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Abstract— In this paper, we present a Minimum Spanning Tree
(MST) based topology control algorithm, called Local Minimum
Spanning Tree (LMST), for wireless multi-hop networks. In this
algorithm, each node builds its local minimum spanning tree
independently and only keeps on-tree nodes that are one-hop
away as its neighbors in the final topology. We analytically prove
several important properties of LMST: (1) the topology derived
under LMST preserves the network connectivity; (2) the node
degree of any node in the resulting topology is bounded by 6; and
(3) the topology can be transformed into one with bi-directional
links (without impairing the network connectivity) after removal
of all uni-directional links. These results are corroborated in the
simulation study.

I. INTRODUCTION

Topology control and management – how to determine the
transmission power of each node so as to maintain network
connectivity while consuming the minimum possible power –
has emerged to be one of the most important issues in wireless
multi-hop networks [1]. Instead of transmitting using the max-
imum possible power, nodes in a wireless multi-hop network
collaboratively determine their transmission power and define
the topology of the wireless network by the neighbor relation
under certain criteria. This is in contrast to the “traditional”
network in which each node transmits using its maximum
transmission power and the topology is built implicitly by
routing protocols (that update their routing caches as timely
as possible) [2] [3] without considering the power issue.
Not until recently has the issue of topology/power control
with respect to maintaining network connectivity, optimizing
network spatial reuse, and mitigating MAC-level interference
attracted much attention.

The importance of topology control lies in the fact that
it critically affects the system performance in several ways.
For one, as shown in [4], it affects network spatial reuse
and hence the traffic carrying capacity. Choosing too large
a power level results in excessive interference, while choosing
too small a power level results in a disconnected network.
Power control also effects the energy usage of communication,
thus impacts on battery life, a critical resource in many mobile
applications. In addition, topology control also impacts on
contention for the medium. Collisions can be mitigated as
much as possible by choosing the smallest transmission power
subject to maintaining network connectivity [5] [6].

Several topology control algorithms [5], [7]–[9] have been
proposed to create a power-efficient network topology in
wireless multi-hop networks with limited mobility. We will
summarize the existing work in Section II. Some of the
algorithms require explicit propagation channel models (e.g.,
[9]), while others incur significant message exchanges (e.g.,
[5]). Their ability to maintain the topology in the case of
mobility is also rather limited.

In this paper, we propose a Minimum Spanning Tree (MST)
based topology control algorithm, called Local Minimum
Spanning Tree (LMST), for multi-hop wireless networks with
limited mobility. The topology is constructed by each node
building its local MST independently (with the use of infor-
mation locally collected) and only keeping one-hop on-tree
nodes as neighbors. The contributions of this paper include: (i)
the topology constructed under LMST preserves the network
connectivity, (ii) the degree of any node in the resulting
topology is bounded by 6; and (iii) the resulting topology
can be converted into one with only bi-directional links (after
removal of uni-directional links). Feature (ii) is desirable
because a small node degree reduces the MAC-level contention
and interference. The capability of forming a topology that
consists of only bi-directional links is important for link
level acknowledgments, and critical for packet transmissions
and retransmissions over the unreliable wireless medium. Bi-
directional links are also important for the medium access
control mechanisms such as RTS/CTS in IEEE 802.11.

The rest of the paper is organized as follows. The related
work is firstly summarized in Section II. Then we present
the LMST algorithm in Section III, and prove its properties:
preservation of network connectivity, bound on the node
degree, and construction of topology with only bi-directional
links, in Section IV. The frequency to update the topology in
case of limited mobility is determined under a probabilistic
model in Section IV. Finally, we present a simulation-based
performance study in Section V, and conclude the paper in
Section VI.

II. RELATED WORK

As mentioned in the previous section, several topology
control algorithms have been proposed in the literature, among
which the relay-region and enclosure-based approach [9],
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CBTC(α) [7], COMPOW [5], and CONNECT [8] may have
received the most attention. Several broadcast/multicast al-
gorithms for ad-hoc wireless networks ( [10] [11] [12] [13]
[14]) have also attempted to maintain some type of overlay
topology, upon which a multicast tree/mesh can be built. The
issue of constructing an overlay topology to facilitate multicast
tree/mesh building is outside the scope of this paper.

