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Abstract— Previous work on topology control usually assumes directly applied to heterogeneous wireless multi-hop networks
homogeneous wireless nodes with uniform transmission ranges. in which the transmission range of each node may be different.
In this paper, we propose two localized topology control algo- ) ) )
rithms for heterogeneous wireless multi-hop networks with non- ~ To the best of our knowledge, this paper is the first effort
uniform transmission ranges: Directed Relative Neighborhood to address the connectivity and bi-directionality issue in the
Graph (DRNG) and Directed Local Spanning Subgraph (DLSS) heterogeneous ereless networks
In both algorithms, each node selects a set of neighbors based
on the locally collected information. We prove that (1) the In this paper, we propose two localized topology control al-
topologies derived under DRNG and DLSS preserve the network gorithms for heterogeneous wireless multi-hop networks with

connectivity; (2) the out degree of any node in the resulting non_yniform transmission ranges: Directed Relative Neighbor-
topology by DLSS is bounded, while the out degree cannot be ges. g

bounded in DRNG; and (3) the topologies generated by DRNG hood Graph (DRNG) and Directed Local Spanning Subgraph

and DLSS preserve the network bi-directionality. (DLSS). In both algorithms, the topology is constructed by
having each node build its neighbor set and adjust its trans-
| INTRODUCTION mission power based on the locally collected information.

. , We are able to prove that (1) the topology derived under

Energy efficiency [1] and network capacity are perhaps oy, pRNG and DLSS preserves network connectivity, i.e.,
of the most important issues in wireless a_d hoc networks; original topology generated by having every node use
and sensor networks. Topology control algorithms have beg yaximal transmission power is strongly connected, then

proposed to maintain network connectivity while reducing, topologies generated by both DRNG and DLSS are also

energy consumption and improving network capacity. The k%Yroneg connected; (2) the out degree of any node in the

idea to tppology control is that, ins_tead of tran_smitting “Sinﬂ)pology by DLSS is bounded, while the out degree of nodes
the maximal power, nodes in a wireless multi-hop network " o topology by DRNG may be unbounded: and (3) the
collaboratively determine their transmission power and defi ology generated by DRNG and DLSS preserves network
the network topology by forming the proper neighbor relatiog;_gjrectionality, i.e., if the original topology by having every

under certain criteria. node use its maximal transmission power is bi-directional, then

By enabling wireless nodes to use adequate transmissifg topology generated by either DRNG or DLSS is also bi-
power (which is usually much smaller than the maximal trangirectional after some simple operations.

mission power), topology control can not only save energy and _ o .
prolong network lifetime, but also improve spatial reuse (and Simulation results |nd|cate_ that, compared W|th_the other
hence the network capacity) [2] and mitigate the M AC-levdjnown topology control algorithms that can be applied to het-
medium contention [3]. Several topology control algorithmgogeneous networks, DRNG and DLSS have smaller average
[3]-[10] have been proposed to create power-efficient netwdfRde degree (both logical and physical) and smaller average
topology in wireless multi-hop networks with limited mobilityI"K 1ength. The former reduces the MAC-level contention,
(a summary is given in Section I1l). However, most of them ag\_/h|_le the latter |rr_1p_I|es a small transmission power needed to
sume homogeneous wireless nodes with uniform transmiss/Ba!ntain connectivity.
ranges (except [4]). The rest of the paper is organized as follows. In Section I,
The assumption of homogeneous nodes does not alwayes give the network model. In Section Ill, we summarize
hold in practice, since even devices of the same type mpsevious work on topology control, and give examples to
have slightly different maximal transmission power. There alghow why existing algorithms cannot be directly applied to
exist heterogeneous wireless networks in which devices haweterogeneous networks. Following that, we present both the
dramatically different capabilities, for instance, the communBRNG and DLSS algorithms in Section IV, and prove several
cation network in the=uture Combat Systemvhich involves of their useful properties in Section V. Finally, we evaluate
wireless devices on soldiers, vehicles and UAVs. As will bilne performance of the proposed algorithms in Section VI,
exemplified in Section Ill, most existing algorithms cannot band conclude the paper in Section VII.



