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Abstract. Sensor networks are being widely deployed for measurement, 
detection and surveillance applications. In these new applications, users issue 
long-running queries over a combination of stored data and sensor data. Most 
existing applications rely on a centralized system for collecting sensor data. 
These systems lack flexibility because data is extracted in a predefined way; 
also, they do not scale to a large number of devices because large volumes of 
raw data are transferred regardless of the queries that are submitted. In our new 
concept of sensor database system, queries dictate which data is extracted from 
the sensors. In this paper, we define a model for sensor databases. Stored data 
are represented as relations while sensor data are represented as time series. 
Each long-running query formulated over a sensor database defines a persistent 
view, which is maintained during a given time interval. We also describe the 
design and implementation of the COUGAR sensor database system. 

1 Introduction 

The widespread deployment of sensors is transforming the physical world into a 
computing platform.  Modern sensors not only respond to physical signals to produce 
data, they also embed computing and communication capabilities. They are thus able 
to store, process locally and transfer the data they produce. Still, at the heart of each 
sensor, a set of signal processing functions transform physical signals such as heat, 
light, sound, pressure, magnetism, or a particular motion into sensor data, i.e., 
measurements of physical phenomena as well as detection, classification or tracking 
of physical objects. 

Applications monitor the physical world by querying and analyzing sensor data. 
Examples of monitoring applications include supervising items in a factory 
warehouse, gathering information in a disaster area, or organizing vehicle traffic in a 
large city [6]. Typically, these applications involve a combination of stored data (a list 
of sensors and their related attributes, such as their location) and sensor data. We call 
these sensor databases. This paper focuses on sensor query processing – the design, 
algorithms, and implementations used to run queries over sensor databases. The 
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concepts developed in this paper were developed under the DARPA Sensor 
Information Technology (SensIT) program [22].  
We define a sensor query as a query expressed over a sensor database. A typical 
monitoring scenario involves aggregate queries or correlation queries that give a 
bird’s eye view of the environment as well as queries zooming on a particular region 
of interest. Representative sensor queries are given below in Example 1.  
Example 1 (Factory Warehouse): Each item of a factory warehouse has a stick-on 
temperature sensor attached to it. Sensors are also attached to walls and embedded in 
floors and ceilings. Each sensor provides two signal-processing functions: (a) 
getTemperature() returns the measured temperature at regular intervals, and (b) 
detectAlarmTemperature(threshold) returns the temperature whenever it crosses a 
certain threshold. Each sensor is able to communicate this data and/or to store it 
locally. The sensor database stores the identifier of all sensors in the warehouse 
together with their location and is connected to the sensor network. The warehouse 
manager uses the sensor database to make sure that items do not overheat. Typical 
queries that are run continuously include: 
− Query 1: “Return repeatedly the abnormal temperatures measured by all sensors.” 
− Query 2: “Every minute, return the temperature measured by all sensors on the 

third floor”. 
− Query 3: “Generate a notification whenever two sensors within 5 yards of each 

other simultaneously measure an abnormal temperature”.  
− Query 4: “Every five minutes retrieve the maximum temperature measured over 

the last five minutes”. 
− Query 5: “Return the average temperature measured on each floor over the last 10 

minutes”.  
These example queries have the following characteristics: 
• Monitoring queries are long running. 
• The desired result of a query is typically a series of notifications of system activity 

(periodic or triggered by special situations). 
• Queries need to correlate data produced simultaneously by different sensors. 
• Queries need to aggregate sensor data over time windows. 
• Most queries contain some condition restricting the set of sensors that are involved 

(usually geographical conditions). 
As in relational databases, queries are easiest to express at the logical level. Queries 
are formulated regardless of the physical structure or the organization of the sensor 
network. The actual structure and population of a sensor network may vary over the 
lifespan of a query. 

Clearly, there are similarities with relational database query processing. Indeed, 
most applications combine sensor data with stored data. However, the features of 
sensor queries described here do not lend themselves to easy mapping to relational 
databases and sensor data is different from traditional relational data (since it is not 
stored in a database server and it varies over time). 

