example�Design by Contract
	6.11 What This Chapter Means For You