Il. NETWORK MODEL Definition 4 (Topology):The topology generated by an al-
Consider a set of nodes(vertices), = {v1,va,...,v,}, gorithm A is a directed graplt's = (E(Ga), V(G4)), where

which are randomly distributed in the 2-D plane. Assumg(GA.) = V(G), E(_GA) = {(“”{) € E(G):u i’}_- .
the area that a transmission can cover is a disk. We defind€finition 5 (Radius):The radius R, of nodeu is defined
the range of a node; as the radius of the disk that @S the dlstan_ce betv_veen nod_eand its farthest neighbor (in
can cover using its maximal transmission power, deneted t€ms of Euclidean distance), i&, = max,en, ) 1d(u, v)}.
In a heterogeneous network, the transmission ranges of alP€finition 6 (Connectivity):For any topology generated
nodes may not be the same. Lief;, = minycy {r,} and by an algorithm A, nodeu is said to beconnected to
Fmas = MaXycy {7y }. node v (denotedu = wv) if there exists Aa path(py =
We denote the network topology generated by having eattp1, - - -:Pm—1,pm = v) such thatp, — pii1,i =
node use its own maximal transmission power as a simplel,.-.,m — 1, wherep, € V(Ga),k = 0,1,...,m. It
directed graphy = (V(G), E(G)), where E(G) = {(u,v) : follows thatu = v if u = p andp = v for somep € V(G ).
d(u,v) < ry,u,v € V(G)} is the edge(link) set of, and Definition 7 (Bi-Directionality): A topology generated by
d(u,v) is the Euclidean distance between nadend node an algorithm A isbi-directional if for any two nodesu, v €
v. Note that(u,v) is an ordered pair representing an edgk(Ga), u € Na(v) impliesv € Ny(u). In other words, the
from nodeu to nodev, i.e., (u,v) and (v, u) are two different topology generated by A is bi-directional if all edges in the
edges. A uniquéd (such as an IP/MAC address) is assigne@pology are bi-directional.
to each node. Here we leil(v;) = 7 for simplicity. Definition 8 (Bi-Directional Connectivity)For any topol-
We assume that the wireless channel is symmetric afgly generated by an algorithm A, nodeis said to bebi-
obstacle-free, and each node is equipped with the capabif#jectionally connected tmode v (denotedu <« v) if there

to gather its location information via, for example, GPS fo‘?x'its a path(po = u,p1,...,pm—1,Pm = v) such that
outdoor applications and pseudolite [11] for indoor applicax < pit1,i = 0,1,...,m — 1, wherep, € V(Ga), k =
tions, and many other lightweight localization techniques fé% 1, ..., m. It follows thatu < v if u < p andp < v for
wireless networks (see [12] for a summary). somep € V(G a).

Before delving into the technical discussion and algorithm Deriving network topology consisting of only bi-directional
description, we give the definition of several terms that wilinks facilitates link level acknowledgment, which is a critical
be used throughout the paper. operation for packet transmissions and retransmissions over

Definition 1 (Reachable NeighborhoodJhe reachable unreliable wireless media. Bi-directionality is also important in
neighborhood NF is the set of nodes that node floor acquisition mechanisms such as the RTS/CTS mechanism
can reach using its maximal transmission power, i.dn IEEE 802.11.

NE ={veV(G):d(u,v) <r,}. For each node € V(G), Definition 9 (Addition and Removal)lhe operationAddi-
let GE = (V(GE), E(GE)) be an induced subgraph ¢f tionis to add an extra edde, u) into G4 if (u,v) € E(Ga),
such thatV (GE) = NE. (v,u) ¢ E(Ga), andd(u,v) < r,. The operationrRemoval

Definition 2 (Weight Function)Given ~ two  edges IS 10 gelete any edgéu,v) € E(Ga) if (v,u) ¢ E(Ga).
(u1,v1), (uz,v2) € E and the Euclidean distance function-€t Gy andG, denote the resulting topologies after applying

d(-,-), weight functionw : E — R satisfies: Addition and Removalto G 4, respectively.
Both theAdditionandRemovabperations attempt to create
w(ur,v1) > w(ug,v2) a bi-directional topology by removing uni-directional edges or
& d(ug,v1) > d(ug,vs) converting uni-directional edges into bi-directional. The result-

ing topology afterRemovalis alway bi-directional, although
it may not be strongly connected. The resulting topology after
Additionis not necessarily bi-directional, as it essentially tries

or (d(ui,v1) = d(uz,vz)
&& max{id(uy),id(v1)} > max{id(usz), id(v2)})

or (d(ui,v1) = d(uz,vs) to increases the transmission power of a node a level that
&& max{id(ui),id(v1)} = max{id(us),id(vy)} ~ May be beyond its capability.
&& minfid(uy),id(v1)} > min{id(uz),id(v2)}). IIl. RELATED WORK AND WHY THEY CANNOT BE

. . . . DIRECTLY APPLIED TOHETEROGENEOUSNETWORKS
This weight function ensures that two edges with different end- ,
vertices have different weights. Note, however, thé, v) —  >cveral topology control algorithms [3]-{10] have been
proposed. In this section, we first summarize these algorithm

w(v, u). . . .
Definition 3 (Neighbor Set)Nodew is aneighborof node and then give examples on why they cannot be directly applied
to heterogeneous networks.