Relay-region and enclosure-based approach (R&M):
Rodoplu et al. [9] introduced the notion of relay region and
enclosure for the purpose of power control. For any node i
that intends to transmit to node j, node j is said to lie in
the relay region of a third node r, if node i will consume
less power when it chooses to relay through node r instead
of transmitting directly to node j. The enclosure of node i is
then defined as the union of the complement of relay regions
of all the nodes that node i can reach by using its maximal
transmission power. It is shown that the network is strongly
connected if every node maintains links with the nodes in
its enclosure and the resulting topology is a minimum power
topology.

A two-phase distributed protocol was then devised to find
the minimum power topology for a static network. In the first
phase, each node i executes local search to find the enclosure
graph. This is done by examining neighbor nodes which a node
can reach by using its maximal power and keeping only those
do not lie in the relay regions of previously found nodes. In
the second phase, each node runs the distributed Bellman-Ford
shortest path algorithm upon the enclosure graph, using the
power consumption as the cost metric. When a node completes
the second phase, it can either start data transmission or enter
the sleep mode to conserve power.

To deal with limited mobility, each node periodically exe-
cutes the distributed protocol to find the enclosure graph. This
algorithm assumes that there is only one data sink (destination)
in the network, which may not hold in practice. Also, an
explicit propagation channel model is needed to compute the
relay region.

CONNECT and its extension: Ramanathan et al. [8] pre-
sented two centralized algorithms to minimize the maximum
power used per node while maintaining the (bi)connectivity
of the network. CONNECT is a simple greedy algorithm
that iteratively merges different components until only one
remains. Augmenting a connected network to a bi-connected
network is done by BICONN-AUGMENT, which uses the same
idea as in CONNECT to iteratively build the bi-connected
network. In addition, a post-processing phase can be applied to
ensure per-node minimality by deleting redundant connections.

Two distributed heuristics are introduced for mobile net-
works. In LINT, each node is configured with three parameters
- the “desired” node degree dd, a high threshold dh on the node
degree, and a low threshold dl. Every node will periodically
check the number of active neighbors and change its power
level accordingly, so that the node degree is kept within the
thresholds. LILT further improves LINT by overriding the high
threshold when the topology change indicated by the routing
update results in undesirable connectivity.

Both CONNECT and BICONN-AUGMENT are centralized
algorithms that requires global information, thus cannot be
directly deployed in the case of mobility. On the other hand,
the proposed heuristics LINT and LILT cannot guarantee the
preservation of the network connectivity.

COMPOW: Narayanaswamy et al. [5] developed a power
control protocol, called COMPOW. The authors argued that
if each node uses the smallest common power required to
maintain the network connectivity, the traffic carrying capacity
of the entire network is maximized, the battery life is extended,
and the contention at the MAC layer is reduced. In COMPOW
each node runs several routing daemons in parallel, one for
each power level. Each routing daemon maintains its own
routing table by exchanging control messages at the specified
power level. By comparing the entries in different routing
tables, each node can determine the smallest common power
that ensures the maximal number of nodes are connected.
Specifically, let N(Pi) denote the number of entries in the
routing table corresponding to the power level Pi. Then the
adequate power level for data packets is simply set to the
smallest power level Pi for which N(Pi) = N(Pmax).

The major drawback of COMPOW is its significant message
overhead, since each node runs multiple daemons, each of
which has to exchange link state information with the coun-
terparts at other nodes. COMPOW also tends to use higher
power in the case of unevenly distributed nodes. Finally, since
the common power is collaboratively determined by the all
nodes inside the network, global reconfiguration is required in
the case of node joining/leaving.

CBTC(α): The work that comes closest to our work is
CBTC(α) [7]. CBTC(α) is a two-phase algorithm in which
each node finds the minimum power p such that transmitting
with p ensures that it can reach some node in every cone
of degree α. The algorithm has been analytically shown to
preserve the network connectivity if α < 5π/6. It has also
ensured that every link between nodes is bi-directional.