There are two approaches for processing sensor queries: the warehousing approach 
and the distributed approach. The warehousing approach represents the current state-
of-the-art. In the warehousing approach, processing of sensor queries and access to 
the sensor network are separated.  (The sensor network is simply used by a data 



collection mechanism.) The warehousing approach proceeds in two steps. First, data 
is extracted from the sensor network in a predefined way and is stored in a database 
located on a unique front-end server. Subsequently, query processing takes place on 
the centralized database. The warehousing approach is well suited for answering 
predefined queries over historical data. 

The distributed approach has been described in [2][3] and is the focus of this paper. 
In the distributed approach, the query workload determines the data that should be 
extracted from sensors. The distributed approach is thus flexible – different queries 
extract different data from the sensor network – and efficient – only relevant data are 
extracted from the sensor network.  In addition, the distributed approach allows the 
sensor database system to leverage the computing resources on the sensor nodes: a 
sensor query can be evaluated at the front-end server, in the sensor network, at the 
sensors, or at some combination of the three.  

In this paper, we describe the design space for a sensor database system and 
present the choices we have made in the implementation of the Cornell COUGAR 
system. This paper makes the following contributions: 
1. We build on the results of Seshadri et al. [19] to define a data model and long-

running queries semantics for sensor databases. A sensor database mixes stored 
data and sensor data. Stored data are represented as relations while sensor data are 
represented as time series. Each long-running query defines a persistent view, 
which is maintained during a given time interval.  

2. We describe the design and implementation of the Cornell COUGAR sensor 
database system. COUGAR extends the Cornell PREDATOR object-relational 
database system. In COUGAR, each type of sensor is modeled as a new Abstract 
Data Type (ADT). Signal-processing functions are modeled as ADT functions that 
return sensor data. Long-running queries are formulated in SQL with little 
modifications to the language. To support the evaluation of long-running queries, 
we extended the query execution engine with a new mechanism for the execution 
of sensor ADT functions. The initial version of this system has been demonstrated 
at the Intel Computing Continuum Conference [7].  

Addressing these issues is a necessary first step towards a sensor database system. In 
addition, a sensor database system should account for sensor and communication 
failures; it should consider sensor data as measurements with an associated 
uncertainty not as facts; finally, it should be able to establish and run a distributed 
query execution plan without assuming global knowledge of the sensor network. We 
believe that these challenging issues can only be addressed once the data model and 
internal representation issues have been solved.  

2 A Model for Sensor Database Systems 

In this section, we introduce definitions for sensor databases and sensor queries. We 
build on existing work by Seshadri et al [19] to define a data model for sensor data 
and an algebra of operators to formulate sensor queries.  



2.1 Sensor Data 

A sensor database involves stored data and sensor data. Stored data include the set of 
sensors that participate in the sensor database together with characteristics of the 
sensors (e.g., their location) or characteristics of the physical environment. These 
stored data are best represented as relations. The question is: how to represent sensor 
data? First, sensor data are generated by signal processing functions. Second, the 
representation we choose for sensor data should facilitate the formulation of sensor 
queries (data collection, correlation in time, and aggregates over time windows). 

Note that time plays a central role. Possibly, signal processing functions return 
output repeatedly over time, and each output has a time-stamp. In addition, 
monitoring queries introduce constraints on the sensor data time-stamps, e.g., Query 3 
in Example 1 assumes that the abnormal temperatures are detected either 
simultaneously or within a certain time interval. Aggregates over time windows, such 
as Query 4 and 5, reference time explicitly. 

Given these constraints, we represent sensor data as time series. Our representation 
of sensor time series is based on the sequence model introduced by Seshadri et al. 
[19]. Informally, a sequence is defined as a 3-tuple containing a set of records R, a 
countable totally ordered domain O (called ordering domain – the elements of the 
ordering domain are referred to as positions) and an ordering of R by O. An ordering 
of a set of records R by an ordering domain O is defined as a relation between O and 
R, so that every record in R is associated with some position in O. Sequence operators 
are n-ary mappings on sequences; they operate on a given number of input sequences 
producing a unique output sequence. All sequence operators can be composed. 
Sequence operators include: select, project, compose (natural join on the position), 
and aggregates over a set of positions. Because of space limitation, we refer the reader 
to [4] for a formal definition of sensor time series 
We represent sensor data as a time series with the following properties: 
1. The set of records corresponds to the outputs of a signal processing function over 

time.  
2. The ordering domain is a discrete time scale, i.e. a set of time quantum; to each 

time quantum corresponds a position. In the rest of the paper, we use natural 
numbers as the time-series ordering domain. Each natural number represents the 
number of time units elapsed between a given origin and any (discrete) point in 
time. We assume that clocks are synchronized and thus all sensors share the same 
time scale. 