u under an algorithmA, denotedu 4, v, if and only if
there exists an edggé:, v) in the topology generated by theA. Related Work

algorithm. In particular, we use — v to denote the neighbor Rodoplu et al. [4] (denoted R&M) introduced the notion
relation inG. u < v if and only if u > v andv 2 u. The  of relay region and enclosure for the purpose of power
Neighbor Sebf nodew is Na(u) = {v € V(G) : u 4 v} control. Instead of transmitting directly, a node chooses to



the MAC-level contention is mitigated. The major drawback
is its significant message overhead, since each node has to run
multiple daemons, each of which has to exchange link state
information with their counterparts at other nodes.
U@V CBTC(x) [6] is a two-phase algorithm in which each node
finds the minimum powep such that some node can be
reached in every cone of degree The algorithm has been
proved to preserve network connectivitydf< 57 /6. Several

(a) Relative Neighborhood Graph optimization methods (that are applied after the topology is
derived under the base algorithm) are also discussed to further
P reduce the transmitting power.
A To facilitate the following discussion, the definition of the
Relative Neighborhood GrapfRNG) is given below.
u./—;bv Definition 10 (Neighbor Relation in RNGFor RNG [13],

[14], u BNG o if and only if there does not exist a third
nodep such thatw(u,p) < w(u,v) andw(p,v) < w(u,v).
Or equivalently, there is no node inside the shaded area in
. : : Fig. 1(a).
gg c';/zla?igmlggdinRggélt\ilc?n,\:ﬁl-%?_borhOOd crae Borbash and Jennings [8] proposed to use RNG for the
topology initialization of wireless networks. Based on the local
knowledge, each node makes decisions to derive the network

ﬂ topology based on RNG. The network topology thus derived
has been reported to exhibit good overall performance in terms
" // o0 of power usage, low interference, and reliability.

Li et al. [9] presented the Localized Delaunay Triangula-
tiona, a localized protocol that constructs a planar spanner
of the Unit Disk Graph (UDG). The topology contains all
edges that are both in the unit-disk graph and the Delaunay

(c) Directed Relative Neighborhood Grayto triangulation of all nodes. It is proved that the shortest path
be defined in Section IV). in this topology between any two nodesandv is at most a
Fig. 1. The definition of théDirected Relative Neighborhood Graph ~ constant factor of the shortest path connectirajdv in UDG.
However, the notion of UDG and Delaunay triangulation
cannot be directly extended to heterogeneous networks.
relay through other nodes if less power will be consumed. ItIn [10], we proposed LMST (Local Minimum Spanning
is shown in the paper that the network is strongly connect&tiee) for topology control in homogeneous wireless multi-
if every node maintains links with the nodes in its enclosuteop networks. In this algorithm, each node builds its local
and the resulting topology is a minimum power topologyninimum spanning tree independently and only keeps on-
The major drawback is that it requires an explicit propagatiaree nodes that are one-hop away as its neighbors in the
channel model to compute the relay region (in the simulatidimal topology. It is proved that (1) the topology derived
study presented in Section VI, we assume that the free-spaeeler LMST preserves the network connectivity; (2) the node
model is used), hence the resulting topology is sensitive to thegree of any node in the resulting topology is bounded by
model used in the computation. Also, it assumes there is oyand (3) the topology can be transformed into one with bi-
one data sink (destination) in the network. directional links (without impairing the network connectivity)
Ramanathart al. [5] presented two centralized algorithmsafter removal of all uni-directional links. Simulation results
to minimize the maximal power used per node while maintaishow that LMST can increase the network capacity as well as
ing the (bi)connectivity of the network. They introduced tweeduce the energy consumption.
distributed heuristics for mobile networks. Both centralized Instead of adjusting the transmission power of individual
algorithms require global information, and thus cannot ki#evices, there also exist other approaches to generate power-
directly deployed in the case of mobility. On the other hanafficient topology. By following a probabilistic approach, Santi
the proposed heuristics cannot guarantee the preservatioretodél. derived the suitable common transmission range which
the network connectivity. preserves network connectivity, and established the lower and
COMPOW][3] and CLUSTERPOW?7] are approaches im- upper bounds on the probability of connectedness [15]. In [16],
plemented in the network layer. Both hinge on the idea thataf “backbone protocol” is proposed to manage large wireless
each node uses the smallest common power required to maid-hoc networks, in which a small subset of nodes is selected
tain network connectivity, the traffic carrying capacity of théo construct the backbone. In [17], a method of calculating
entire network is maximized, the battery life is extended, arnle power-aware connected dominating sets was proposed to
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(a) Original topology (without topology con-
trol) is strongly connected.

(b) Topology byC BTC(%.,.) without opti- (c) Topology by DLSS'is strongly connected.
mization is not strongly connected: there is

no path fromv; to vs.

