PRISM: Platform for Remote Sensing using Smartphones

Tathagata Das
Microsoft Research India
Bangalore 560080, India
tathadas@microsoft.com

Prashanth Mohan
University of California, Berkeley
Berkeley, CA 94720, USA
prmohan@cs.berkeley.edu

Venkata N. Padmanabhan
Microsoft Research India
Bangalore 560080, India
padmnab@microsoft.com

Ramachandran Ramjee
Microsoft Research India
Bangalore 560080, India
ramjee@microsoft.com

Asankhaya Sharma
Microsoft India Development Center
Hyderabad 500046, India
asankhs@microsoft.com

3/8/2011 – Steve Kopman
What is PRISM?

- PRISM – Platform for Remote Sensing using Smartphones
- Generic framework that balances generality, security and scalability
- Applications run within PRISM from executable binaries
- Applications are pushed to an appropriate set of users
- Applications run in a sandbox and utilize resource metering and forced amnesia
Current research focuses on “community sensing”
- Include computing and communication capabilities as well as sensors (GPS, microphone, etc)

Two types
- Participatory
 - Require user actions (e.g. taking photograph)
- Opportunistic
 - No user action required (e.g. GPS tracking)
Challenges

● Goal is to reduce application developers need to “reinvent the wheel”

● Three main goals
 – Generality
 • Support a wide range of applications with flexibility to reuse existing code
 – Security
 • Ensure that phones remain secure and that applications do not misuse sensitive sensor data
 – Scalability
 • Allow the system to scale to large (>100,000) number of devices
In addition to standard SW sandboxing, three PRISM specific features are utilized to provide security:

- **Resource Metering**
 - Limits the amount of battery energy an application can consume.
 - Limits the “leakage” of sensitive sensor data.

- **Forced Amnesia**
 - Does not allow sensing applications to maintain long-term state info.

- **Sensor Taint Tracking and Access Control**
 - Allows the user to set policies on what applications can do.
Implementation Overview

- Currently runs on Windows Mobile
 - Interesting choice since this is an obsolete platform
- Infrastructure components run on Windows 7
- Three implemented applications “showcase” the generality of the PRISM Platform
 - Citizen Journalist
 - Participatory, alerts users based on GPS location when to take pictures
 - Party Thermometer
 - Allows users to query other users to determine how “hot” the party is
 - Senses music to target users that are in a party
 - Road Bump Monitor
 - Opportunistic sensing to locate and detect road bumps
Related Work

<table>
<thead>
<tr>
<th>System</th>
<th>Generality</th>
<th>Security</th>
<th>Scalability</th>
<th>Privacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble-Sensing</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AnonySense</td>
<td>OK</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Micro-Blog</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>PRISM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Ok</td>
</tr>
</tbody>
</table>
AnonySense vs. PRISM

<table>
<thead>
<tr>
<th></th>
<th>AnonySense</th>
<th>PRISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Language</td>
<td>Constrained, AnonyTL</td>
<td>Runs Generic Binaries</td>
</tr>
<tr>
<td>Privacy</td>
<td>Uses “pull” approach; does not reveal nodes position in infrastructure</td>
<td>Uses “push” approach; Allows limited tracking of nodes</td>
</tr>
<tr>
<td>Sandbox applications</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Assumptions

- Users trust the PRISM application and install it on their mobile devices
- Entities that submit applications have identities certified by a trusted authority
- Participating nodes, the OS on the phone and standard OS mechanisms are trusted
- Nodes have Wireless Wide Area Network (WWAN) access
Architecture

- **Application server (supplied by third parties)**
 - Submits jobs to PRISM servers, for deployment onto a desired set of mobile phones

- **PRISM server**
 - accepts jobs from the application servers and deploys them onto an appropriate set of mobile phones

- **PRISM client and sandbox on mobile**
 - registers with PRISM servers and supports the execution of the jobs in a specially designed sandbox
Push-based Model

- Push-based systems do not require the user or phone to retrieve data from the server.
- The server sends data to the phone and provides the following benefits:
 - Fast response by tracking phone resources and sending applications immediately when the phone is available.
 - Efficiency by eliminating the need for each application to track a phone’s resources.
 - Scalability – Amount of tracking can be modulate to the load of application arrivals and the density of available phones.
Registration

- Used to track a phone’s resources
 - Resource loading is maintained as soft-state and expires after the registration period
 - Authors used one hour to balance privacy and overhead
 - Tracks both static, such as sensors and radios, and dynamic, such as battery and location, resource information

