

PRISM: Platform for Remote Sensing using Smartphones

Tathagata Das Microsoft Research India Bangalore 560080, India tathadas@microsoft.com

Prashanth Mohan University of California, Berkeley Berkeley, CA 94720, USA <u>prmohan@cs.berkeley.edu</u>

Venkata N. Padmanabhan Microsoft Research India Bangalore 560080, India padmnab@microsoft.com Ramachandran Ramjee Microsoft Research India Bangalore 560080, India ramjee@microsoft.com Asankhaya Sharma

Microsoft India Development Center Hyderabad 500046, India asankhs@microsoft.com

3/8/2011 – Steve Kopman

What is **PRISM**?

- PRISM Platform for Remote Sensing using Smartphones
- Generic framework that balances generality, security and scalability
- Applications run within PRISM from executable binaries
- Applications are pushed to an appropriate set of users
- Applications run in a sandbox and utilize resource metering and forced amnesia

Community Sensing

- Current research focuses on "community sensing"
 - Include computing and communication capabilities as well as sensors (GPS, microphone, etc)

Two types

- Participatory
 - Require user actions (e.g. taking photograph)
- Opportunistic
 - No user action required (e.g. GPS tracking)

Challenges

Goal is to reduce application developers need to "reinvent the wheel"

Three main goals

- Generality
 - Support a wide range of applications with flexibility to reuse existing code
- Security
 - Ensure that phones remain secure and that applications do not misuse sensitive sensor data
- Scalability
 - Allow the system to scale to large (>100,000) number of devices

Sandbox Features

- In addition to standard SW sandboxing, three PRISM specific features are utilized to provide security
- Resource Metering
 - Limits the amount of battery energy an application can consume
 - Limits the "leakage" of sensitive sensor data
- Forced Amnesia
 - Does not allow sensing applications to maintain longterm state info
- Sensor Taint Tracking and Access Control
 - Allows the user to set policies on what applications can do

Implementation Overview

- Currently runs on Windows Mobile
 - Interesting choice since this is an obsolete platform
- Infrastructure components run on Windows 7
- Three implemented applications "showcase" the generality of the PRISM Platform
 - Citizen Journalist
 - Participatory, alerts users based on GPS location when to take pictures
 - Party Thermometer
 - Allows users to query other users to determine how "hot" the party is
 - Senses music to target users that are in a party
 - Road Bump Monitor
 - Opportunistic sensing to locate and detect road bumps

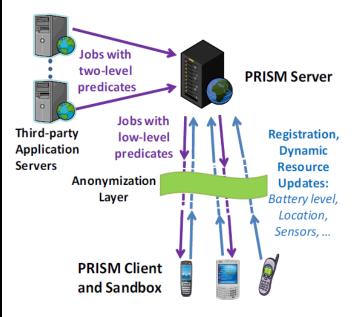
Related Work

System	Generality	Security	Scalability	Privacy
Bubble-Sensing	No	Yes	Yes	Yes
AnonySense	OK	Yes	No	Yes
Micro-Blog	No	Yes	Yes	No
PRISM	Yes	Yes	Yes	Ok

AnonySense vs. PRISM

	AnonySense	PRISM
Application Language	Constrained, AnonyTL	Runs Generic Binaries
Privacy	Uses "pull" approach ; does not reveal nodes position in infrastructure	Uses "push" approach; Allows limited tracking of nodes
Sandbox applications	No	Yes

PRISM DESIGN


Assumptions

- Users trust the PRISM application and install it on their mobile devices
- Entities that submit applications have identities certified by a trusted authority
- Participating nodes, the OS on the phone and standard OS mechanisms a re trusted
- Nodes have Wireless Wide Area Network (WWAN) access

Architecture

- Application server (supplied by third parties)
 - Submits jobs to PRISM servers, for deployment onto a desired set of mobile phones
 - PRISM server
 - accepts jobs from the application servers and deploys them onto an appropriate set of mobile phones
- PRISM client and sandbox on mobile
 - registers with PRISM servers and supports the execution of the jobs in a specially designed sandbox

Push-based Model

- Push-based systems do not require the user or phone to retrieve data from the server
- The server sends data to the phone and provides the following benefits
 - Fast response by tracking phone resources and sending applications immediately when the phone is available
 - Efficiency by eliminating the need for each application to track a phone's resources
 - Scalability Amount of tracking can be modulate to the load of application arrivals and the density of available phones

Registration

Used to track a phone's resources

- Resource loading is maintained as soft-state and expires after the registration period
 - Authors used one hour to balance privacy and overhead
- Tracks both static, such as sensors and radios, and dynamic, such as battery and location, resource information
- PRISM, unlike AnonySense, uses a push method that requires tracking of users
 - Tracks users during the registration period only
 - Re-registration occurs after phones wait for a random time
 - Employs independent anonymization service to protect against tracking between registrations

- Designed to allow the server to quickly and accurately identify phones to run the application
- Identification uses a two-level predicate mechanism
 - Top-level is coarse grained and identifies phones where jobs are deployed but not activated
 - Low-level is fine-grained and determines when to activate applications
 - Implemented to reduce the phone's fine-grain updates to the server, to ensure that the sensing opportunity is not missed and to reduce the risk of spam.