3. All outputs of the signal processing function that are generated during a time 
quantum are associated to the same position p. Note that, in case a sensor does not 
generate events during the time quantum associated to a position, the Null record is 
associated to that position. 

4. Whenever a signal processing function produces an output, the base sequence is 
updated at the position corresponding to the production time. Updates to sensor 
time series thus occur in increasing position order. 



2.2 Sensor Queries 

Sensor queries involve stored data and sensor data, i.e. relations and sequences.  We 
define a sensor query as an acyclic graph of relational and sequence operators. The 
inputs of a relational operator are base relations or the output of another relational 
operator; the inputs of a sequence operator are base sequences or the output of another 
sequence operator, i.e. relations are manipulated using relational operators and 
sequences are manipulated using sequence operators. There are three exceptions to 
this rule. Three operators allow combining relations and sequences: (a) the relational 
projection operator can take a sequence as input and project out the position attribute 
to obtain a relation, (b) a cross product operator can take as input a relation and a 
sequence to produce a sequence and (c) an aggregate operator can take a sequence as 
input and a grouping list that does not include the position attribute.  

Sensor queries are long running.  To each sensor query is associated a time interval 
of the form [O, O + T] where O is the time at which it is submitted and T is the 
number of time quantums (possibly 0) during which it is running. 

During the span of a long-running query, relations and sensor sequences might be 
updated. An update to a relation R can be an insert, a delete, or modifications of a 
record in R. An update to a sensor sequence S is the insertion of a new record 
associated to a position greater than or equal to all the undefined positions in S (see 
Section 3.1.1). Concretely, each sensor inserts incrementally the set of records 
produced by a signal processing function at the position corresponding to the 
production time. 

A sensor query defines a view that is persistent during its associated time interval. 
This persistent view is maintained to reflect the updates on the sensor database. In 
particular, the view is maintained to reflect the updates that are repeatedly performed 
on sensor time series. 

Jagadish et al. [13] showed that persistent views over relations and sequences 
could be maintained incrementally without accessing the complete sequences, given 
restrictions on the updates that are permitted on relations and sequences, and given 
restrictions on the algebra used to compose queries.  Informally, persistent views can 
be maintained incrementally if updates occur in increasing position order and if the 
algebra used to compose queries does not allow sequences to be combined using any 
relational operators. Both conditions hold in our definition of a sensor database. 

3 The COUGAR Sensor Database System 

In this section, we discuss the representation of sensor data, as well as the formulation 
and evaluation of sensor queries in the initial version of COUGAR. We discuss the 
limitations of this system and the conclusions that we have drawn.  

We have introduced in Section 2 a model of sensor database. We took a set of 
design decisions when implementing this model in the COUGAR system. We 
distinguish between the decisions we took concerning: 
1. User representation: How are sensors and signal processing functions modeled in 

the database schema? How are queries formulated? 



2. Internal representation: How is sensor data represented within the database 
components that perform query processing? How are sensor queries evaluated to 
provide the semantics of long-running queries? 

3.1 User Representation 

 
In COUGAR, signal-processing functions are represented as Abstract Data Type 
(ADT) functions. Today’s object-relational databases support Abstract Data Types 
that provide controlled access to encapsulated data through a well-defined set of 
functions [20]. We define a Sensor ADT for all sensors of a same type (e.g., 
temperature sensors, seismic sensors). The public interface of a Sensor ADT 
corresponds to the specific signal-processing functions supported by a type of sensor. 
An ADT object in the database corresponds to a physical sensor in the real world.  

Signal-processing functions are modeled as scalar functions. Repeated outputs of 
an active signal processing functions are not explicitly modeled as sequences but as 
the result of successive executions of a scalar function during the span of a long-
running query. This decision induced some limitation. Indeed, as we will see below, 
queries containing explicit time constraints (such as aggregates over time windows) 
cannot be expressed. 