Fig. 2. An example that showSBT C(%.,.) may render disconnectivity in heterogeneous networks. There is no pathvireonvs due to the loss of edge
(v2,v3), which is discarded bys sincev; andv, have already provided the necessary coverage.
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(a) Original topology (without topology con- (b) Topology by RNG is not strongly con- (c) Topology by DLSS is strongly connected.

trol) is strongly connected.

nected: there is no path fromy to va.

Fig. 3. An example that shows RNG may render disconnectivity in heterogeneous networks. There is no paghtéromdue to the loss of edger{,vs),
which is discarded sinci{va;vs)| < |[(v4;Vv2)|, and|(va; Vs)| < [(V4; V2)].
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nected: there is no path fromy to vs.

(v2,vs), which is discarded sincva; v3)| < [(V2;Vs)|, and|(Vs; v3)| < |(V2;Vs)].

(b) Topology by MRNG is not strongly con-

(c) Topology by DLSS'is strongly connected.

An example that shows MRNG may render disconnectivity in heterogeneous networks. There is no path toovg due to the loss of edge
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(&) Original topology (without (b) The Tocal directed MST rooted (c) The Tocal directed MST rooted (d) The resulting topology is not
topology control) is strongly atvs. atvs. strongly connected: there is no path
connected. from v7 to vy.

Fig. 5. An example that shows the algorithm in which each node builds a local directed minimum spanning tree and only keeps the one-hop neighbors may

result in disconnectivity.



establish an underlying topology for the network. A. Information collection

B. Why Existing Algorithms Cannot be Directly Applied to The information needed by each nadéor topology control

Heterogeneous Networks is the information of its reachable neighborhaid. This can
Most existing topology control algorithms (except [4]) as?e obtained locally, in the case of homogeneous networks,
sume homo egeOlE)s w?r)éless nodeg with uniform t?ansmis&b nhaving each node broadcast periodicallytelo message
raNges Whgen directly aoplied to heterogeneous networ sing its maximal transmission power. The information con-
ges. . y appied 09 . Sined in aHello message should at least include the nmtle

these algorithms may render disconnectivity. In this subsec- o -
. . . and the position of the node. These periodic messages can be
tion, we give several examples to motivate the need for new

. sent either in the data channel or in a separate control channel.
topology control algorithms for heterogeneous networks. In heterogeneous networks, having each node broadcast a
As shown inFig. 2 (a)-(b) (note that in Figs. 2-5 we use '

- A : .Hello message using its maximal transmission power may be
arrows to indicate the direction of the links to represent a link 9 g P Y

from u to v), the network topology derived undérBTC(gyr) nsufficient. qu. example,. as shown in Fig. 4, is unable'to
. L 37/ . know the position ofv, sincew, cannot reachy;. We will
(without optimization) may not preserver the connectivit . . . . . .
hen the aloorithm is directly apolied to a heteroaeneo seat this issue rigorously in Section V-D. For the time being,
w 9 '5 IS di Y appll 9 We assume that by the end of the first phase every node
network. CBT'C(¢) also has the same problem. obtains itsN R
Similarly we show inFig. 3 (a)-(b) that the network w’
topology derived under RNG may be disconnected when the
algorithm is directly applied to a heterogeneous network. As
RNG is defined for undirected graphs, one may tailor the
definition of RNG for directed graphs. Uy
Definition 11 (Neighbor Relation in MRNGY-or Modified
Relative Neighborhood GraptMRNG), MENG, ) if and
only if there does not exist a third nogesuch thatw(u, p) < U3
w(u,v),d(u,p) < r, and w(p,v) < w(u,v),d(v,p) < r,
(Fig. 1(b)). v
As shown in Fig. 4 (a)-(b), the topology derived under
MRNG may still be disconnected (we will give another
variation of RNG for directed graphs in the next section).
One possible extension of LMST [10] is for each node
to build a localdirected minimum spanning tree [18]-[20]
and k_eep only neighbors within one hop. Unfortunately, _thgg. 6. An example that shows having each node broadcHsila message
resulting topology does not preserve the strong connectivitging its maximal transmission power may be insufficient for some nodes
as shown inFig. 5. In the next section, we will improve on (e.g., nodevy) to know their reachable neighborhood. This figure also serves

. .. to show that given an arbitrary direct graph, it may be impossible to derive a
this approach to preserve the connectivity. bi-directional%opology. y grap Y P

