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Abstract

We discuss the design of an acquisitional query processor for data col-

lection in sensor networks. Acquisitional issues are those that pertain to

where, when, and how often data is physically acquired (sampled) and

delivered to query processing operators. By focusing on the locations

and costs of acquiring data, we are able to significantly reduce power

consumption over traditional passive systems that assume thea priori

existence of data. We discuss simple extensions to SQL for controlling

data acquisition, and show how acquisitional issues influence query op-

timization, dissemination, and execution. We evaluate these issues in

the context of TinyDB, a distributed query processor for smart sensor

devices, and show how acquisitional techniques can provide significant

reductions in power consumption on our sensor devices.

1 Introduction

In the past few years, smart-sensor devices have matured to the point

that it is now feasible to deploy large, distributed networks of such sen-

sors [37, 21, 32, 8]. Sensor networks are differentiated from other wire-

less, battery powered environments in that they consist of tens or hun-

dreds of autonomous nodes that operate without human interaction (e.g.

configuration of network routes, recharging of batteries, or tuning of pa-

rameters) for weeks or months at a time. Furthermore, sensor networks

are often embedded into some (possibly remote) physical environment

from which they must monitor and collect data. The long term, low

power nature of sensor networks, coupled with their proximity to phys-

ical phenomena lead to a significantly altered view of software systems

than that of more traditional mobile or distributed environments.

In this paper, we are concerned with query processing in sensor net-

works. Researchers have noted the benefits of a query processor-like in-

terface to sensor networks and the need for sensitivity to limited power

and computational resources [25, 30, 36, 43, 31]. Prior systems, how-

ever, tend to view query processing in sensor networks simply as a

power-constrained version of traditional query processing: given some

set of data, they strive to process that data as energy-efficiently as possi-

ble. Typical strategies include minimizing expensive communication by

applying aggregation and filtering operations inside the sensor network

– strategies that are similar to push-down techniques from distributed

query processing that emphasize moving queries to data.

In contrast, we presentacquisitional query processing(ACQP), where

we focus on the significant new query processing opportunity that arises

in sensor networks: the fact that smart sensors have control over where,

when, and how often data is physically acquired (i.e.sampled) and

delivered to query processing operators. By focusing on the locations

and costs of acquiring data, we are able to significantly reduce power

consumption compared to traditional passive systems that assume thea

priori existence of data. Acquisitional issues arise at all levels of query

processing: in query optimization, due to the significant costs of sam-

pling sensors; in query dissemination, due to the physical co-location

of sampling and processing; and, most importantly, in query execution,

where choices of when to sample and which samples to process are

made. Of course, techniques proposed in other research on sensor and

power-constrained query processing, such as pushing down predicates

and minimizing communication are also important alongside ACQP and

fit comfortably within its model.

We have designed and implemented an ACQP engine, called TinyDB,

that is a distributed query processor which runs on each of the nodes in

a sensor network. TinyDB runs on the Berkeley Micamoteplatform,

on top of the TinyOS [21] operating system. We chose this platform

because the hardware is readily available from commercial sources [12]

and the operating system is relatively mature. TinyDB has many of

the features of a traditional query processor (e.g. the ability to select,

join, project, and aggregate data), but, as we will discuss in this pa-

per, also incorporates a number of other features designed to minimize

power consumption via acquisitional techniques. These techniques,

taken in aggregate, can lead to orders of magnitude improvement in

power consumptionand increased accuracy of query results over non-

acquisitional systems that do not actively control when and where data

is collected.

We address a number of ACQP-related questions, including:

1. When should samples for a particular query be taken?

2. What sensor nodes have data relevant to a particular query?

3. In what order should samples for this query be taken, and how

should sampling be interleaved with other operations?

4. Is it worth expending computational power or bandwidth to pro-

cess and relay a particular sample?

Of these issues, question (1) is unique to ACQP. The remaining ques-

tions can be answered by adapting techniques that are similar to those

found in traditional query processing. Notions of indexing and opti-

mization, in particular, can be applied to answer questions (2) and (3),

and question (4) bears some similarity to issues that arise in stream

processing and approximate query answering. We will address each of

these questions, noting the unusual kinds of indices, optimizations, and

approximations that are required in ACQP under the specific constraints

posed by sensor networks.

Figure 1 illustrates the basic architecture that we follow throughout
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this paper – queries are submitted at a powered PC (thebase station) ,

parsed, optimized and sent into the sensor network, where they are dis-

seminated and processed, with results flowing back up the routing tree

that was formed as the queries propagated. After a brief introduction to

sensor networks in Section 2, the remainder of the paper discusses each

of these phases of ACQP: Section 3 covers our query language, Section

4 highlights optimization issues in power-sensitive environments, Sec-

tion 5 discusses query dissemination, and finally, Sections 6 discusses

our adaptive, power-sensitive model for query execution and result col-

lection.

SELECT nodeid, light
FROM SENSORS

OPS
NULL

FIELDS
nodeid

light

Query PC
Mote

Result
1 28

2 55

3 48

Result
3 48

Result
2 55

Result
1 28

2 55

3 48

Figure 1: A query and results propagating through the network.

2 Sensor Networks and Data Collection

We begin with an overview of some recent sensor network deployments,

and then discuss properties of sensors and sensor networks in general,

providing specific numbers from our experience with TinyOS motes

when possible.

In the past several years, the sensor network research community has

developed and engaged in real deployments of these devices, making

it possible to understand the data collection needs specific to the sensor

environment. As an example, consider recent environmental monitoring

deployments on Great Duck Island and James Reserve[32, 8]. In these

scenarios, motes collect light, temperature, humidity, and other envi-

ronmental properties. On Great Duck Island, off the coast of Maine,

sensors have been placed in the burrows of Storm Petrels, a kind of

endangered sea bird. Scientists plan to use them to monitor burrow

occupancy and the conditions surrounding burrows that are correlated

with birds coming or going. Other notable deployments that are under-

way include a network for earthquake monitoring [40] and sensors for

building infrastructure monitoring and control [29].1

Each of these scenarios involves a large number of devices that need

to last as long as possible with little or no human intervention. Placing

new sensors, or replacing or recharging batteries of devices in bird nests,

earthquake test sites, and heating and cooling ducts is time consuming

and expensive. Aside from the obvious advantages that a simple, declar-

ative language provides over hand-coded, embedded C, researchers are

particularly interested in TinyDB’s ability to acquire and deliver desired

data while conserving as much power as possible and satisfying desired

1Even in indoor infrastructure monitoring settings, there is great interest in battery pow-
ered devices, as running power wire can many dollars per device.

lifetime goals.

2.1 Properties of Sensor Devices

A sensor node is a battery-powered, wireless computer. Typically, these

nodes are physically small (a few cubic centimeters) and extremely low

power (a few tens of milliwatts versus tens of watts for a typical laptop

computer)2. Power is of utmost importance. If used naively, individual

sensor nodes will deplete their energy supplies in only a few days. In

contrast, if sensor nodes are very spartan about power consumption,

months or years of lifetime are possible. Mica motes, for example,

when operating at 2% duty cycle (between active and sleep modes) can

achieve lifetimes in the 6 month range on a pair of AA batteries. This

duty cycle limits the active time to 1.2 seconds per minute.

Mica motes have a 4Mhz, 8bit Atmel microprocessor. Their RFM

TR1000 radios run at 40 kbits/second over a single shared CSMA chan-

nel. Radio messages are variable size. Typically about 10 48-byte mes-

sages (the default size in TinyDB) can be delivered per second. Power

consumption tends to be dominated by radio communication. When

powered on, radios consume about as much power as the processor.

However, because communication is so slow, everybit of data transmit-

ted by the radio costs as much energy as executing 1000 CPU instruc-

tions. As an additional feature, motes have an external 32kHz clock that

the TinyOS operating system can synchronize with neighboring motes

+/- 1 ms to ensure that neighbors are be powered up and listening when

they wish to send a message[14].