- PRISM, unlike AnonySense, uses a push method that requires tracking of users
 - Tracks users during the registration period only
 - Re-registration occurs after phones wait for a random time
 - Employs independent anonymization service to protect against tracking between registrations
API

- Designed to allow the server to quickly and accurately identify phones to run the application
- Identification uses a two-level predicate mechanism
 - Top-level is coarse grained and identifies phones where jobs are deployed but not activated
 - Low-level is fine-grained and determines when to activate applications
 - Implemented to reduce the phone’s fine-grain updates to the server, to ensure that the sensing opportunity is not missed and to reduce the risk of spam.
Top-Level Predicate

- Specifies the number of phones needed, the capabilities of the phones and their coarse grained location
- Server can either supply an application for each hardware/OS platform or use the hardware/OS platform as part of the search criteria
Low-level Predicate

- Can consist of locations or be based on derived attributes
 - Example is speed
- Includes a time-out parameter which determines how long the client monitors for a match to the fine-grain predicate
Deployment Modes

● Two Types

 - **Deploy-or-cancel**
 - Deploys the application as soon as a top-level predicate is matched
 - Good when a “large” area is specified for the top-level predicate

 - **Trigger**
 - Application Server sets a trigger with the PRISM server for the desired predicate
 - Good for low-density regions
Phone to Server Updates

- Mobile client update messages to the server are overhead and need to be reduced

- Two techniques proposed
 - Adaptive Updates
 - $p = \min(1, \rho \times n/N)$
 - Each client is notified with a parameter p at registration
 - $\rho =$ job arrival rate, $n =$ avg. # of phones requested by a job, $N =$ total # of registered phones
 - The client sends updates with a probability of p that can be adjusted if there is a large # of phones (N) or if there is little application demand ($\rho \times n$)
Phone to Server Updates

- **Prediction-based Suppression**
 - Mobile and server run identical predictors for each resource
 - Mobile only sends updates when the dynamic sensor status has changed significantly from the predictor
 - Two Types
 - **Constant Predictor**
 - The predictor predicts the new value is the same or "close"
 - **Affine Predictor**
 - Predicts the new value as an affine function of a quantity (e.g. time) that is shared by the server and client
 - Good for battery energy because exact tracking is not needed
Software Sandbox

- Provides the application binary a standard API to communicate with the PRISMd daemon.
 - Daemon controls access to sensors

- Additional security features including Sensor Access Control, Resource Metering and Forced Amnesia are also used to mitigate privacy risks
Sensor Access Control

● Three policies
 – No sensors
 • Application does not have access to the sensors however the PRISM runtime does have access to the location information
 • Useful with “human” sensor applications
 – Location Only
 – All Sensors

● Sensor Taint Tracking
 – Alternative to coarse-grained policies
 – Diminishes the ability of an application to process or transmit sensitive data
 – Example – An app that uses the microphone is tainted with microphone data that is sensitive

University of Central Florida
Resource Metering

- Applications should not drain the battery
 - User is a participant in community sensing project and does not want detrimental affects on their device
- PRISMd mediates access to sensors, tracks resource usage and limits access by not sending up sensor data
- CPU and memory utilization are monitored
 - Applications that exceed their allocation are terminated
- Energy Metering
 - Accomplished by using a simple linear function of the amount of time a resource is busy and the number of data reads/writes
 - Measured actively to ensure resources are not overused
- Bandwidth Metering
 - Limited for privacy and cost (tariffs for data)
Forced Amnesia

- Bandwidth Metering limits the amount of traffic an application can use
 - Increases privacy by not allowing large amounts of sensitive data to be exported

- What if application buffers the data and sends it out over a period of time?
 - Forced Amnesia clears the state of an application after a fixed period of time (i.e. 1 minute)
 - Most applications are not performing long computations so there is no ill effect
IMPLEMENTATION
Computing Resources

- 15 Smartphones running Windows Mobile 5.0 or 6.1
 - NOTE: Windows Mobile is a significantly obsolete OS, but research was done by Microsoft
 - All of the phones had GPS, camera, microphone, 802.11b, Bluetooth, and GPRS/EDGE/3G Radios
 - Three phones had external accelerometer sensors attached

- Infrastructure components run on Win7
PRISM Infrastructural and Mobile Phone Components

- **Infrastructure**
 - Prototyped two-level predicate-based API and deploy-or-cancel and trigger modes

- **Mobile Phone**
 - Comprises of software sandbox
 - Includes the PRISMD daemon and the system call interposition layer (shim)
 - System call interposition is applied to block network communications except to PRISMD, device access (ioctl), registry access, spawning of child processes and file system calls that return a handle
Energy Metering

- Emulated two applications
 - One cycles through using the camera sensor, performing Wi-Fi scans
 - The second uses the GPS and performs Bluetooth scans
- Linear model tracks actual usage but undershoots on the applications due to system related power that isn’t metered by PRISMd
PRISMd Overhead

- PRISMd mediates access to the mobile’s sensors and needs to have a minimal impact on the system resources.
- Used GPS and Microphone sensors to estimate overhead.