Top-Level Predicate

- Specifies the number of phones needed, the capabilities of the phones and their coarse grained location
- Server can either supply an application for each hardware/OS platform or use the hardware/OS platform as part of the search criteria

Low-level Predicate

Can consist of locations or be based on derived attributes

Example is speed

 Includes a time-out parameter which determines how long the client monitors for a match to the fine-grain predicate

Deployment Modes

Two Types

- Deploy-or-cancel
 - Deploys the application as soon as a top-level predicate is matched
 - Good when a "large" area is specified for the toplevel predicate

Trigger

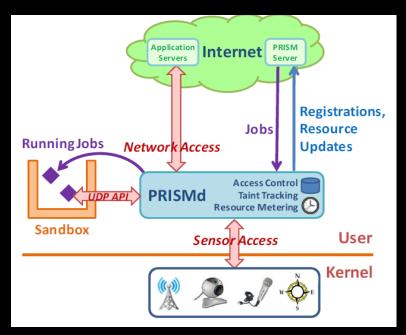
- Application Server sets a trigger with the PRISM server for the desired predicate
- Good for low-density regions

Phone to Server Updates

Mobile client update messages to the server are overhead and need to be reduced

Two techniques proposed

- Adaptive Updates
 - p = min(1, ρ * n/N)
 - Each client is notified with a parameter p at registration
 - ρ = job arrival rate, n = avg. # of phones requested by a job, N = total # of registered phones
 - The client sends updates with a probability of p that can be adjusted if there is a large # of phones (N) or if there is little application demand (ρ * n)


Phone to Server Updates

Prediction-based Suppression

- Mobile and server run identical predictors for each resource
- Mobile only sends updates when the dynamic sensor status has changed significantly from the predictor
- Two Types
 - Constant Predictor
 - The predictor predicts the new value is the same or "close"
 - Affine Predictor
 - Predicts the new value as an affine function of a quantity (e.g. time) that is shared by the server and client
 - Good for battery energy because exact tracking is not needed

Software Sandbox

- Provides the application binary a standard API to communicate with the PRISMd daemon.
 - Daemon controls access to sensors
- Additional security
 features including
 Sensor Access Control,
 Resource Metering and
 Forced Amnesia are
 also used to mitigate
 privacy risks

Sensor Access Control

Three policies

- No sensors
 - Application does not have access to the sensors however the PRISM runtime does have access to the location information
 - Useful with "human" sensor applications
- Location Only
- All Sensors

Sensor Taint Tracking

- Alternative to coarse-grained policies
- Diminishes the ability of an application to process or transmit sensitive data
- Example An app that uses the microphone is tainted with microphone data that is sensitive

Resource Metering

- Applications should not drain the battery
 - User is a participant in community sensing project and does not want detrimental affects on their device
- PRISMd mediates access to sensors, tracks resource usage and limits access by not sending up sensor data
- CPU and memory utilization are monitored
 - Applications that exceed their allocation are terminated
- Energy Metering
 - Accomplished by using a simple linear function of the amount of time a resource is busy and the number of data reads/writes
 - Measured actively to ensure resources are not overused
- Bandwidth Metering
 - Limited for privacy and cost (tariffs for data)

Forced Amnesia

- Bandwidth Metering limits the amount of traffic an application can use
 - Increases privacy by not allowing large amounts of sensitive data to be exported
- What if application buffers the data and sends it out over a period of time?
 - Forced Amnesia clears the state of an application after a fixed period of time (i.e. 1 minute)
 - Most applications are not performing long computations so there is no ill effect

IMPLEMENTATION

Computing Resources

- 15 Smartphones running Windows Mobile 5.0 or 6.1
 - NOTE: Windows Mobile is a significantly obsolete OS, but research was done by Microsoft
 - All of the phones had GPS, camera, microphone, 802.11b, Bluetooth, and GPRS/EDGE/3G Radios
 - Three phones had external accelerometer sensors attached

Infrastructure components run on Win7

PRISM Infrastructural and Mobile Phone Components

Infrastructure

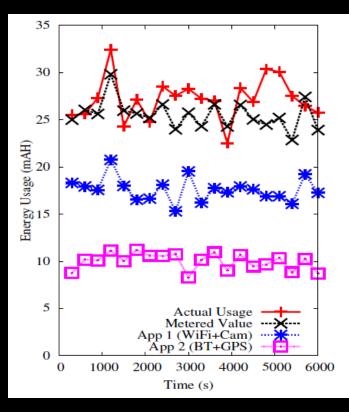
 Prototyped two-level predicate-based API and deploy-or-cancel and trigger modes