Power consumption in sensors occurs in four phases, which we illustrate

in Figure 2 via an annotated capture of an oscilloscope display showing

current draw (which is proportional to power consumption) on a Mica

mote running TinyDB. In “Snoozing” mode, where the node spends

most of its time, the processor and radio are idle, waiting for a timer to

expire or external event to wake the device. When the device wakes it

enters the “Processing” mode, which consumes an order of magnitude

more power than snooze mode, and where query results are generated

locally. The mote then switches to a “Processing and Receiving” mode,

where results are collected from neighbors over the radio. Finally, in

the “Transmitting” mode, results for the query are delivered by the lo-

cal mote – the noisy signal during this period reflects switching as the

receiver goes off and the transmitter comes on and then cycles back to

a receiver-on, transmitter-off state.
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Figure 2: Phases of Power Consumption In TinyDB

2Recall that 1 Watt (a unit of power) corresponds to power consumption of 1 Joule (a unit
of energy) per second. We sometimes refer to the current load of a sensor, because current is
easy to measure directly; note that power (in Watts) = current (in Amps) * voltage (in Volts),
and that Mica motes run at 3V.
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2.2 Communication in Sensor Networks

Typical communication distances for low power wireless radios such as

those used in Mica motes and Bluetooth devices range from a few feet

to around 100 feet, depending on transmission power and environmen-

tal conditions. Such short ranges mean that almost all real deployments

must make use of multi-hop communication, where intermediate nodes

relay information for their peers. On Mica motes, all communication

is broadcast. The operating system provides a software filter so that

messages can be addressed to a particular node, though if neighbors are

awake, they can stillsnoopon such messages (at no additional energy

cost since they’ve already transferred the decoded the message from the

air.) Nodes receive per-message, link-level acknowledgments indicat-

ing whether a message was received by the intended neighbor node. No

end-to-end acknowledgments are provided.

The requirement that sensor networks be low maintenance and easy

to deploy means that communication topologies must be automatically

discovered (i.e.ad-hoc) by the devices rather than fixed at the time of

network deployment. Typically, devices keep a short list of neighbors

who they have heard transmit recently, as well as some routing informa-

tion about the connectivity of those neighbors to the rest of the network.

To assist in making intelligent routing decisions, nodes associate a link

quality with each of their neighbors.

We describe the process of disseminating queries and collecting results

in Section 5 below. As a basic primitive in these protocols, we use a

routing treethat allows abasestationat the root of the network to dis-

seminate a query and collect query results. This routing tree is formed

by forwarding a routing request (a query in TinyDB) from every node

in the network: the root sends a request, allchild nodes that hear this

request process it and forward it on to their children, and so on, until the

entire network has heard the request. Each request contains a hop-count,

or level indicating the distance from the broadcaster to the root. To de-

termine their own level, nodes pick aparentnode that is (by definition)

one level closer to the root than they are. This parent will be responsible

for forwarding the node’s (and its children’s) query results to the bases-

tation. We note that it is possible to have several routing trees if nodes

keep track of multiple parents. This can be used to support several si-

multaneous queries with different roots. This type of communication

topology is common within the sensor network community [42].

3 An Acquisitional Query Language

In this section, we introduce our query language for ACQP focusing on

issues related to when and how often samples are acquired.3

3.1 Basic Language Features

Queries in TinyDB, as in SQL, consist of aSELECT-FROM-WHERE

clause supporting selection, join, projection, and aggregation. We also

include explicit support for sampling, windowing, and sub-queries via

materialization points. As is the case in the Cougar and TAG systems

[36, 31], we view sensor data as a single table with one column per

sensor type. Tuples are appended to this table periodically, at well-

3Our query language includes a number of other unusual features tailored to the sensor
network domain, such as the ability to log data for later offline delivery and the ability to
actuate physical hardware in response to a query, which we will not discuss here.

definedsample intervalsthat are a parameter of the query. The period of

time between each sample interval is known as anepoch. As we discuss

in Section 6, epochs provide a convenient mechanism for structuring

computation to minimize power consumption. Consider the query:
SELECT nodeid, light, temp

FROM sensors
SAMPLE INTERVAL 1s FOR 10s

This query specifies that each sensor should report its own id, light, and

temperature readings (contained in the virtual tablesensors ) once per

second for 10 seconds. Results of this query stream to the root of the

network in an online fashion, via the multi-hop topology, where they

may be logged or output to the user. The output consists of an ever-

growing sequence of tuples, clustered into 1s time intervals. Each tuple

includes a time stamp corresponding to the time it was produced.

Note that thesensors table is (conceptually) an unbounded, contin-

uousdata streamof values; as is the case in other streaming and on-

line systems, certain blocking operations (such as sort and symmetric

join) are not allowed over such streams unless a bounded subset of the

stream, orwindow, is specified. Windows in TinyDB are defined as

fixed-size materialization points over the sensor streams. Such materi-

alization points accumulate a small buffer of data that may be used in

other queries. Consider, as an example:
CREATE

STORAGE POINT recentlight SIZE 8
AS (SELECT nodeid, light FROM sensors
SAMPLE INTERVAL 10s)

This statement provides a shared, local (i.e. single-node) location to

store a streaming view of recent data similar to materialization points

in other streaming systems like Aurora or STREAM [7, 34], or materi-

alized views in conventional databases. Joins are allowed between two

storage points on the same node, or between a storage point and the

sensors relation, in which casesensors is used as the outer rela-

tion in a nested-loops join. That is, when asensors tuple arrives, it is

joined with tuples in the storage point at its time of arrival. This is effec-

tively a landmark query[18] common in streaming systems. Consider,

as an example:
SELECT COUNT(*)

FROM sensors AS s, recentLight AS rl
WHERE rl.nodeid = s.nodeid
AND s.light < rl.light
SAMPLE INTERVAL 10s

This query outputs a stream of counts indicating the number of recent

light readings (from 0 to 8 samples in the past) that were brighter than

the current reading. In the event that a storage point and an outer query

deliver data at different rates, a simple rate matching construct is pro-

vided that allows interpolation between successive samples (if the outer

query is faster), or specification of aggregation function to combine

multiple rows (if the inner query is faster.) Space prevents a detailed

description of this mechanism here.

TinyDB also includes support for grouped aggregation queries. Aggre-

gation has the attractive property that it reduces the quantity of data that

must be transmitted through the network; other sensor network research

has noted that aggregation is perhaps the most common operation in the

domain ([31, 25, 43]) - TinyDB includes a mechanism for user-defined

aggregates and a metadata management system that supports optimiza-

tions over them, which we discuss in Section 4.1.
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In addition to aggregates over values produced during the same sam-

ple interval (for an example, as in theCOUNTquery above), users want

to be able to perform temporal operations. For example, in a building

monitoring system for conference rooms, users may detect occupancy

by measuring maximum sound volume over time and reporting that vol-

ume periodically; for example, the query:
SELECT WINAVG(volume, 30s, 5s)

FROM sensors
SAMPLE INTERVAL 1s

will report the average volume over the last 30 seconds once every 5

seconds, sampling once per second. This is an example of asliding-

windowquery common in many streaming systems [34, 18].

When a query is issued in TinyDB, it is assigned an identifier (id) that

is returned to the issuer. This identifier can be used to explicitly stop a

query via a “STOP QUERY id” command. Alternatively, queries can

be limited to run for a specific time period via aFORclause (shown

above,) or can include a stopping condition as an event (see below.)

3.2 Event-Based Queries

As a variation on the continuous, polling based mechanisms for data

acquisition, TinyDB supportseventsas a mechanism for initiating data

collection. Events in TinyDB are generated explicitly, either by another

query or the operating system (in which case the code that generates the

event must have been compiled into the sensor node.) For example, the

query:
ON EVENT bird-detect(loc):

SELECT AVG(light), AVG(temp), event.loc
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2 s FOR 30 s

could be used to report the average light and temperature level at sen-

sors near a bird nest where a bird has just been detected. Every time

a bird-detect event occurs, the query is issued from the detecting

node and the average light and temperature are collected from nearby

nodes once every 2 seconds for 30 seconds.