Sensor queries are formulated in SQL with little modifications to the language. The 
‘FROM’ clause of a sensor query includes a relation whose schema contains a sensor 
ADT attribute (i.e., a collection of sensors). Expressions over sensor ADTs can be 
included in the ‘SELECT’ or in the ‘WHERE’ clause of a sensor query.  

The queries we introduced in Section 1 are formulated in COUGAR as follows. 
The simplified schema of the sensor database contains one relation R(loc point, floor 
int, s sensorNode), where loc is a point ADT that stores the coordinates of the sensor, 
floor is the floor where the sensor is located in the data warehouse and sensorNode is 
a Sensor ADT that supports the methods getTemp() and detectAlarmTemp(threshold), 
where threshold is the threshold temperature above which abnormal temperatures are 
returned. Both ADT functions return temperature represented as float. 
• Query 1: “Return repeatedly the abnormal temperatures measured by all sensors” 

SELECT R.s.detectAlarmTemp(100) 
FROM R 
WHERE $every(); 
The expression $every() is introduced as a syntactical construct to indicate that the 
query is long-running.  

• Query 2: “Every minute, return the temperature measured by all sensors on the 
third floor”. 
SELECT R.s.getTemp() 
FROM  R 
WHERE R.floor = 3 AND $every(60); 
The expression $every() takes as argument the time in seconds between successive 
outputs of the sensor ADT functions in the query. 

• Query3: “Generate a notification whenever two sensors within 5 yards of each 
other measure simultaneously an abnormal temperature”.  



SELECT R1s.detectAlarmTemp(100), R2.s. detectAlarmTemp (100) 
FROM R R1, R R2 
WHERE $SQRT($SQR(R1.loc.x – R2.loc.x) + $SQR( R1.loc.y – R2.loc.y)) < 5 
       AND R1.s > R2.s AND $every(); 
This formulation assumes that the system incorporates an equality condition on the 
time at which the temperatures are obtained from both sensors.  

Query 4 and Query 5 cannot be expressed in our initial version of COUGAR because 
aggregates over time windows are not supported.  

In COUGAR, the time interval associated with long-running queries is the interval 
between the instant the query is submitted and the instant the query is explicitly 
stopped.  

3.2 Internal Representation 

Query processing takes place on a database front-end while signal-processing 
functions are executed on the sensor nodes involved in the query.  The query 
execution engine on the database front-end includes a mechanism for interacting with 
remote sensors. On each sensor a lightweight query execution engine is responsible 
for executing signal processing functions and sending data back to the front-end. 

In COUGAR, we assume that there are no modifications to the stored data during 
the execution of a long-running query. Strict two-phase locking on the database front-
end ensures that this assumption is verified.  

The initial version of COUGAR does not consider a long-running query as a 
persistent view; the system only computes the incremental results that could be used 
to maintain such a view. These incremental results are obtained by evaluating sensor 
ADT functions repeatedly and by combining the outputs they produce over time with 
stored data.  

The execution of Sensor ADT functions is the central element of sensor queries 
execution. In the rest of the section, we show why the traditional execution of ADT 
functions (which is explained below) is inappropriate for sensor queries and we 
present the mechanisms we have implemented in COUGAR to evaluate sensor ADT 
functions. 

Problems with the Traditional ADT Functions Execution 
In most object-relational database systems, ADT functions are used to form 
expressions together with constants and variables. When an expression containing an 
ADT function is evaluated, a (local) function is called to obtain its return value. It is 
assumed that this return value is readily available on-demand. This assumption does 
not hold in a sensor database for the following reasons: 
1. Scalar sensor ADT functions incur high latency due to their location or because 

they are asynchronous; 
2. When evaluating long-running queries, sensor ADT functions return multiple 

outputs. 
To illustrate these problems, let us consider Query 1 in our example. One possible 
execution plan for Query 1 would be the following. For each temperature sensor in 
the relation R, the scalar function detectAlarmTemp(100) is applied.  



There is a serious flaw in this execution. First, the function detectAlarmTemp (100) 
is asynchronous, i.e. it returns its output after an arbitrary amount of time. While the 
system is requesting an abnormal temperature on the first sensor of the relation R, the 
other temperature sensors have not been yet been contacted. It may very well be that 
some temperature sensors could have detected temperatures greater than 100, while 
the system is blocked waiting for the output of one particular function.  