<table>
<thead>
<tr>
<th></th>
<th>Direct</th>
<th>Via PRISMd</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>804.3 mW</td>
<td>821.2 mW</td>
<td>2.10%</td>
</tr>
<tr>
<td>Mic</td>
<td>312.6 mW</td>
<td>315.0 mW</td>
<td>0.76%</td>
</tr>
</tbody>
</table>
Applications (Recap)

- Three applications were implemented
 - Citizen Journalist
 - Participatory, alerts users based on GPS location when to take pictures
 - Party Thermometer
 - Allows users to query other users to determine how “hot” the party is
 - Senses music to target users that are in a party
 - Road Bump Monitor
 - Opportunistic sensing to locate and detect road bumps
Citizen Journalist

- Application sends alert to human users to take a picture or answer a query when they enter a specified location
 - Both high and low latency queries are implemented
- Location is specified by latitude/longitude with a coarse-grained radius for deployment and fine-grained radius for execution
- Benchmarking (35kB executable)
 - Fine-Grained Radius of 30m
 - Black = no success, Grey = partial success

![Benchmarking Table]

<table>
<thead>
<tr>
<th>Coarse-grain Radius</th>
<th>30m</th>
<th>75m</th>
<th>125m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>2G</td>
<td>2G</td>
<td>2G</td>
</tr>
<tr>
<td>User Speed ↓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walking (4kmph)</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>Driving (30kmph)</td>
<td></td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>Driving (40kmph)</td>
<td>5/5</td>
<td>2/5</td>
<td>5/5</td>
</tr>
<tr>
<td>Driving (50kmph)</td>
<td>3/5</td>
<td></td>
<td>5/5</td>
</tr>
</tbody>
</table>
Notes on benchmarking

- 2G networks with a 30m coarse-grained radius often launched the app past the center point of interest
 - Larger coarse-grained radius of 75m is needed for pedestrians on 2G networks
- 3G networks yield higher success rates due to lower latency and higher bandwidth
- Coarse-grained radius needs to increase with user speed
Citizen Journalist

- **Small-scale Pilot Deployment**
 - Ten users, including three of the authors
 - Used 2G phones with GPRS
 - Total of 30 target locations within the vicinity of the Microsoft Research India lab in Bangalore
 - Fine-grained radius of 30m, Coarse-grained of 75m (speed limit was < 30kmph)
 - Application could be cancelled by user either by ignoring the phone ringing or manually cancelling it
Results

- Response time (including deployment) averaged 46s
- Normalized deployment distance average (relative to coarse-grained radii) was 71%
 - Server does not have precise GPS info
- Normalized launch distance average (relative to fine-grained radii) was 83%
 - Mobile knows precise GPS location
Party Thermometer

- Human-query application to determine if the party is “hot”
- Detects music using microphone application
 - User must be stationary
 - Top-level predicate is a building to limit battery usage
 - Uses a FFT of the audio samples to examine spikes in the frequency domain for harmonics
 - This is the second-level predicate
- Limited testing
 - Verified that it was only deployed to users in the target location and that the music detection worked
Road Bump Monitoring

- Opportunistic sensing application
- Uses GPS and accelerometer to detect "bumps" in road
- Used a 2.5km long drive through a neighborhood
- 9 bumps, 6 correct within 12m of ground truth

(a) Ground truth (b) Bumps detected without forced amnesia (c) Bumps detected with forced amnesia
Scalability

- Simulated a larger scale deployment
- Two key metrics to balance efficiency in resource updates and balancing the needs of applications
 - Total number of resource updates
 - Normalized job success rate
- As expected, smaller update interval the greater the success rate
 - Update interval of 100s yields a success rate within 2% of optimal
Scalability

(a) Normalized Job Success Rate

(b) Job Updates
Conclusion

- Presented a platform for participatory and opportunistic sensing
 - Uses “push” model
- Focused on scalability, security and resource utilization
- Utilizes a sandbox to protect user privacy