Such events are central in ACQP, as they allow the system to be dormant

until some external conditions occurs, instead of continually polling or

blocking on an iterator waiting for some data to arrive. Since most mi-

croprocessors include external interrupt lines than can wake a sleeping

device to begin processing, events can provide significant reductions in

power consumption, shown in Figure 3.

This figure shows an oscilloscope plot of current draw from a device

running an event-based query triggered by toggling a switch connected

to an external interrupt line that causes the device to wake from sleep.

Compare this to plot at the bottom of Figure 3, which shows an event-

based query triggered by a second query that polls for some condition

to be true. Obviously, the situation in the top plot is vastly preferable,

as much less energy is spent polling. TinyDB supports such externally

triggered queries via events, and such support is integral to its ability to

provide low power processing.

Events can also serve as stopping conditions for queries. Ap-

pending a clause of the formSTOP ON EVENT(param) WHERE

cond(param) will stop a continuous query when the specified event

arrives and the condition holds.

In the current implementation of TinyDB, events are only signalled on
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Figure 3: External interrupt driven event-based query (top) vs. Polling

driven event-based query (bottom).

the local node – we do not provide a fully distributed event propagation

system. Note, however, that queries started in response to a local event

may be disseminated to other nodes (as in the example above).

3.3 Lifetime-Based Queries

In lieu of a explicitSAMPLE INTERVALclause, users may request a

specific query lifetime via aQUERY LIFETIME <x> clause, where

< x > is a duration in days, weeks, or months. Specifying lifetime is a

much more intuitive way for users to reason about power consumption.

Especially in environmental monitoring scenarios, scientific users are

not particularly concerned with small adjustments to the sample rate,

nor do they understand how such adjustments influence power con-

sumption. Such users, however, are very concerned with the lifetime

of the network executing the queries. Consider the query:
SELECT nodeid, accel

FROM sensors
LIFETIME 30 days

This query specifies that the network should run for at least 30 days,

sampling light and acceleration sensors at a rate that is as quick as pos-

sible and still satisfies this goal.

To satisfy a lifetime clause, TinyDB performs lifetime estimation. The

goal of lifetime estimation is to compute a sampling and transmission

rate given a number of Joules of energy remaining. We begin by consid-

ering how a single node at the root of the sensor network can compute

these rates, and then discuss how other nodes coordinate with the root

to compute their delivery rates. For now, we also assume that sam-

pling and delivery rates are the same. On a single node, these rates can

be computed via a simple cost-based formula, taking into account the

costs of accessing sensors, selectivities of operators, expected commu-

nication rates and current battery voltage. We show below a lifetime

computation for simple queries of the form:
SELECT a1, ... , anumSensors

FROM sensors
WHEREp
LIFETIME l hours

To simplify the equations in this example, we present a query with a sin-

gle selection predicate which is applied after attributes have acquired.

The ordering of multiple predicates and interleaving of sampling and

selection are discussed in detail in Section 4. Table 1 shows the param-

eters we use in this computation (we do not show processor costs since

they will be negligible for the simple selection predicates we support,

and have been subsumed into costs of sampling and delivering results.)
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Parameter Description Units

l Query lifetime goal hours

crem Remaining Battery Capacity Joules

En Energy to sample sensorn Joules

Etrans Energy to transmit a single sample Joules

Ercv Energy to receive a message Joules

σ Selectivity of selection predicate

C Number of children nodes routing through this node

Table 1: Parameters used in lifetime estimation

The first step is to determine the available powerph per hour:

ph = crem / l

We then need to compute the energy to collect and transmit one sample,

es, including the costs to forward data for our children:

es = (
∑numSensors

s=0 Es) + (Ercv + Etrans)× C + Etrans × σ

Finally, we can compute the maximum transmission rate,T (in samples

per hour), as :

T = ph/es

To illustrate the effectiveness of this simple estimation, we in-

serted a lifetime-based query (SELECT voltage, light FROM

sensors LIFETIME x ) into a sensor (with a fresh pair of AA bat-

teries) and asked it to run for 24 weeks, which resulted in a sample rate

of 15.2 seconds per sample. We measured the remaining voltage on

the device 9 times over 12 days. The first two readings were outside

the range of the voltage detector on the mote (e.g. they read “1024” –

the maximum value) so are not shown. Based on experiments with our

test mote connected to a power supply, we expect it to stop functioning

when its voltage reaches 350. Figure 4 shows the measured lifetime at

each point in time, with a linear fit of the data, versus the “expected

voltage” which was computed using the cost model above. The result-

ing linear fit of voltage is quite close to the expected voltage. The linear

fit reaches V=350 about 5 days after the expected voltage line.

Given that it is possible to estimate lifetime on a single node, we now

discuss coordinating the tranmission rate across all nodes in the routing

tree. Since sensors need to sleep between relaying of samples, it is im-

portant that senders and receivers synchronize their wake cycles. To do

this, we allow nodes to transmit only when their parents in the routing

tree are awake and listening (which is usually the same time they are

transmitting.) By transitivity, this limits the maximum rate of the entire

network to the transmission rate of the root of the routing tree. If a node

must transmit slower than the root to meet the lifetime clause, it may

transmit at an integral divisor of the root’s rate.4 To propagate this rate

through the network, each parent node (including the root) includes its

transmission rate in queries that it forwards to its children.

The previous analysis left the user with no control over the sample rate,

which could be a problem because some applications require the ability

to monitor physical phenomena at a particular granularity. To remedy

this, we allow an optionalMIN SAMPLE RATEr clause to be sup-

plied. If the computed sample rate for the specified lifetime is greater

than this rate, sampling proceeds at the computed rate (since the alterna-

tive is expressible by replacing theLIFETIME clause with aSAMPLE

4One possible optimization, which we do not explore, would involve selecting or reas-
signing the root to maximize transmission rate.
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Figure 4: Predicted versus actual lifetime for a requested lifetime of 24

weeks (168 days)

INTERVAL clause.) Otherwise, sampling is fixed a rate ofr and the

prior computation for transmission rate is done assuming a different

rate for sampling and transmission. To provide the requested lifetime

and sampling rate, the system may not be able to actually transmit all of

the readings – it may be forced to combine (aggregate) or discard some

samples; we discuss this situation (as well as other contexts where it

may arise) in Section 6.2.

Finally, we note that since estimation of power consumption was done

using simple selectivity estimation as well as cost-constants that can

vary from node-to-node (see Section 4.1) and parameters that vary

over time (such as number of children,C), we need to periodically

re-estimate power consumption. Section 6.3.1 discusses this runtime

re-estimation in more detail.

4 Power-Based Query Optimization

Given our query language for ACQP environments, with special fea-

tures for event-based processing and lifetime queries, we now turn to

query processing issues. We begin with a discussion of optimization,

and then cover query dissemination and execution.

Queries in TinyDB are parsed at the basestation and disseminated in a

simple binary format into the sensor network, where they are instan-

tiated and executed. Before queries are disseminated, the basestation

performs a simple query optimization phase to choose the correct or-

dering of sampling, selections, and joins.

We use a simple cost-based optimizer to choose a query plan that will

yield the lowest overall power consumption. Optimizing for power al-

lows us to subsume issues of processing cost and radio communication,

which both contribute to power consumption and so will be taken into

account. One of the most interesting aspects of power-based optimiza-

tion, and a key theme of acquisitional query processing, is that the cost

of a particular plan is often dominated by the cost of sampling the phys-

ical sensors and transmitting query results rather than the cost of apply-

ing individual operators (which are, most frequently, very simple.) We

begin by looking at the types of metadata stored by the optimizer. Our

optimizer focuses on ordering joins, selections, and sampling operations

that run on individual nodes.

4.1 Metadata Management

Each node in TinyDB maintains a catalog of metadata that describes

its local attributes, events, and user-defined functions. This metadata is

periodically copied to the root of the network for use by the optimizer.
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Metadata Description

Power Cost to sample this attribute (in J)

Sample Time Time to sample this attribute (in s)

Constant? Is this attribute constant-valued (e.g. id)?