IV. DRNG AND DLSS

In this section, we propose two localized topology corB. Topology construction
trol algorithms for heterogeneous wireless multi-hop net- First we define the neighbor relation used in both algo-
works with non-uniform transmission ranges: Directed Relgithms.
tive Neighborhood Graph (DRNG) and Directed Local Span- Definition 12 (Neighbor Relation in DRNGor Directed
ning Subgraph (DLSS). In both algorithms, the topology iRelative Neighborhood GrapfDRNG), v 22V, 4 if and
derived by having each node build its neighbor set and adjl@ﬁﬂy if d(u,v) < r, and there does not exist a third noge
its transmission power based on locally collected informatiogych thatw(u, p) < w(u, v) andw(p,v) < w(u,v),d(p,v) <
Several nice properties of both algorithms will be discusseg (see Fig. 1(c)).

in Section V. Definition 13 (Neighbor Relation in DLSSFor Directed

Both algorithms are composed of three phases: Local Spanning SubGrapfbLSS), u DLSS it and only if

1) Information Collection each node collects the local(y, ) ¢ E(T,), whereT, is obtained by applying Algorithm 1
information of neighbors such as posi}t%ion aid and to GE. T, is a directed local spanning subgraph that spans
identifies theReachable Neighborhood™. NI Hence nodev is a neighbor of node: if and only if

2) Topology Constructioneach node defines (in compli-nodew is on nodeu’s directed local MSTZ,,, and is one-hop
ance with the algorithm) the proper list of neighbors fogway from nodeu.
the final topology using the information iv*. _ DLSS is a natural extension of LMST [10] for hetero-

3) Construction of Topology with Only Bi-Directional Linksgeneous networks. Instead of computing a directed local
(Optional): each node adjusts its list of neighbors tMST (which minimizes the total cost of the all edges in
make sure that all the edges are bi-directional. the subgraph, and is shown to be wrong in Section III-B),

U2



Algorithm 1 DLSS(u) topology construction ofu, before edge(us,v,) was

INPUT: GE, the induced subgraph ofi that spans the inserted intoT,,,, there must already exist a paph=
reachable neighborhood af (wo = Uk, W1, Wa, "+, Wp—1, W = V) from uy to vy,
OUTPUT: T, = (Vp,, Er,), a local spanning subgraph of where (w;, w;11) € E(Ty,),i =0,1,--- ,m — 1. Since
GE, edges are inserted in a ascending order of weight, we
1. Vp, =V, Er, :=0; havew(w;, w;+1) < w(ug, vk). Applying the induction
2: sort all edges iE(GE) in the ascending order of weight hypothesis to each pajw;, w;+1],i =0,1,--- ,m — 1,
(as defined irDefinition 2); we havew; = w;y1, thusu, = vg.
3: for each edgédwu,v) in the orderdo n
4: if w is not connected t@ in 7T, then Theorem 1:Gprss preserves the connectivity af, i.e.,
5: Er, == Ep, U{(u,v)}; Gprss is strongly connected i€7 is strongly connected.
6: endif Proof: SupposeG is strongly connected. For any two
7. if u is connected to all nodes iN/* then nodesu,v € V(G), there exists at least one path =
8: exit; (wo = w,wy,way -+, Wy_1, W, = v) from u to v, where
9: end if (wi,wiﬂ) S E(G),’L =0,1,--- ,m—1. Sincew; = Wi1
10: end for by Lemma 1, we have = v.

[ ]
Lemma 2:Given three nodes, v, w € V(Gprss) satisfy-
each nodex computes a directed local subgraph according tag w(u,v) > w(u,w) andw(u, v) > w(w,v), d(w,v) < 7y,
Algorithm 1 (which minimizes the maximum cost of all edgeshenu - v in Gprss.
in the subgraph) and takes on-tree nodes that are one-hop away Proof: We only need to consider the case where
as its neighbors. d(u,v) < ry sinced(u,v) > r, would imply« - v. Consider
Each node can broadcast its own maximal transmissitite local topology construction af. Before we inser{u, v)
power in the Hello message. By measuring the receivingnto 7, the two edgequ,p) and (p,v) have already been
power of Hello messages, each node can determine the processed since(u,p) < w(u,v) and w(p,v) < w(u,v).
specific power level required to reach each of its neighboféus v = p andp = v, which meansu = v. Therefore,
[10]. Node u then uses the power level that can reach i{s;, v) should not be inserted intB, according to Algorithm 1,
farthest neighbor as its transmission power. This approach ¢a&, v - v in Gprss.
be applied without knowing the actual propagation model. |
Theorem 2:The edge set of/pss IS a subset of the edge
] ) ] . ] set OfGDRNg, ie., E(GDLSS> - E(GDRNg).
As illustrated in the previous section, some linkGp s s Proof: We prove by contradiction. Given any edge
may be uni-directional. There also exist uni-directional Iink@w) € E(Gprss), assuméu, v) ¢ E(Gprne). According
in Gprng. We can apply eitheAddition or Removalto g the definition of DRNG, there must exist a third node
G_DLS_‘S andGpgrne 1O ot_)tain bi-directione_ll topologieg. Wesuch thatw(u,p) < w(u,v),d(u,p) < r, and w(p,v) <
will discuss some properties of these solutions in Section V-B(u,v),d(p,v) < rp. By Lemma 2,u » v in Gprss, i.e.,