Second, during the span of a long-running query, detectAlarmTemp (100) might 
return multiple outputs. The evaluation plan we presented scans relation R once and 
thus does not respect the semantics of long running queries we have introduced in 
Section 2. 

Virtual Relations 
To overcome the problems outlined in the previous paragraph, we introduced a 
relational operator to model the execution of sensor ADT functions. This relational 
operator is a variant of a join between the relation that contains the sensor ADT 
attribute and the sensor ADT function represented in a tabular form. We call the 
tabular representation of a function a virtual relation.  

A virtual relation is a tabular representation of a method. A record in a virtual 
relation (called a virtual record) contains the input arguments and the output argument 
of the method it is associated with2. Such relations are called virtual because they are 
not actually materialized, as opposed to base relations, which are defined in the 
database schema.  

If a method M takes m arguments, then the schema of its associated virtual relation 
has m+3 attributes, where the first attribute corresponds to the unique identifier of a 
device (i.e., the identifier of an actual device ADT object), attributes 2 to m+1 
correspond to the input arguments of M, attribute m+2 corresponds to the output 
value of M and attribute m+3 is a time stamp corresponding to the point in time at 
which the output value is obtained. In our example Query 1, the virtual relation 
VRdetectAlarmTemp is defined for the Sensor ADT function detectAlarmTemp(). 
Since this function takes one input arguments, the virtual relation has four attributes: 
SensorId, Temp, Value, and TimeStamp, i.e., the identifier of the Sensor device that 
produces the data SensorId, the input threshold temperature Temp, the Value of the 
measured temperature and the associated TimeStamp. 

We observe the following: 
• A virtual relation is append-only: New records are appended to a virtual relation 

when the associated signal processing function returns a result. Records in a virtual 
relation are never updated or deleted. 

• A virtual relation is naturally partitioned across all devices represented by the same 
sensor ADT: A virtual relation is associated to a sensor ADT function, to each 
sensors of these type is associated a fragment of the virtual relation. The virtual 
relation is the union of all these fragments. 

The latter observation has an interesting consequence: a device database is internally 
represented as a distributed database. Virtual relations are partitioned across a set of 
devices. Base relations are stored on the database front-end. Distributed query 
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processing techniques are not implemented in the initial version of COUGAR; their 
design and integration is the main goal of COUGAR V2 that we are currently 
implementing. 

Query Execution Plan 
Virtual relations appear in the query execution plan at the same level as base relations. 
Base relations are accessed through (indexed) scans. Each virtual relation fragment is 
accessed on sensors using a virtual scan. A virtual scan incorporates in the query 
execution plan the propagation mechanism necessary to support long-running queries. 

Our notion of virtual scan over a virtual relation fragment is similar to the 
fetch_wait cursor over an active relation in the Alert database system [18]. A 
fetch_wait cursor provides a blocking read behavior. This fetch_wait cursor returns 
new records as they are inserted in the active relation and blocks when all records 
have been returned. A classical cursor would just terminate when all records currently 
in the relation have been returned.  

The join between a base relation and a virtual relation is basically a nested loop 
with a pipelined access to the virtual scans that encapsulate the execution of the 
sensor ADT function.  (Note that we make the simplifying assumption that arguments 
to the sensor ADT functions are constants.) Indeed, the sensor ADT function is 
applied with identical parameters on all sensors involved in the query. The algorithm 
is presented below. 

In: Base relation R, sensor ADT function f 

Out: join between relation R and virtual relation associated to f 

Initialize virtual scans for the virtual relation fragments 
associated to f on all sensors involved in the query 

FOREVER DO 

   Get next output from the sensor virtual scan 

   Find a matching sensor id in the base relation R 

   If match is found then return record 

ENDLOOP 

The incremental results produced by a virtual join are directly transmitted to the 
client, or they are pipelined to the root of the execution plan (as the outer child in a 
nested loop join for instance3). Consequently, queries with relational aggregates or 
‘ORDER BY’ clauses do not return an incremental result. Indeed, such queries 
require an operator to accumulate all the results produced by its children. With such 
operators no incremental results are produced before the query is stopped. 
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3.3  Conclusions 
Here are the conclusions that we have drawn from our experience with the initial 
version of COUGAR: 
1. Representing stored data as relations with an ADT attribute representing sensors 

and sensor data as the output of ADT functions is a natural way of representing a 
sensor database. 