Rate of Change How fast the attribute changes (units/s)

Range What range of values can this attribute take on (pair of units)

Table 2: Metadata fields kept with each attribute

Metadata are registered with the system via static linking done at com-

pile time using the TinyOS C-like programming language. Events and

attributes pertaining to various operating system and TinyDB compo-

nents are made available to queries by declaring them in an interface

file and providing a small handler function. For example, in order to

expose network topology to the query processor, the TinyOSNetwork

component defines the attributeparent of type integer and registers

a handler that returns the id of the node’s parent in the current routing

tree.

Event metadata consists of a name, a signature, and a frequency esti-

mate that is used in query optimization (see Section 4.3 below.) User-

defined predicates also have a name and a signature, along with a selec-

tivity estimate which is provided by the author of the function.

Table 2 summarizes the metadata associated with each attribute, along

with a brief description. Attribute metadata is used primarily in two

contexts: information about the cost, time to fetch, and range of an

attribute is used in query optimization, while information about the se-

mantic properties of attributes is used in query dissemination and result

processing. Table 3 gives examples of power and sample time values

for some actual sensors – notice that the power consumption and time

to sample can differ across sensors by several orders of magnitude.

Sensor Power Sample time Sample Energy
mW ms (VI * t), uJ

Light, Temp .9 .1 [5] 90
Magnetometer 15 [22] .1 [5] 1500
Accelerometer 1.8 [3] .1 [5] 180

Organic Byproducts5 15 > 1000 > 1.5× 107

Table 3: Energy costs of accessing various common sensors

.

The catalog also contains metadata about TinyDB’s extensible aggre-

gate system. As with other extensible database systems [39] the catalog

includes names of aggregates and pointers to their code. Each aggregate

consists of a triplet of functions, that initialize, merge, and update the

final value of partial aggregate records as they flow through the system.

As in the TAG[31] system, aggregate authors must provide informa-

tion about functional properties. In TinyDB, we currently require two:

whether the aggregate ismonotonicand whether it isexemplaryor sum-

mary. COUNTis a monotonic aggregate as its value can only get larger

as more values are aggregated.MIN is an exemplary aggregate, as it re-

turns a single value from the set of aggregate values, whileAVERAGEis

a summary aggregate because it computes some property over the entire

set of values.

5Scientists are particularly interested in monitoring the micro-climates created by plants
and their biological processes. See [13, 8]. An example of such a sensor is Figaro Inc’s
H2S sensor [15]

TinyDB also stores metadata information about the costs of processing

and delivering data, which is used in query-lifetime estimation. The

costs of these phases in TinyDB were shown in Figure 2 – they range

from 2 mA while sleeping, to over 20 mA while transmitting and pro-

cessing. Note that actual costs vary from mote to mote – for example,

with a small sample of 5 motes (using the same batteries), we found that

the average current with processor active varied from 13.9 to 17.6 mA

(with the average being 15.66 mA).

4.2 Ordering of Sampling And Predicates

Having described the metadata maintained by TinyDB, we now describe

how it is used in query optimization.

As Table 3 shows, sampling is often an expensive operation in terms of

power. However, a sample from a sensors must be taken to evaluate

any predicate over the attributesensors.s . If a predicate discards a

tuple of thesensors table, then subsequent predicates need not ex-

amine the tuple – and hence the expense of sampling any attributes

referenced in those subsequent predicates can be avoided. Thus these

predicates are “expensive”, and need to be ordered carefully. The predi-

cate ordering problem here is somewhat different than than in the earlier

literature (e.g. [20]) because (a) an attribute may be referenced in mul-

tiple predicates, and (b) expensive predicates are only on a single table,

sensors . The first point introduces some subtlety, as it is not clear

which predicate should be “charged” the cost of the sample.

To model this issue, we treat the sampling of a sensort as a sepa-

rate “job” τ to be scheduled along with the predicates. Hence a set

of predicatesP = {p1, . . . , pm} is rewritten as a set of operations

S = {s1, . . . , sn}, whereP ⊂ S, andS − P = {τ1, . . . , τn−m}
contains one sampling operator for each distinct attribute referenced in

P . The selectivity of sampling operators is always 1. The selectiv-

ity of selection operators is derived by assuming attributes have a uni-

form distribution over their range (which is available in the catalog.)

Relaxing this assumption by, for example, storing histograms or time-

dependent functions per-attribute remains an area of future work. The

cost of an operator (predicate or sample) can be determined by con-

sulting the metadata, as described in the previous section. In the cases

we discuss here, selections and joins are essentially “free” compared to

sampling, but this is not a requirement of our technique.

We also introduce a partial order onS, whereτi must precedepj if pj

references the attribute sampled byτi. The combination of sampling op-

erators and the dependency of predicates on samples captures the costs

of sampling operators and the sharing of operators across predicates.

The partial order induced onS forms a graph with edges from sampling

operators to predicates. This is a simpleseries-parallelgraph. An op-

timal ordering of jobs with series-parallel constraints is a topic treated

in the Operations Research literature that inspired earlier optimization

work [23, 28, 20]; Monma and Sidney present theSeries-Parallel Algo-

rithm Using Parallel Chains[33], which gives an optimal ordering of

the jobs inO(|S| log |S|) time.

Due to space constraints, we have glossed over the details of handling

the expensive nature of sampling in theSELECT, GROUP BY, and

HAVINGclauses. The basic idea is to add them toS with appropri-
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ate selectivities, costs, and ordering constraints.

As an example of this process, consider the query:
SELECT accel,mag

FROM sensors
WHERE accel > c1
AND mag > c2
SAMPLE INTERVAL 1s

The order of magnitude difference in per-sample costs for the ac-

celerometer and magnetometer suggests that the power costs of plans

with different orders of sampling and selection will vary substantially.

We consider three possible plans: in the first, the magnetometer and

accelerometer are sampled before either selection is applied. In the sec-

ond, the magnetometer is sampled and the selection over its reading

(which we callSmag) is applied before the accelerometer is sampled

or filtered. In the third plan, the accelerometer is sampled first and its

selection (Saccel) is applied before the magnetometer is sampled. We

compared the cost of these three plans, and, as expected, found that

the first was always more expensive than the other two. More inter-

estingly, the second can be an order of magnitude more expensive than

third, whenSaccel is much more selective thanSmag. Conversely, when

Smag is highly selective, it can be cheaper to sample the magnetome-

ter first, although only by a small factor (.8). The order of magnitude

difference in relative costs represents an absolute difference of 1320 uJ

per sample, or 3.96 mW at a (slow) sample rate of one sample per sec-

ond – putting the additional power consumption from sampling in the

incorrect order on par with the power costs of running the radio or CPU

for an entire second.

Similarly, we note that there are certain kinds of aggregate functions

where the same kind of interleaving of sampling and processing can

also lead to a performance savings. Consider the query:
SELECT WINMAX(light,8s,8s)

FROM sensors
WHERE mag >x
SAMPLE INTERVAL 1s

In this query, the maximum of eight seconds worth of light readings

will be computed, but only light readings from sensors whose magen-

tometers read greater thanx will be considered. Interestingly, it turns

out that, unless thex predicate isvery selective, it will be cheaper to

evaluate this query by checking to see if each newlight reading is

greater than the previous reading and then applying the selection pred-

icate overmag, rather than first samplingmag. This sort of reordering,

which we callexemplary aggregate pushdowncan be applied to any ex-

emplary aggregate (e.g.MIN, MAX). Unfortunately, the selectivities of

exemplary aggregates are very hard to capture, especially for window

aggregates. We reserve the problem of ordering exemplary aggregates

in query optimization for future work.

4.3 Event Query Batching to Conserve Power

As a second example of the benefit of power-aware optimization, we

consider the optimization of the query:
ON EVENTe(nodeid)

SELECT a1
FROM sensors AS s
WHERE s.nodeid = e.nodeid
SAMPLE INTERVALd FOR k

This query will cause an instance of the internal query (SELECT ... )

to be startedevery timethe evente occurs. The internal query samples

results at everyd seconds for a duration ofk seconds, at which point it

stops running.