Several optimizations to the basic algorithm are also dis-
cussed, which include: (i) a shrink-back operation can be
added at the end to allow a boundary node to broadcast with
less power, if doing so does not reduce the cone coverage;
(ii) if α < 2π/3, asymmetric edges can be removed while
maintaining the network connectivity; and (iii) if there exists
an edge from u to v1 and from u to v2, respectively, the longer
edge can be removed while preserving connectivity, as long
as d(v1, v2) < max{d(u, v1), d(u, v2)}.

An event-driven strategy is proposed to reconfigure the
network topology in the case of mobility. Each node is notified
when any neighbor leaves/joins the neighborhood and/or the
angle changes. The mechanism used to realize this requires
state to be kept at, and message exchanges among, neighboring
nodes. The node then determines whether it needs to rerun the
topology control algorithm.

Other power-efficient topology control work: There also
exists work in generating power-efficient topology in wireless
networks. By following a probabilistic approach, Santi et
al. derived the suitable common transmission range which
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preserves network connectivity, and established the lower and
upper bounds on the probability of connectedness [6]. In [15],
a “backbone protocol” is proposed to manage large wireless
ad hoc networks, in which a small subset of nodes is selected
to construct the backbone. In [16], a method of calculating
the power-aware connected dominating sets was proposed to
establish an underlying topology for the network.

III. THE MST-BASED TOPOLOGY CONTROL ALGORITHM

In this section, we first outline a set of guidelines for
devising topology control algorithms. Then we present a
distributed topology control algorithm called LMST (Local
Minimum Spanning Tree).

A. Design Guidelines

The following guidelines are essential to an effective topol-
ogy control algorithm:

1) The network connectivity should be preserved with
the use of minimal possible power. This is the most
important objective of topology control algorithms.

2) The algorithm should be distributed. This is due to the
fact that there is, in general, no central authority in a
wireless multi-hop network, thus each node has to make
its decision based on the information it has collected
from the network.

3) To be less susceptible to the impact of mobility, the
algorithm should depend only on the information col-
lected locally, e.g., information collected within one hop.
Algorithms that depend only on local information also
incur less message overhead/delay in the process of
collecting information.

4) It is desirable that all links are bi-directional. As men-
tioned in Section I, bi-directional links facilitate link-
level acknowledgment, proper operation of the RTS/CTS
mechanism, and ensures existence of reverse paths [5].

5) It is also desirable that the node degree in the topology
derived under the algorithm is small. A small node
degree may help to mitigate the well known hidden
and exposed terminal problems,1 as there will not be so
many nodes that have to be silenced in a communication
activity.

B. The LMST Algorithm

To facilitate discussion of the proposed algorithm, we first
define the following terms. We denote the network topology
constructed under the common maximum transmission range
dmax as an undirected simple graph G = (V,E) in the plane,
where V is the set of nodes in the network and E = {(u, v) :
d(u, v) ≤ dmax, u, v ∈ V } is the edge set of G. A unique id
(such as an IP/MAC address) is assigned to each node. For

1The hidden terminal problem refers to the situation in which a station is
hidden when it is within the transmission range of the intended receiver node
of the packet but out of the range of the sender node, where the exposed
terminal problem refers to the situation in which a station is exposed when it
is within the transmission range of the sender node, but out of the range of
the receiver.

notational simplicity, we denote id(vi) = i. We also define the
Visible Neighborhood NV u(G) of node u as follows.

Definition 1 (Visible Neighborhood): The visible neighbor-
hood NVu(G) is the set of nodes that node u can reach
by using the maximum transmission power, i.e., NV u(G) =
{v ∈ V (G) : d(u, v) ≤ dmax}. For each node u ∈ V (G),
let Gu = (Vu, Eu) be an induced subgraph of G such that
Vu = NV u.

The proposed algorithm is composed of the following
three phases: information collection, topology construction,
and determination of transmission power, and an optional
optimization phase: construction of topology with only bi-
directional edges. We assume that the propagation channel is
symmetric and obstacle-free, and each node is equipped with
the ability to gather its location information via, for example,
GPS for outdoor applications and pseudolite [17] for indoor
applications.