2. Virtual joins are an effective way of executing ADT functions that do not return a 
value in a timely fashion (because they are often asynchronous, because they 
generally incur high latency or because they return multiple values over time).  

3. Representing all signal processing functions as scalar functions fails to capture the 
ordering of sensor data in time. As a result, queries involving aggregates over time 
windows or correlations are difficult to express. This problem has previously been 
identified in the context of financial data [21]. 

4 Related Work 

Two projects are representative of the efforts that are made to build wireless sensor 
network infrastructures: The WINS project at UCLA [17] and the Smart Dust project 
at UC Berkeley [14]. The model of sensor database that we introduce in Section 2 is 
applicable to both types of sensor networks. The COUGAR system is implemented on 
top of the WINS infrastructure. 

The goals of the DataSpace project at Rutgers University are quite similar to the 
goals of a sensor database system [9]. Imielinski et al. recognized the advantages of 
the distributed approach over the warehousing approach for querying physical 
devices. In a DataSpace, devices that encapsulate data can be queried, monitored and 
controlled. Network primitives are developed to guarantee that only relevant devices 
are contacted when a query is evaluated. We are currently integrating COUGAR with 
similar networking primitives, i.e., the Declarative Routing Protocol developed at 
MIT-LL [5], and the SCADDS diffusion-based routing developed at ISI [10]. Other 
related projects include the TELEGRAPH project at UC Berkeley [1], which studies 
adaptive query processing techniques, and the SAGRES project at the University of 
Washington [11], which explores the use of data integration techniques in the context 
of device networks. 

The environment of a sensor network with computing power at each node 
resembles a mobile computing environment [8]. Sensors differ from mobile hosts in 
that sensors only serve external requests but do not initiate requests themselves. Also, 
recent work on indexing moving objects, e.g. [16], is relevant in such environments. 
The techniques proposed however assume a centralized warehousing approach.  

Our definition of sensor queries bears similarities with the definition of continuous 
queries [23]. Continuous queries are defined over append-only relations with time-
stamps. For each continuous query, an incremental query is defined to retrieve all 
answers obtained in an interval of t seconds. The incremental query is issued 
repeatedly, every t seconds, and the union of the answers it provides constitute the 
answer to the continuous query. Instead of being used to maintain a persistent view, 



incremental results are directly returned to users. The answers returned by the initial 
prototype of COUGAR respect the continuous queries semantics.  

Time series can be manipulated in object-relational systems such as Oracle [16] or 
in array database systems such as KDB [13]. These systems do not support the 
execution of long-running queries over sequences.  

5 Conclusion 

We believe that sensor database systems are a promising new field for database 
research. We described a data model and long-running query semantics for sensor 
database systems where stored data are represented as relations and sensor data are 
represented as sequences. The version of the Cornell COUGAR system that we 
presented is a first effort towards such a sensor database system. The second version 
of COUGAR [4] improves on the initial prototype in that sequences are explicitly 
represented. This allows for more expressive sensor queries. In particular, queries 
containing aggregates over time windows can be expressed.  

This first generation of the Cornell COUGAR systems demonstrated that the 
application of database technology shows much promise for providing flexible and 
scalable access to large collections of sensors. It also helped us identify a set of 
challenging issues that we are addressing with our ongoing research: 
• Due to the large scale of a sensor network, it is highly probable that some of the 

sensors and some of the communication links will fail at some point during the 
processing of a long-running query.  We are studying how sensor database systems 
can adjust to communication failures and return a more accurate answer at the cost 
of increased response time and resource usage.  

• Sensor Data are measurements not facts. Indeed, to each value produced by a 
sensor is associated a probability that this value is correct. Often, sensor values 
correspond to continuous distributions, e.g. a normally distributed probability with 
a given mean and standard deviation. We are defining a data model and analogs of 
the relational operators for representing and manipulating continuous distributions.  

• Because of the large scale and dynamic nature of a sensor network, we cannot 
assume that a centralized optimizer maintains global knowledge and thus precise 
meta-information about the whole network. We are studying how to maintain 
meta-data in a decentralized way and how to utilize this information to devise good 
query plans. 
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