Note that, by the semantics formulated above, it is possible for multi-

ple instances of the internal query to be running at the same time. If

enough such queries are running simultaneously, the benefit of event-

based queries (e.g. not having to poll for results) will be outweighed

by the fact that each instance of the query consumes significant energy

sampling and delivering (independent) results. To alleviate the burden

of running multiple copies of the same identical query , we employ a

multi-query optimization technique based on rewriting. To do this, we

convert external events (of typee) into a stream of events, and rewrite

the entire set of independent internal queries as a sliding window join

betweenevents andsensors , with a window size ofk seconds on

the event stream, and no window on the sensor stream. For example:
SELECT s.a1

FROM sensors AS s, events AS e
WHERE s.nodeid = e.nodeid
AND e.type = e
AND s.time - e.time <= k AND s.time > e.time
SAMPLE INTERVALd

We execute this query by treating it as a join between a materialization

point of sizek onevents and thesensors stream. When anevent

tuple arrives, it is added to the buffer of events. When asensor tuple

s arrives, events older thank seconds are dropped from the buffer ands

is joined with the remaining events.

The advantage of this approach is that only one query runs at a time

no matter how frequently the events of typee are triggered. This of-

fers a large potential savings in sampling and transmission cost. At first

it might seem as though requiring the sensors to be sampled everyd

seconds irrespective of the contents of the event buffer would be pro-

hibitively expensive. However, the check to see if the the event buffer

is empty can be pushed before the sampling of the sensors, and can be

done relatively quickly.

Figure 5 shows the power tradeoff for event-based queries that have and

have not been rewritten. Rewritten queries are labeled asstream join

and non-rewritten queries asasynch events. We measure the cost in

mW of the two approaches using a numerical model of power costs for

idling, sampling and processing (including the cost to check if the event

queue is non-empty in the event-join case), but excluding transmission

costs to avoid complications of modeling differences in cardinalities

between the two approaches. We expect that the asynchronous approach

will generally transmit many more results. We varied the sample rate

and duration of the inner query, and the frequency of events. We chose

the specific parameters in this plot to demonstrate query optimization

tradeoffs; for much faster or slower event rates, one approach tends to

always be preferable.

For very low event rates (fewer than 1 per second), the asynchronous

events approach is sometimes preferable due to the extra overhead of

empty-checks on the event queue in the stream-join case. However, for

faster event rates, the power cost of this approach increases rapidly as

independent samples are acquired for each event that few seconds. In-

creasing the duration of the inner query increases the cost of the asyn-

chronous approach as more queries will be running simultaneously. The

maximum absolute difference (of about .8mW) is roughly comparable

to 1/4 the power cost of the CPU or radio.
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Figure 5: The cost of processing event-based queries as asynchronous

events versus joins.

Finally, we note that there is a subtle semantic change introduced by this

rewriting. The initial formulation of the query caused samples in each

of the internal queries to be produced relative to the time that the event

fired: for example, if evente1 fired at timet, samples would appear at

time t + d, t + 2d, .... If a later evente2 fired at timet + i, it would

produce a different set of samples at timet+ i+d, t+ i+2d, .... Thus,

unlessi were equal tod (i.e. the events werein phase), samples for the

two queries would be offset from each other by up tod seconds. In the

rewritten version of the query, there is only one stream of sensor tuples

which is shared by all events.

In many cases, users may not care that tuples are out of phase with

events. In some situations, however, phase may be very important. In

such situations, one way the system could improve the phase accuracy

of samples while still rewriting multiple event queries into a single join

is via oversampling, or acquiring some number of (additional) samples

everyd seconds. The increased phase accuracy of oversampling comes

at an increased cost of acquiring additional samples (which may still

be less than running multiple queries simultaneously.) For now, we

simply allow the user to specify that a query must be phase-aligned by

specifyingON ALIGNED EVENTin the event clause.

Thus, we have shown that there are several interesting optimization is-

sues in ACQP systems; first, the system must properly order sampling,

selection, and aggregation to be truly low power. Second, for frequent

event-based queries, rewriting them as a join between an event stream

and thesensors stream can significantly reduce the rate at which a

sensor must acquire samples.

5 Power Sensitive Dissemination and Routing

After the query has been optimized, it is disseminated into the network;

dissemination begins with a broadcast of the query from the root of the

network. As each sensor hears the query, it must if decide the query

applies locally and/or needs to be broadcast to its children in the rout-

ing tree. We say a queryq appliesto a noden if there is a non-zero

probability thatn will produce results forq. Deciding where a par-

ticular query should run is an important ACQP-related decision. Al-

though such decisions occur in other distributed query processing envi-

ronments, the costs of incorrectly initiating queries in ACQP environ-

ments like TinyDB can be unusually high, as we will show.

If a query does not apply at a particular node, and the node does not

have any children for which the query applies, then the entire subtree

rooted at that node can be excluded from the query, saving the costs of

disseminating, executing, and forwarding results for the query across

several nodes, significantly extending the node’s lifetime.

Given the potential benefits of limiting the scope of queries, the chal-

lenge is to determine when a node or its children need not participate in

a particular query. One common situation arises with constant-valued

attributes (e.g. nodeid or location in a fixed-location network) with a se-

lection predicate that indicates the node need not participate. Similarly,

if a node knows that none of its children will ever satisfy the value of

some selection predicate, say because they have constant attribute val-

ues outside the predicate’s range, it need not forward the query down

the routing tree. To maintain information about child attribute values ,

we propose the use of asemantic routing tree(SRT). We describe the

properties of SRTs in the next section, and briefly outline how they are

created and maintained.

5.1 Semantic Routing Trees

An SRT is a routing tree (similar to the tree discussed in Section 2.2

above) designed to allow each node to efficiently determine if any of

the nodes below it will need to participate in a given query over some

constant attributeA. Traditionally, in sensor networks, routing tree con-

struction is done by having nodes pick a parent with the most reliable

connection to the root (highestlink quality.) With SRTs, we argue that

the choice of parent should include some consideration of semantic

properties as well. In general, SRTs are most applicable in situations

in which there are several parents of comparable link quality. A link-

quality-based parent selection algorithm, such as the one described in

[42], should be used in conjunction with the SRT to prefilter the set of

parents made available to the SRT.

Conceptually, an SRT is an index overA that can be used to locate nodes

that have data relevant to the query. Unlike traditional indices, however,

the SRT is an overlay on the network. Each node stores a single unidi-

mensional interval representing the range ofA values beneath each of

its children.6 When a queryq with a predicate overA arrives at a node

n, n checks to see if any child’s value ofA overlaps the query range of

A in q. If so, it prepares to receive results and forwards the query. If

no child overlaps, the query is not forwarded. Also, if the query also

applies locally (whether or not it also applies to any children)n begins

executing the query itself. If the query does not apply atn or at any of

its children, it is simply forgotten.

Building an SRT is a two phase process: first theSRT build requestis

flooded (re-transmitted by every mote until all motes have heard the re-

quest) down the network. This request includes the name of the attribute

A over which the tree should be built. As a request floods down the net-

work, a noden may have several possible choices of parent, since, in

general, many nodes in radio range may be closer to the root. Ifn has

children, it forwards the request on to them and waits until they reply.

If n has no children, it chooses a nodep from available parents to be

its parent, and then reports the value ofA to p in a parent selection

message. If n doeshave children, it records the value ofA along with

the child’s id. When it has heard from all of its children, it chooses a

6A natural extension to SRTs would be to store multiple intervals at each node.
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parent and sends a selection message indicating the range of values of

A which it and its descendents cover. The parent records this interval

with the id of the child node and proceeds to choose its own parent in

the same manner, until the root has heard from all of its children.

Figure 6 shows an SRT over the latitude. The query arrives at the root,

is forwarded down the tree, and then only the gray nodes are required to

participate in the query (note that node 3 must forward results for node

4, despite the fact that its own location precludes it from participation.)
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Figure 6: A semantic routing tree in use for a query. Gray arrows in-

dicate flow of the query down the tree, gray nodes must produce or

forward results in the query.