1) Information Exchange: The information needed by each
node u in the topology construction process is the information
of all nodes in NVu(G). This can be obtained by having
each node broadcast periodically a Hello message using its
maximal transmission power. The information contained in a
Hello message should at least include the node id and the
position of the node. These periodic messages can be sent
either in the data channel or in a separate control channel.2

The time interval between two broadcasts of Hello messages
depends on the level of nodal mobility, and will be determined
by the probabilistic model to be introduced in Section IV-B.

2) Topology Construction: After obtaining the information
of visible neighborhood NVu(G), each node u applies Prim’s
Algorithm [18] independently to obtain its local minimum
spanning tree Tu = (V (Tu), E(Tu)) of Gu. Note that the
time complexity of Prim’s algorithm is O(n log n+e log n) =
O(e log n), where n is the number of nodes and e is the
number of edges in Gu. This can be improved using Fibonacci
Heaps to O(e + log n) [19].

Two points are worth mentioning here. Firstly, to build a
power efficient minimum spanning tree, the weight of an edge
should be the transmission power between the two nodes. As
power consumption is, in general, of the form c · dr, r ≥ 2,
i.e., a strictly increasing function of the Euclidean distance, it
suffices to use the Euclidean distance as the weight function.
The same minimum spanning tree will result. Secondly, the
minimum spanning tree derived under Prim’s algorithm may
not be unique if there exist multiple edges with the same
weight. The uniqueness is necessary for the proof of connec-
tivity, thus we refine the weight function as follows:

Definition 2 (Weight Function): Given two edges (u1, v1)
and (u2, v2), the weight function d′ : E �→ R is defined as:

d′(u1, v1) > d′(u2, v2)
⇔ d(u1, v1) > d(u2, v2)
or (d(u1, v1) = d(u2, v2)

2Each node can piggyback its location information in data packets to reduce
the number of Hello exchanges.
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Fig. 1. A scenario that demonstrates that links in the topology derived under
LMST may be uni-directional.

&&max{id(u1), id(v1)} > max{id(u2), id(v2)})
or (d(u1, v1) = d(u2, v2)

&&max{id(u1), id(v1)} = max{id(u2), id(v2)}
&&min{id(u1), id(v1)} > min{id(u2), id(v2)}).

The weight function d′ guarantees that in each step of
Prim’s algorithm, the choice on the minimum weight edges e is
unique, thus the local minimum spanning tree Tu constructed
by node u is unique.

After node u builds a minimum spanning tree to span
its visible neighborhood, it will determine its neighbors. To
facilitate discussion, we define the Neighbor Relation and the
Neighbor Set:

Definition 3 (Neighbor Relation and Neighbor Set): Node
v is a neighbor of node u’s, denoted u → v, if and only if
(u, v) ∈ E(Tu). u ↔ v if and only if u → v and v → u. That
is, node v is a neighbor of node u’s if and only if node v is
on node u’s minimum spanning tree, Tu, and is “one-hop”
away from node u. The neighbor set N(u) of node u is
N(u) = {v ∈ V (Gu) : u → v}.

The neighbor relation defined above is not symmetric,
i.e., u → v does not necessarily imply v → u. Fig-
ure 1 gives such an example. There are altogether 6 nodes,
V = {u, v, w1, w2, w3, w4}, where d(u, v) = d < dmax,
d(u,w4) < dmax, d(u,wi) > dmax, i = 1, 2, 3, and
d(v, wj) < dmax, j = 1, 2, 3, 4. Since NV u = {u, v, w4},
it can be obtained from Tu that u → v and u → w4. Also
V Nv = {u, v, w1, w2, w3, w4}, thus v → w1. Here we have
u → v but v � u.

The network topology under LMST is all the nodes in V
and their individually perceived neighbor relations (note that
it is not a simple superposition of all local MSTs).

Definition 4 (Topology G0): The topology, G0, derived un-
der LMST is a directed graph G0 = (V0, E0), where V0 = V ,
E0 = {(u, v) : u → v, u, v ∈ V (G)}.