Mobile Phone

Comprises of software sandbox

- Includes the PRISMd daemon and the system call interposition layer (shim)
- System call interposition is applied to block network communications except to PRISMd, device access (ioctl), registry access, spawning of child processes and file system calls that return a handle

Central Florida


EVALUATIONS

Energy Metering

Emulated two applications

- One cycles through using the camera sensor, performing Wi-Fi scans
- The second uses the GPS and performs Bluetooth scans
- Linear model tracks actual usage but undershoots on the applications due to system related power that isn't metered by PRISMd

University of Central Florida

PRISMd Overhead

PRISMd mediates access to the mobile's sensors and needs to have a minimal impact on the system resources
 Used GPS and Microphone sensors to estimate overhead

	Direct	Via PRISMd	Overhead
GPS	804.3 mW	821.2 mW	2.10%
Mic	312.6 mW	315.0 mW	0.76%

Applications (Recap)

Three applications were implemented

Citizen Journalist

 Participatory, alerts users based on GPS location when to take pictures

Party Thermometer

- Allows users to query other users to determine how "hot" the party is
- Senses music to target users that are in a party

– Road Bump Monitor

 Opportunistic sensing to locate and detect road bumps

- Application sends alert to human users to take a picture or answer a query when they enter a specified location
 - Both high and low latency queries are implemented
- Location is specified by latitude/longitude with a coarsegrained radius for deployment and fine-grained radius for execution
- Benchmarking (35kB executable)
 - Fine-Grained Radius of 30m
 - Black = no success, Grey = partial success

Coarse-grain Radius \rightarrow	30m		75m		125m	
Network \rightarrow	2 G	3 G	2 G	3 G	2G	3G
User Speed ↓						
Walking (4kmph)	5/5	5/5	5/5	5/5		
Driving (30kmph)			5/5	5/5		
Driving (40kmph)				5/5	2/5	5/5
Driving (50kmph)				3/5		5/5

Notes on benchmarking

- 2G networks with a 30m coarse-grained radius often launched the app past the center point of interest
 - Larger coarse-grained radius of 75m is needed for pedestrians on 2G networks
- 3G networks yield higher success rates due to lower latency and higher bandwidth
- Coarse-grained radius needs to increase with user speed

Small-scale Pilot Deployment

- Ten users, including three of the authors
- Used 2G phones with GPRS
- Total of 30 target locations within the vicinity of the Microsoft Research India lab in Bangalore
- Fine-grained radius of 30m, Coarse-grained of 75m (speed limit was < 30kmph)
- Application could be cancelled by user either by ignoring the phone ringing or manually cancelling it

Results

- Response time (including deployment) averaged 46s
- Normalized deployment distance average (relative to coarse-grained radii) was 71%
 - Server does not have precise GPS info
- Normalized launch distance average (relative to finegrained radii) was 83%

Mobile knows precise GPS location

Item	Count
Deployed	417
Launched	274
Total Responses	235
Response Time in seconds (avg., max)	46, 149
Photo Responses	141
Total Cancelled	38
Cancelled (TooFarAway)	9
Normalized Deployed Distance (avg., max)	71%, 443%
Normalized Launched Distance (avg., max)	83%, 100%

Party Thermometer

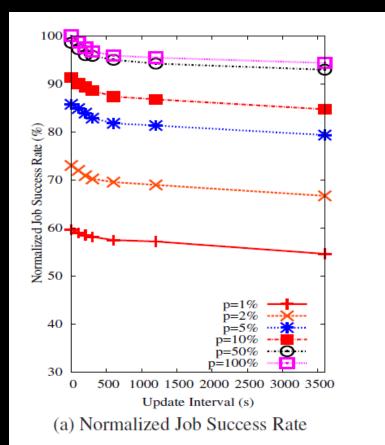
Human-query application to determine if the party is "hot"

Detects music using microphone application

- User must be stationary
- Top-level predicate is a building to limit battery usage
- Uses a FFT of the audio samples to examine spikes in the frequency domain for harmonics
 - This is the second-level predicate
- Limited testing
 - Verified that is was only deployed to users in the target location and that the music detection worked

Road Bump Monitoring

- Opportunistic sensing application
- Uses GPS and accelerometer to detects "bumps" in road
- Used a 2.5km long drive through a neighborhood
- 9 bumps, 6 correct within 12m of ground truth



Scalability

- Simulated a larger scale deployment
- Two key metrics to balance efficiency in resource updates and balancing the needs of applications
 - Total number of resource updates
 - Normalized job success rate
- As expected, smaller update interval the greater the success rate
 - Update interval of 100s yields a success rate within 2% of optimal

Scalability

Conclusion

Presented a platform for participatory and opportunistic sensing

- Uses "push" model
- Focused on scalability, security and resource utilization

 Utilizes a sandbox to protect user privacy