5.2 Maintaining SRTs

Even though SRTs are limited to constant attributes, some SRT main-

tenance must occur. In particular, new nodes can appear, link qualities

can change, and existing nodes can fail.

Node appearance and link quality change can both require a node to

switch parents. To do this, it sends a parent selection message to its

new parent,n. If this message changes the range ofn’s interval, it

notifies its parent; in this way, updates can propagate to the root of the

tree.

To handle the disappearance of a child node, parents associate anactive

query idandlast epochwith every child in the SRT (recall that an epoch

is the period of time between successive samples.) When a parentp

forwards a queryq to a childc, it setsc’s active query id to the id ofq

and sets its last epoch entry to 0. Every timep forwards or aggregates a

result forq from c, it updatesc’s last epoch with the epoch on which the

result was received. Ifp does not hearc for some number of epochst, it

assumesc has moved away, and removes its SRT entry. Then,p sends

a request asking its remaining children retransmit their ranges. It uses

this information to construct a new interval. If this new interval differs

in size from the previous interval,p sends a parent selection message

up the routing tree to reflect this change.

Finally, we note that, by using these maintenance rules proposed, it

is possible to support SRTs over non-constant attributes, although if

those attributes change quickly, the cost of propagating changes in child

intervals could be prohibitive.

5.3 Evaluation of Benefit of SRTs

The benefit that an SRT provides is dependent on the quality of the

clustering of children beneath parents. If the descendents of some node

n are clustered around the value of the index attribute atn, then a query

that applies ton will likely also apply to its descendents. This can be

expected for geographic attributes, for example, since network topology

is correlated with geography.

We study three policies for SRT parent selection. In the first,random

approach, each node picks a random parent from the nodes with which

it can communication reliably. In the second,closest-parentapproach,

each parent reports the value of its index attribute with the SRT-build

request, and children pick the parent whose attribute value is closest

to their own. In theclusteredapproach, nodes select a parent as in

the closest-parent approach, except, if a node hears a sibling node send

a parent selection message, itsnoopson the message to determine its

siblings parent and value. It then picks its own parent (which could be

the same as one of its siblings) to minimize spread of attribute values

underneath all of its available parents.

We studied these policies in a simple simulation environment – nodes

were arranged on annxn grid and were asked to choose a constant

attribute value from some distribution (which we varied between exper-

iments.) We used a perfect (lossless) connectivity model where each

node could talk to its immediate neighbors in the grid (so routing trees

weren nodes deep), and each node had 8 neighbors (with 3 choices of

parent, on average.) We compared the total number of nodes involved in

range queries of different sizes for the three SRT parent selection poli-

cies to thebest-caseapproach and theno SRTapproach. Thebest-case

approach would only result if exactly those nodes that overlapped the

range predicate were activated, which is not possible in our topologies

but provides a convenient lower bound. In theno SRTapproach, all

nodes participate in each query.

We experimented with a number of sensor value distributions; we re-

port on two here. In therandomdistribution, each constant attribute

value was randomly and uniformly selected from the interval [0,1000].

In the geographicdistribution, (one-dimensional) sensor values were

computed based on a function of sensor’s x and y position in the grid,

such that a sensor’s value tended to be highly correlated to the values of

its neighbors.

Figure 7 shows the number of nodes which participate in queries over

variably-sized query intervals (where the interval size is shown on the

X axis) of the attribute space in a 20x20 grid. The interval for queries

was randomly selected from the uniform distribution. Each point in

the graph was obtained by averaging over five trials for each of the

three parent selection policies in each of the sensor distributions (for a

total of 30 experiments). In each experiment, an SRT was constructed

according to the appropriate policy and sensor value distribution. Then,

for each interval size, the average number of nodes participating in 100

randomly constructed queries of the appropriate size was measured.

For both distributions, the clustered approach was superior to other SRT

algorithms, beating the random approach by about 25% and the closest

parent approach by about 10% on average. With the geographic distri-

bution, the performance of the clustered approach is close to optimal:

for most ranges, all of the nodes in the range tend to be co-located, so

few intermediate nodes are required to relay information for queries in

which they themselves are not participating. This simulation is admit-

tedly optimistic, since geography and topology are perfectly correlated
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Figure 7: Number of nodes participating in range queries of different sizes for different parent selection policies in a semantic routing tree (20x20

grid, 400 sensors, each point average of 500 queries of the appropriate size.)

in our experiment. Real sensor network deployments show significant

but not perfect correlation [16].

It is a bit surprising that, even for a random distribution of sensor values,

the closest-parent and clustered approaches are substantially better than

the random-parent approach. The reason for this is that these techniques

reduce the spread of sensor values beneath parents, thereby reducing the

probability that a randomly selected range query will require a particu-

lar parent to participate.

As the previous results show, the benefit of using an SRT can be substan-

tial. There are, however, maintenance and construction costs associated

with SRTs; as discussed above. Construction costs are comparable to

those in conventional sensor networks (which also have a routing tree),

but slightly higher due to the fact that parent selection messages are ex-

plicitly sent, whereas parents do not always require confirmation from

their children in other sensor network environments.

5.4 SRT Summary

SRTs provide an efficient mechanism for disseminating queries and col-

lecting query results for queries over constant attributes. For attributes

that are highly correlated amongst neighbors in the routing tree (e.g.

location), SRTs can reduce the number of nodes that must disseminate

queries and forward the continuous stream of results from children by

nearly an order of magnitude.

6 Processing Queries

Once queries have been disseminated and optimized, the query proces-

sor begins executing them. Query execution is straightforward, so we

describe it only briefly. The remainder of the section is devoted to the

ACQP-related issues of prioritizing results and adapting sampling and

delivery rates. We present simple schemes for prioritizing data in se-

lection queries, briefly discuss prioritizing data in aggregation queries,

and then turn to adaptation. We discuss two situations in which adapta-

tion is necessary: when the radio is highly contented and when power

consumption is more rapid than expected.

6.1 Query Execution

Query execution consists of a simple sequence of operations at each

node during every epoch: first, nodes sleep for most of an epoch; then

they wake, sample sensors and apply operators to data generated locally

and received from neighbors, and then deliver results to their parent. We

(briefly) describe ACQP-relevant issues in each of these phases.

Nodes sleep for as much of each epoch as possible to minimize power

consumption. They wake up only to sample sensors and relay and de-

liver results. Because nodes are time synchronized, they all sleep and

wake up at the same time, ensuring that results will not be lost as a re-

sult of a parent sleeping when a child tries to propagate a message. The

amount of time,tawake that a sensor node must be awake to success-

fully accomplish the latter three steps above is largely dependent on the

number of other nodes transmitting in the same radio cell, since only a

small number of messages per second can be transmitted over the single

shared radio channel.

TinyDB uses a simple algorithm to scaletawake based on the neighbor-

hood size, the details of which we omit. Note, however, that there are

situations in which a node will be forced to drop or combine results as a

result of the eithertawake or the sample interval being too short to per-

form all needed computation and communication. We discuss policies

for choosing how to aggregate data and which results to drop in the next

subsection.

Once a node is awake, it begins sampling and filtering results according

to the plan provided by the optimizer. Samples are taken at the appropri-

ate (current) sample rate for the query, based on lifetime computations

and information about radio contention and power consumption (see

Section 6.3 for more information on how TinyDB adapts sampling in

response to variations during execution.) Filters are applied and results

are routed to join and aggregation operators further up the query plan.

For aggregation queries across nodes, we adopt the approach of TAG

[31], although TAG does not support temporal aggregates but only ag-

gregates of values from different nodes produced in the same epoch.

The basic approach used in both TAG and TinyDB is to compute apar-

tial state recordat each intermediate node in the routing topology. This

record represents the partially evaluated aggregation of local sensor val-

ues with sensor values received from child nodes as they flow up the

routing tree. The benefit of doing this is that a great deal less data is

transmitted than when all sensors’ values are sent to the root of the net-

work to be aggregated together.