3) Determination of Transmission Power: Assume that the
maximal transmission power is known and is the same to all
nodes. By measuring the receiving power of Hello messages,

each node can determine the specific power levels it needs
to reach each of its neighbors. This approach can be applied
to any propagation channel model. In what follows, we first
describe two commonly-used propagation models, and then
elaborate on how we determine the transmission power.

In the Free Space propagation model, the relation between
the power used to transmit packets, Pt and the power received,
Pr can be characterized as

Pr =
PtGtGrλ

2

(4πd)2L
, (1)

where Gt is the antenna gain of the transmitter, Gr is the
antenna gain of the receiver, λ is the wave length, d is the
distance between the antenna of the transmitter and that of
the receiver, and L is the system loss.

In the Two-Ray Ground propagation model, the relation
between Pt and Pr is

Pr =
PtGtGrh

2
th

2
r

d4L
, (2)

where Gt is the antenna gain of the transmitter, Gr is the
antenna gain of the receiver, ht is the antenna height of the
transmitter, hr is the antenna height of the receiver, d is the
distance between the antenna of the transmitter and that of the
receiver, and L is the system loss.

In general, the relation between Pt and Pr is of the
following form

Pr = Pt · G, (3)

where G is a function of Gt, Gr, ht, hr, λ, d, α, L and is time-
invariant if all the above parameters are time-invariant. At the
information exchange stage, each node broadcasts its position
using the maximal transmission power Pmax. When node A
receives the position information from node B, it measures
the receiving power Pr and obtains G

G = Pr/Pmax. (4)

Henceforth node A needs to transmit using at least Pth ·G =
PthPr/Pmax so that node B can receive messages, where Pth

is the power threshold to correctly understand the message.
A broadcast to all neighbors requires a power level that can

reach the farthest neighbor. Here we introduce the notion of
Radius:

Definition 5 (Radius of Node u): The radius, ru, of node
u is defined as the distance between node u and its far-
thest neighbor (in terms of Euclidean distance), i.e, ru =
max{d(u, v) : v ∈ N(u)}.

4) Construction of Topology with Only Bi-Directional
Edges: As illustrated in Figure 1, some links in G0 may be
uni-directional. As mentioned in Section III-A, it is desirable
to obtain network topologies consisting of only bi-directional
edges. There are two possible solutions: (i) to enforce all the
uni-directional links in G0 to become bi-directional; or (ii) to
delete all the uni-directional links in G0. We term the two new
topologies G+

0 and G−
0 , respectively. Specifically,
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Fig. 2. The definition of cone(u, α, v).

Definition 6 (Topology G+
0 ): The topology, G+

0 , is a undi-
rected graph G+

0 = (V +
0 , E+

0 ), where V +
0 = V0, E+

0 =
{(u, v) : (u, v) ∈ E(G0) or (v, u) ∈ E(G0)}.

Definition 7 (Topology G−
0 ): The topology, G−

0 , is a undi-
rected graph G−

0 = (V −
0 , E−

0 ), where V −
0 = V0, E−

0 =
{(u, v) : (u, v) ∈ E(G0) and (v, u) ∈ E(G0)}.

To convert G0 into either G+
0 or G−

0 , every node u may
probe each of its neighbors in the neighbor set N(u) to find
out whether or not the corresponding edge is uni-directional,
and in the case of a uni-directional edge, either deletes the
edge (G−

0 ) or notifies its neighbor to add the reverse edge
(G+

0 ). In Section IV, we will prove that both new topologies
preserve the desirable properties of G0. There exists a trade-
off between the two choices: the latter gives a comparatively
simpler topology, and hence is more efficient in terms of
spatial reuse, while the former keeps more routing redundancy.

IV. THEORETICAL BASE OF LMST

In this section, we state and prove several desirable prop-
erties of the network topology derived by LMST. We also
determine, with the use of a probabilistic model, how often
the neighborhood information should be exchanged and the
topology should be updated.

A. Properties of LMST

Definition 8 (Cone): As shown in Figure 2, a cone(u, α, v)
is the region in the plane that lies between OA and OB, where
∠COA = ∠COB = α/2.

1) Degree Bound: It has been observed that any minimum
spanning tree of a finite set of points in the plane has a
maximum node degree of six [20]. We prove this property
(which will serve as the base for the proof of Theorem 3)
independently in the context of topology control.