V. PROPERTIES OFDRNG AND DLSS (u,v) ¢ E(GpLss)-

C. Construction of topology with only bi-directional edges

[ ]
In this section, we discuss the connectivity, bi-directionality Theorem 3 (Connectivity of DRNG)t G is strongly con-
and degree bound of DLSS and DRNG. We always assﬂmenected, therG p e is also strongly connected.

is strongly connected, i.ew, = v in G for any u, v € V/(G). Proof: This is a direct result ofheorem land Theo-

A. Connectivity rem 2
Lemma 1:For any edgdu,v) € E(G), we haveu = v in "
Gprss- B. Bi-directionality

Proof: Let all the edgequ,v) € E(G) be sorted in

Now we discuss the bi-directionality property of DLSS and
the increasing order of weight, i.au(u1,v1) < w(us,va) y property

. < DRNG. SinceAddition may not always result in bi-directional
e S .w(ul’vl)' where{ is the total number. We prove bytopologies, we first appliRemovalto topologies by DLSS and
induction. DRNG. It turns out the simpl&emovaloperation may lead
1) Basis The first edge(uy,v,) satisfiesw(ui,v1) = to disconnectivity. Examples are given in Figs. 7-8 to show,
min, e p(c){w(u,v)}. According to Algorithm 1, regpectively, that DLSS and DRNG wiRemovalmay result
(u1,v1) and (v1,uq) will be inserted intoGprss, i.e., in disconnectivity.

DLSS Ly . . ..
Uy = 1. In general,G may not be bi-directional if the transmission

2) Induction Assume the hypothesis holds for all edgeganges are non-uniform. Since the maximal transmission range
(ui,vi),1 < i < k, we proveu, = v in Gprss. can not be increased, it may be impossible to find a bi-

If ug ka, thenwu, = wvi. Otherwise in the local directional connected subgraph ¢ for some cases. An
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(a) Original topology (without topology con- (b) Topology by DLSS is strongly connected. () Topology by DLSS withRemovalis not

trol) is strongly connected. strongly connected: there are 2 components.

Fig. 7. An example that shows DLSS wiemovalmay result in disconnectivity.
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(a) Original topology (without topology con- (b) Topology by DRNG is strongly con- (c) Topology by DRNG withRemovalis not

trol) is strongly connected. nected. strongly connected: there are 2 components.

Fig. 8. An example that shows DRNG witkemovalmay result in disconnectivity.

example is given inFig. 6. v; can reachvy and vy, vy can -
reachv; andws, vs can reachvy, and vy, and v, can reach

vo only. Addition does not lead to bi-directionality since all

edges entering or leaving, are uni-directional with all nodes

already transmitting with their maximal power. On the other ("
hand, Removalwill partition the network. In this example,

although the graphG is strongly connected, its subgraph

with the same vertex set cannot be both connected and bi-

directional. ~

2| rolQ
S

Now we show that bi-directionality can be ensured if the

o . o ] Fig. 9. The definition ofCone(u; fi; v).
original topology is both strongly connected and bi-directional.

Theorem 4:If the original topologyG is strongly connected
and bi-directional, thei’p 55 andG pry¢ are also strongly
connected and bi-directional aft&ddition or Removal

C. Degree Bound

It has been observed that any minimum spanning tree of a
] simple undirected graph in the plane has a maximum node
Proof:  Since E(Gprss) S E(Gprnc), We have gegree of 6 [21]. However, this bound does not hold for
E(G_ELSS) € E(GpLss) and E(Gpps5) € E(Gprya) € directed graphs. An example is shown in Fig. 10, where node
E(Gprne)- Therefore, we only need to prove that, 5, has 18 neighbors. In this section, we will discuss the node
preserves the strong connectivity. degree in the t0p0|Ogy by DLSS and DRNG.