Finally, we note that in event-based queries, theON EVENTclause

must be handled specially. When an event fires on a node, that node
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disseminates the query, specifying itself as the query root. This node

collects query results, and delivers them to the basestation or a local

materialization point.

6.2 Prioritizing Data Delivery

Once results have been sampled and all local operators have been ap-

plied, they are enqueued onto a radio queue for delivery to the node’s

parent. This queue contains both tuples from the local node as well as

tuples that are being forwarded on behalf of other nodes in the net-

work. When network contention and data rates are low, this queue

can be drained faster than results arrive. However, because the num-

ber of messages produced during a single epoch can vary dramatically,

depending on the number of queries running, the cardinality of joins,

and the number of groups and aggregates, there are situations when the

queue will overflow. In these situations, the system must decide if it

should try to retransmit this tuple, re-enqueue this tuple and try to send

a different tuple, combine this tuple with some other tuple for the same

query, or simply discard the tuple.

The ability to make runtime decisions about the value of an individual

data item is central to ACQP systems, because the cost of acquiring

and delivering data is high, and because of these situations where the

rate of data items arriving at a node will exceed the maximum delivery

rate. A simple conceptual approach for making such runtime decisions

is as follows: whenever the system is ready to deliver a tuple, send

the result that will most improve the “quality” of the answer that the

user sees. Clearly, the proper metric for quality will depend on the ap-

plication: for a raw signal, root-mean-square (RMS) error is a typical

metric. For aggregation queries, minimizing the confidence intervals of

the values of group records could be the goal [38]. In other applications,

users may be concerned with preserving frequencies, receiving statisti-

cal summaries (average, variance, or histograms), or maintaining more

tenuous qualities such as signal “shape”.

Our goal is not to fully explore the spectrum of techniques available in

this space. Instead, we have implemented several policies in TinyDB

to illustrate that substantial quality improvements are possible given a

particular workload and quality metric. Generalizing concepts of qual-

ity and implementing and exploring more sophisticated prioritization

schemes remains an area of future work.

There is a large body of related work on approximation and compression

schemes for streams in the database literature (e.g. [17, 9]), although

these approaches typically focus on the problem of building histograms

or summary structures over the streams rather than trying to preserve

the (in order) signal as best as possible, which is the goal we tackle

first. Algorithms from signal processing, such as Fourier analysis and

wavelets are likely applicable, although the extreme memory and pro-

cessor limitations of our devices and the online nature of our problem

(e.g. choosing which tuple in an overflowing queue to evict) make it

non-obvious how to apply them.

We begin with a comparison of three simple prioritization schemes,

naive, winavg, and delta for simple selection queries. In thenaive

scheme no tuple is considered more valuable than any other, so the

queue is drained in a FIFO manner and tuples are dropped if they do

not fit in the queue.

The winavg scheme works similarly, except that instead of dropping

results when the queue fills, the two results at the head of the queue are

averaged to make room for new results. Since the head of the queue is

now an average of multiple records, we associate a count with it.

In the delta scheme, a tuple is assigned an initial score relative to its

difference from the most recent (in time) value successfully transmitted

from this node, and at each point in time, the tuple with the highest score

is delivered. The tuple with the lowest score is evicted when the queue

overflows. Out of order delivery (in time) is allowed. This scheme re-

lies on the intuition that the largest changes are probably interesting. It

works as follows: when a tuplet with timestampT is initially enqueued

and scored, we mark it with the timestampR of this most recently de-

livered tupler. Since tuples can be delivered out of order, it is possible

that a tuple with a timestamp betweenR andT could be delivered next

(indicating thatr was delivered out of order), in which case the score

we computed fort as well as itsR timestamp are now incorrect. Thus,

in general, we must rescore some enqueued tuples after every delivery.

We compared these three approaches on a single mote running TinyDB.

To measure their effect in a controlled setting, we set the sample rate

to be a fixed numberK faster than the maximum delivery rate (such

that 1 of everyK tuples was delivered, on average) and compared their

performance against several predefined sets of sensor readings (stored

in the EEPROM of the device.) In this case, delta had a buffer of 5

tuples; we performed reordering of out of order tuples at the basesta-

tion. To illustrate the effect of winavg and delta, Figure 8 shows how

delta and winavg approximate a high-periodicity trace of sensor read-

ings generated by a shaking accelerometer (we omit naive due to space

constraints.) Notice that delta is considerably closer in shape to the orig-

inal signal in this case, as it is tends to emphasize extremes, whereas

average tends to dampen them.
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Figure 8: An acceleration signal (top) approximated by a delta (middle)

and an average (bottom), K=4.

We also measured RMS error for this signal as well as two others: a

square wave-like signal from a light sensor being covered and uncov-

ered, and a slow sinusoidal signal generated by moving a magnet around

a magnetometer. The error for each of these signals and techniques is

shown in Table 4. Although delta appears to match the shape of the

acceleration signal better, its RMS value is about the same as average’s

(due to the few peaks that delta incorrectly merges together.) Delta out-
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performs either other approach for the fast changing step-functions in

the light signal because it does not smooth edges as much as average.

Accel Light (Step) Magnetometer (Sinusoid)

Winavg 64 129 54

Delta 63 81 48

Naive 77 143 63

Table 4: RMS Error for Different Prioritization Schemes and Signals

(1000 Samples, Sample Interval = 64ms)

We omit a discussion of prioritization policies for aggregation queries.

TAG [31] discusses several snooping-based techniques unique to sensor

networks that can be used to priortize aggregation queries. There is also

significant related work on using wavelets and histograms to approxi-

mate distributions of aggregate queries when there are many groups, for

example [17, 9]. These techniques are applicable in sensor networks as

well, although we expect that the number of groups will be small (e.g.

at most tens or hundreds), so they may be less valuable.

Thus, we have illustrated some examples where prioritization of results

can be used improve the overall quality of that data that are transmitted

to the root when some results must be dropped or aggregated. Choosing

the proper policies to applyin general, and understanding how various

existing approximation and prioritization schemes map into ACQP is an

important future direction.

6.3 Adapting Rates and Power Consumption

We saw in the previous sections how TinyDB can exploit query seman-

tics to transmit the most relevant results when limited bandwidth or

power is available. In this section, we discuss selecting and adjust-

ing sampling and transmission rates to limit the frequency of network-

related losses and fill rates of queues. This adaptation is the other half of

the runtime techniques in ACQP: because the systemcanadjust rates,

significant reductions can be made in the frequency with which data

prioritization decisions must be made. These techniques are simply not

available in non-acquisitional query processing systems.

When initially optimizing a query, TinyDB’s optimizer chooses a trans-

mission and sample rate based on current network load conditions, and

requested sample rates and lifetimes. However, static decisions made at

the start of query processing may not be valid after many days running

the same continuous query. Just as adaptive query processing systems

like Tukwila and Eddy [26, 6] dynamically reorder operators as the exe-

cution environment changes, TinyDB must react to changing conditions

– however, unlike in previous adaptive query processing systems, fail-

ure to adapt in TinyDB can bring the system to its knees, reducing data

flow to a trickle or causing the system to severely miss power budget

goals.

We study the need for adaptivity in two contexts: network contention

and power consumption. We first examine network contention. Rather

than simply assuming that a specific transmission rate will result in a

relatively uncontested network channel, TinyDB monitors channel con-

tention and adaptively reduces the number of packets transmitted as

contention rises. This backoff is very important: as the4 motesline

of Figure 9 shows, if several nodes try to transmit at high rates, the total

number of packets delivered is substantially less than if each of those

nodes tries to transmit at a lower rate. Compare this line with the per-

formance of a single node (where there is no contention) – a single node

does not exhibit the same falling off because there is no contention (al-

though the percentage of successfully delivered packets does fall off.)

Finally, the4 motes adaptiveline does not have the same precipitous

performance because it is able to monitor the network channel and adapt

to contention.