Lemma 1: Given three nodes u, v, w ∈ V (G0) satisfying
d′(u, v) > d′(u,w) and d′(u, v) > d′(v, w), then u � v.

Proof: If d(u, v) > dmax, then u � v. Thus, we only
need to consider the case d(u, v) ≤ dmax. Assume u → v.
Then (u, v) ∈ E(Tu). It follows that only one of the two
edges (u,w) and (v, w) can be in E(Tu) (otherwise a loop is
formed). Without loss of generality, assume (u,w) ∈ E(Tu).
Since (v, w) /∈ E(Tu) and d′(v, w) < d′(u, v), replacing

w1
u w4

w3
w2

w5w6

ππππ/3

ππππ/3

Fig. 3. The degree of any node in G0 is bounded by 6.

edge (u, v) with edge (v, w) and keeping all other edges
unchanged in E(Tu) results in another spanning tree of Gu

with a less weight. This contradicts the fact that Tu is the
unique minimum spanning tree of Gu.

Theorem 1 (Degree Bound): Define the degree of a node
as the number of neighbors. The degree of any node in G0 is
bounded by 6, i.e., deg(u) ≤ 6,∀u ∈ V (G0).

Proof: Consider any node u ∈ V (G0). Order nodes in
N(u) by their distances from u, such that for the ith node wi

and the jth node wj , j > i, we have d(u,wj) ≥ d(u,wi). By
Lemma 1, we have d(u,wj) ≤ d(wi, wj), otherwise u � wj .
Thus node wj cannot reside inside Cone(u, 2π/3, wi). That
is, as shown in Figure 3, node u cannot have neighbors other
than node w1 inside Cone(u, 2π/3, w1). By induction on the
rank of nodes in N(u), the maximal number of neighbors that
u can have is no greater than 6, i.e., deg(u) ≤ 6. Note that
Figure 3 also depicts the only scenario in which deg(u) = 6
occurs.

In wireless multi-hop networks, one observation is that less
node degree usually results in less contention and interfer-
ence. The degree bound obtained in Theorem 1 can be very
important to scheduling algorithms. As matter of fact, several
TDMA-based scheduling algorithms have been proposed to
maximize the spatial reuse and minimize frame length [21]
[22], most of which require that the maximum degree must be
bounded.

2) Network Connectivity: We prove that the topology, G0,
derived under LMST preserves the network connectivity of
G. For any two nodes u, v ∈ V (G0), node u is said to be
connected to node v (denoted u ⇔ v) if there exists a path
(w0 = u,w1, . . . , wm−1, wm = v) such that wj ↔ wj+1, j =
0, 1, · · · ,m − 1, where wk ∈ V (G0), k = 0, 1, · · · ,m. It
follows that u ⇔ w if u ⇔ v and v ⇔ w.

Lemma 2: For any node pair [u, v], u, v ∈ V (G0), if
d(u, v) ≤ dmax then u ⇔ v.

Proof: For all the node pairs [u, v] satisfying d(u, v) ≤
dmax and u, v ∈ V (G0), sort them in the increasing order
of d′(u, v), i.e., d′(u1, v1) < d′(u2, v2) < · · · < d′(ul, vl).
We prove by induction on the rank of the node pairs in the
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ordering.

1) Basis: k = 1, the first pair [u1, v1] satisfies d′(u1, v1) =
minu,v∈V (G0){d′(u, v)} and d(u1, v1) ≤ dmax. Thus
u ↔ v, which means u ⇔ v.

2) Induction: Assume Lemma 2 holds for all pairs
[ui, vi], i = 1, 2, · · · , k − 1. Now we prove Lemma 2
also holds for the node pair [uk, vk]. We consider two
cases:

• Case 1: uk ↔ vk, which implies uk ⇔ vk.
• Case 2: Either uk � vk or vk � uk, or both.