In the Induction step in Lemma 1, the only reason we Definition 14 (Disk): Disk(u,r) is the disk centered at

cannot prove thaty, 2252 ¢, is that edge(vs, u;) may not nodeu with a radius Of_’"‘

exist. Given thatG is bi-directional, we are able to prove hDgﬂgltlon_ 15 (r?one)_'c‘;@e(g’a’”)
that uj, 2222 4. Hence for any edgéu,v) € E(G), we shadeg region snown in Fig. .
haveu < v in Gprss. The removal of asymmetric edges The following corollary is a direct result of Lemma 1.

in Gprss does not affect this property. Therefofe), s is Coroll>ary L Ifh visa ne|grr11bor ofu's r;n G’?Lﬁ%’ a_nd_d
still strongly connected. (1, 1) > Tmin, thenu can not have any other neighbor inside

Disk(v, rmin)-
[ | Theorem 5:For any nodeu € V(Gprss), the number of

is the unbounded
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The bound given in Theorem 5 is actually quite large. We
Fig. 10. An example that shows the out degree in a heterogenous net\N}’)\{’uI show in Section VI that th.e average m.aXI.mum degree
can be very large. The transmission rangeidé .. and the transmission 1S Mmuch smaller for networks W'_th random d|5tr|t_3Uted nodes.
range for all other nodes iBin, Wherermae = 2(rmin + 1), T = 0. Also note that what has been discussed so far is actually the

All nodes are so arranged that the distance between any node and its cl ; ; ;
neighbor isr,,;, + 1. Therefore, the only links in the network are those frorﬂ%aﬁrcal node degree, .., the number of logical neighbors. In

u to all the other nodes. Since relaying packets is impossibleas to use Practice, _it is more important to ConSiqe'j thaysical nOd_e _
its maximal transmission power and keeps all 18 neighbors. degree, i.e., the number of nodes within the transmission

radius. If omni-directional antennas are used, the physical
degree cannot be bounded for an arbitrary topology. However,
with the help of directional antennas, we will be able to bound
the physical degree given that the logical degree is bounded
under DLSS (except in some extreme cases, e.g., a large
number of nodes are of the same distance from one node). The
idea is that, when transmitting to a specific neighbor, nede
should adjust the direction and limit the transmission power
so that no other nodes will be affected.

Notice that the out degree is not boundeddmryg. An
example is given in Fig. 11. For af}; that lies inside the
shaded area, as long as, < d(p;,v), the edge(u,v) in
Gprne WIll not exclude edgequ,p;),i = 1,2,.... As a
result, the out degree af is unbounded.

neighbors inG prss that are insideDisk(u, rm:y) IS at most
6.

Proof: Let N(u) be the set of neighbors afin Gprss
that are insideDisk(u, 7). Let the nodes inN(u) be
ordered such that for théth node w; and the jth node
w; (5 > @), w(u,w;) > w(u,w;). By Lemma 2, we have
w(u, w;) < w(w;,w;) (otherwiseu - w;). Thus Zw;uw; >
7/3, i.e., nodew; cannot reside insid€'one(u,27/3,w;).
Therefore, node: cannot have neighbors other than nade
inside C'one(u, 27 /3, w;). By induction on the rank of nodes
in N(u), the maximal number of neighbors thatan have is
at most 6.

Theorem 6:The out degree of node i@ prss is bounded D. Localized Algorithms

by a constant that depends only 0., andr,,;,. ] ] ) )
Proof: For any nodeu in Gprss, there are at most As mentioned in Section 1V, in the case that nodes may

6 neighbors insideDisk(u, rmin) from Theorem 5. Also have different maximal transmission powers, the operation of
from Corollary 1, the set of disk§ Disk(v, Tmiz) : v € having each node broadcast its own position information to
Nprss(u),v & Disk(u,min)} are disjoint. T2heref0re the all the other nodes withim,, is not sufficient to ensure each

total number of neighbors af is bounded by: nqdeu obtains the information of re_achable neighborho)qﬁ
(Fig. (6)). Fortunately with the desirable properties of DRNG

Tmin \2 Tmin \2
(rmaa + =% ‘) - (75) w = 4[B(B+1)]+86, and DLSS proved in Sections V-A and V-B, we show that it is
()2 sufficient for nodeu to collect neighborhood information only
where = =e=_Actually we can observe that Fig. 10 showdrom nodes whose maximal transmission range covers node

the scenario where the maximum out degree: a§ achieved u. That is, the original information exchange algorithm that
if ¢ — 0. Therefore, we can further tighten the bound. Sind€duires only “one-hop” information suffices.

the hexagonal area (as shown in Fig. 10) centered at evenfonsider a directed simple graph with less edg&s:=
neighbor ofu is disjoint with each other, the total number of V(G'), E(G")), where E(G') = {(u,v) : d(u,v) <
neighbors ofu is bounded by: min(ry,ry),u,v € V(G)}. For any edge(u,v) € E(G'),
e \2 sinced(u,v) < min(r,,r,), we have(v,u) € E(G"), which
) = r(rm‘” + W) -‘ 1= {%(5_# )2-‘ _1 meansG’ is bi-directional. DefineN?' = {v € V(@) :
?73 d(u,v) < min(ry,m)}, 7o’ = max,eyr{d(u,v)}, where

01:64-"

min



(a) Original topology (without topology control) is strongly connected. (b) Topology by R&M is strongly connected.