Note that the performance of the adaptive approach is slightly less than

the non-adaptive approach at 4 and 8 samples per second as backoff

begins to throttle communication in this regime. However, when we

compared the percentage of successful transmission attempts at 8 pack-

ets per second, the adaptive scheme achieves twice the success rate of

the non-adaptive scheme, suggesting the adaptation is still effective in

reducing wasted communication effort, despite the lower utilization.
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Figure 9: Per-mote sample rate versus aggregate delivery rate.

The problem with reducing transmission rate is that it will rapidly cause

the network queue to fill, forcing TinyDB to discard tuples using the se-

mantic techniques for victim selection presented in Section 6.2 above.

We note, however, that had TinyDB not chosen to slow its transmis-

sion rate, fewer total packets would have been delivered. Furthermore,

by choosing which packets to drop using semantic information derived

from the queries (rather than losing some random sample of them),

TinyDB is able to substantially improve the quality of results delivered

to the end user. To illustrate this in practice, we ran a selection query

over four motes running TinyDB, asking them each to sample data at 16

samples per second, and compared the quality of the delivered results

using an adaptive-backoff version of our delta approach to results over

the same dataset without adaptation or result prioritization. We show

here traces from two of the nodes on the left and right of Figure 10. The

top plots show the performance of the adaptive delta, the middle plots

show the non-adaptive case, and the bottom plots show the the origi-

nal signals (which were stored in EEPROM to allow repeatable trials.)

Notice that the delta scheme does substantially better in both cases.

6.3.1 Measuring Power Consumption

We now turn to the problem of adapting tuple delivery rate to meet spe-

cific lifetime requirements in response to incorrect sample rates com-

puted at query optimization time (see Section 3.3). We first note that,

using similar computations to those shown Section 3.3, it is possible to

compute apredicted battery voltagefor a timet seconds into processing

a query. We omit the calculation due to space constraints.

The system can then compare its current voltage to this predicted volt-
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Figure 10: Comparison of delivered values (bottom) versus actual read-

ings for from two motes (left and right) sampling at 16 packets per sec-

ond and sending simulataneously. Four motes were communicating si-

multaneously when this data was collected.

age. By assuming that voltage decays linearly (see Figure 4 for em-

pirical evidence of this property), we canre-estimatethe power con-

sumption characteristics of the device (e.g. the costs of sampling, trans-

mitting, and receiving) and then re-run our lifetime calculation. By

re-estimating these parameters, the system can ensure that this new life-

time calculation tracks the actual lifetime more closely.

Although this calculation and re-optimization are straightforward, they

serve an important role by allowing sensors in TinyDB to satisfy occa-

sional ad-hoc queries and relay results for other sensors without com-

promising the lifetime goals of long running monitoring queries.

Finally, we note that incorrect measurements of power consumption

may also be due to incorrect estimates of the cost of various phases of

query processing, or may be as a result of incorrect selectivity estima-

tion. We cover both by tuning sample rate. As future work, we intend

to explore adaptation of optimizer estimates and ordering decisions (in

the spirit of other adaptive work like Eddies [6]) and the effect of fre-

quency of re-estimation on lifetime (currently, in TinyDB, re-estimation

can only be triggered by an explict request from the user.)

7 Summary

This completes our discussion of the novel issues and techniques that

arise when taking an acquisitional perspective on query processing. In

summary, we first discussed important aspects of an acqusitional query

language, introducing event and lifetime clauses for controlling when

and how often sampling occurs. We then discussed query optimization

with the associated issues of modeling sampling costs and ordering of

sampling operators. We showed how event-based queries can be rewrit-

ten as joins between streams of events and sensor samples. Once queries

have been optimized, we demonstrated the use of semantic routing trees

as a mechanism for efficiently disseminating queries and collecting re-

sults. Finally, we showed the importance of priortizing data according

to quality and discussed the need for techniques to adapt the transmis-

sion and sampling rates of an ACQP system.

8 Related Work

There has been some recent publication in the database and systems

communities on query processing-like operations in sensor networks

[25, 31, 36, 30, 43]. As mentioned above, these papers noted the impor-

tance of power sensitivity. Their predominant focus to date has been on

in-networkprocessing – that is, the pushing of operations, particularly

selections and aggregations, into the network to reduce communication.

We too endorse in-network processing, but believe that, for a sensor net-

work system to be truly power sensitive, acqusitional issues of when,

where, and in what order to sample and which samples to process must

be considered. To our knowledge, no prior work addresses these issues.

There is a small body of work related to query processing in mobile

environments [24, 2]. This work is concerned with laptop-like devices

that are carried with the user, can be readily recharged every few hours,

and, with the exception of a wireless network interface basically have

the capabilities of a wired, powered PC. Lifetime-based queries, notions

of sampling the associated costs, and runtime issues regarding rates and

contention are not considered. Many of the proposed techniques, as well

as more recent work on moving object databases (such as [41]) focus on

the highly mobile nature of devices, a situation we are not (yet) dealing

with, but which could certainly arise in sensor networks.

Power sensitive query optimization was proposed in [1], although, as

with the previous work, the focus is on optimizing costs in tradtional

mobile devices (e.g. laptops and palmtops), so concerns about the cost

and ordering of sampling do not appear. Furthermore, laptop-style de-

vices typically do not offer the same degree of rapid power-cycling that

is available on embedded platforms like motes. Even if they did, their

interactive, user oriented nature makes it undesirable to turn off dis-

plays, network interfaces, etc. because they are doing more than simply

collecting and processing data, so there are many fewer power optimiza-

tions that can be applied.

Building an SRT is analogous to building an index in a conventional

database system. Due to the resource limitations of sensor networks,

the actual indexing implementations are quite different. See [27] for

a survey of relevant research on distributed indexing in conventional

database systems. There is also some similarity to indexing in peer-

to-peer systems [4]. However, peer-to-peer systems differ in that they

are inexact and not subject to the same paucity of communications or

storage infrastructure as sensor networks, so algorithms tend to be stor-

age and communication heavy. Similar indexing issues also appear in

highly mobile environments (like [41, 24]), but this work relies on a

centralized location servers for tracking recent positions of objects.

The observation that interleaving the fetching of attributes and applica-

tion of operators also arises in the context of compressed databases [11],

as decompression effectively imposes a penalty for fetching an individ-

ual attribute, so it is beneficial to apply selections and joins on already

decompressed or easy to decompress attributes.

There is a large body of work on event-based query processing in the

active database literature. Languages for event composition and sys-

tems for evaluating composite events, such as [10], as well as systems

for efficiently determining when an event has fired, such as [19] could

(possibly) be useful in TinyDB.
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Approximate and best effort caches [35], as well as systems for online-

aggregation [38] and approximate [17] and stream query processing

[34, 7] include some notion of data quality. Most of this other work

is focused on quality with respect to summaries, aggregates, or stale-

ness of individual objects, whereas we focus on quality as a measure of

fidelity to the underlying continuous signal. Aurora [7] mentions a need

for this kind of metric, but proposes no specific approaches.

9 Conclusions and Future Work

Acquisitional query processing provides a framework for addressing is-

sues of when, where, and how often data is sampled and which data

is delivered in distributed, emdedded sensing environments. Although

other research has identified the opportunities for query processing in

sensor networks, this work is the first to discuss these fundamental is-

sues in an acquisitional framework.

We identified several opportunities for future research. We are currently

actively pursuing two of these: first, we are exploring how query opti-

mizer statistics change in acqusitional environments and studying the

role of online re-optimization in sample rate and operator orderings in

response to bursts of data or unexpected power consumption. Second,

we are pursuing more sophisticated priortization schemes, like wavelet

analysis, that can capture salient properties of signals other than large

changes (as our delta mechanism does) as well as mechanisms to allow

users to express their priortization preferences.

We believe that ACQP notions are of critical importance for preserv-

ing the longevity and usefulness of any deployment of battery powered

sensing devices, such as those that are now appearing in biological pre-

serves, roads, businesses, and homes. Without appropriate query lan-

guages, optimization models, and query dissemination and data delivery

schemes that are cognisant of semantics and the costs and capabilities of

the underlying harware the success of such deployments will be limited.
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