(c) Topology by DRNG is strongly connected. (d) Topology by DLSS is strongly connected.

Fig. 12. Topologies derived by R&M, DRNG, and DLSS.

r' < ry since for anyv € NE' d(u,v) < ry. Let rin’ = 7'y NE', i’ @nd rpa,’ in the proof of Lemma 1-2 and

min, ey {r,’} andr,.," = max,cv{r,’}. By requiring each Theorem 1-6. Then following the same line of arguments, we
nodeu to broadcast its position and id to all other nodes withioan prove that they still hold if the original topology @8

r4, We are able to determinzs’f’ andr,’. We can then apply |
DRNG and DLSS on top of’ and prove that Theorems 1-5 Theorem 8:If the original topology isG’ (which is a
still hold even if the original topology i&'. subgraph ofG), Gprss andGpgrng are bi-directional after

Addition or Removal

Proof: We apply Theorem 4 toG’, for G’ is bi-
directional.
Proof: We replaceG, r,, NMR, Tmin, andr,q.. with G/, [ |

Theorem 7:Theorems 1-6 still holds if the original topol-
ogy isG’.



V1. SIMULATION STUDY 35 ‘ ‘

In this section, we evaluate the performance of R&M, A
DRNG, and DLSS by simulations. All three algorithms are aoad
known to preserve network connectivity in heterogeneous ab
networks. 2

In the first simulation, 50 nodes are uniformly distributed R
in a 1000m x 1000m region. The transmission ranges of J
nodes are uniformly distributed {800m, 250m]. Fig. 12 gives
the topologies derived using the maximal transmission power
(labeled as NONE), R&M (under the two-ray ground model),
DRNG, and DLSS for one simulation instance. As shown in
Fig. 12, R&M, DRNG and LMST all significantly reduce the i
average node degree, while maintaining network connectivity.
Moreover, both DRNG and DLSS outperforms R&M in the e S SN WS S U U U
sense that fewer edges are formed in the topology.
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of 50 simulation runs. The transmission ranges of nodes are
uniformly distributed in [200m, 250m]. Fig. 13 shows the
average radius and the average link length for the topologies
derived under NONE(no topology control), R&M, DRNG,
and DLSS. DLSS outperforms the others, which implies that
DLSS can provide a better spatial reuse and use less energy
to communicate.

We also compare the out degree of the topologies by
different algorithms. The result of NONE is not shown because
T its out degrees increase almost linearly with the number of

# Nodes nodes and are significantly larger than those under R&M,
(b) Average link length DRNG, and DLSS. Fig. 14 shows the average logical/physical
Fig. 13. Comparison of DLSS, DRNG and R&M with respect to averaggUt degree for the topologies derived by R&M, DRNG, and
radius and average edge length. DLSS. The average out degrees under R&M and DRNG
increase with the increase in the number of nodes, while those

In the second simulation, we vary the number of nodes imder DLSS actually decrease. Fig .15 shows the average

the region from 100 to 300, and each data point is an averagaximum logical degree and the largest maximum logical
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Fig. 15.  Comparison of R&M, DRNG and DLSS with respect to therig. 16.  Comparison of R&M, DRNG and DLSS with respect to the
maximum logical degree. maximum physical degree.

out degree for each number of nodes. The largest maximum

logical degree under DLSS is at most 4, and is well below tigy when directly applied to heterogeneous networks. Then
theoretical upper bound obtained in Theorem 6. Also DLS& devise DRNG and DLSS and prove that (i) both DRNG
has much smaller degrees than the other topologies. Simiid DLSS preserve network connectivity; (i) both DRNG
results can be observed in Fig. 16 for physical degrees. Téed DLSS preserve network bi-directionality Atldition and
only difference is that the physical degrees are in general largR@moveoperations are applied to the topologies derived under

than the logical degrees for the same network. these algorithms; and (i) the out degree of any node is
bounded in the topology derived under DLSS, while that may
VIl. CONCLUSIONS be unbounded under DRNG. The simulation study validates

In this paper, we have proposed two local topology contr81€ Superiority of DRNG and DLSS over R&M.
algorithms, Directed Relative Neighborhood Graph (DRNG) As part of our future research, we will pursue the following
and Directed Local Spanning Subgraph (DLSS), for heterogepen problems: (1) given a topology in which each node
neous wireless multi-hop networks in which each node maansmits with different maximal transmission power, what is
have different maximal transmission ranges. We show that the probability that the topology is bi-directional with respect
most existing topology control algorithms (except R&M [4])o the distribution and the density of nodes, and the distribution
do not consider the fact that nodes may have different maxinadl the transmission ranges? and (2) How will MAC-level
transmission ranges, they render disconnected network topoterference affect network connectivity and bi-directionality?
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