Assume uk � vk, without loss of generality.
Since vk ∈ NV uk

, there exists a unique path
p = (w0 = uk, w1, w2, · · · , wm−1, wm = vk)
from node uk to node vk, where (wi, wi+1) ∈
E(Tuk

), i = 0, 1, · · · ,m − 1. Since Tuk
is the

unique minimum spanning tree of Guk
, we have

d′(wi, wi+1) < d′(uk, vk); otherwise we can con-
struct another spanning tree with a less weight, by
replacing edge (wi, wi+1) with (uk, vk) and keeping
all the other edges in Tuk

unchanged. Applying the
induction hypothesis to each pair [wi, wi+1], i =
0, 1, · · · ,m−1, we have wi ⇔ wi+1, thus uk ⇔ vk.

Theorem 2: G0 preserves the connectivity of G, i.e., G0 is
connected if G is connected.

Proof: Suppose G is connected. We prove by contra-
diction that G0 derived under LMST is a strongly connected
graph. Assume G0 is not strongly connected. Among all the
node pairs [u, v] satisfying u � v, there exists a node pair
with the minimum distance, i.e., we can find [v0, v1] such that
d′(v0, v1) = minu,v∈V (G0){d′(u, v) : u � v}. Since G is
connected, d(v0, v1) ≤ dmax. By Lemma 2, v0 ⇔ v1, which
leads to the contradiction.

3) G+
0 and G−

0 Preserve Properties of G0: G+
0 is an

undirected graph, thus all the edges are bi-directional. Since
all the links in G0 are preserved in G+

0 , it follows that G+
0

preserves the connectivity of G0. Now we prove that the
degree of any node in G+

0 is also bounded by 6. Notice that
this is not a simple property of the MST because G+

0 may not
be an MST due to those edges added.

Theorem 3: The degree of any node in G+
0 is bounded by

6, i.e., deg(u) ≤ 6,∀u ∈ V (G+
0 ).

Proof: For any node u ∈ V (G+
0 ), denote N+(u) =

{(u, v) ∈ E(G+
0 )}. We prove by contradiction that if v ∈

N+(u) in G+
0 , there does not exist any other node w ∈ N+(u)

that lies inside Cone(u, 2π/3, v). Assume that such a node
w ∈ N+(u) exists. We consider four cases:

• Case 1: u → v, u → w in G0. This is proved in Theorem
1.

• Case 2: u → v, u � w, but w → u in G0. We have
d′(u,w) > d′(u, v); otherwise d′(u, v) > d′(v, w) and
d′(u, v) > d′(u,w), which implies u � v by Lemma 1.
Thus, d′(u,w) > d′(v, w) and d′(u,w) > d′(u, v),
which implies w � v by Lemma 1. This contradicts the
assumption that w → u.

v u

B

ππππ/3

ππππ/3

A

w

d

Fig. 4. Proof of Theorem 3.

• Case 3: u → w, u � v but v → u in G0. As shown
in Figure 4, we have d′(u,w) < d′(u, v); otherwise
d′(u,w) > d′(v, w) and d′(u,w) > d′(u, v), which
implies u � w by Lemma 1. Also, we have d′(v, w) >
d′(v, u); otherwise v � u by Lemma 1. Thus, d′(v, w) >
d′(u, v) > d′(u,w), which implies ∠wuv ≥ 2π/3. This
contradicts the assumption that w ∈ Cone(u, 2π/3, v).

• Case 4: u � v but v → u, and u � w but w → u in
G0. As shown in Figure 4, we have d′(u,w) > d′(u, v);
otherwise d′(u, v) > d′(v, w) and d′(u, v) > d′(u,w),
which implies u � v by Lemma 1. Thus d′(u,w) >
d′(v, w) and d′(u,w) > d′(u, v), which implies w � v
by Lemma 1.

Now we have proved that there does not exist any neighbor
other than v that lies inside Cone(u, 2π/3, v) in G+

0 . Using
the same arguments as in Theorem 1, it is easy to see that the
maximal number of neighbors that u can have is no greater
than 6, i.e., deg(u) ≤ 6.

Since G−
0 is derived from G0 by deleting uni-directional

links, it is easy to see that the degree of any node in G−
0

is also bounded by 6. We now prove that G−
0 preserves the

connectivity of G.
Theorem 4: G−

0 preserves the connectivity of G, i.e., G−
0

is connected if G is connected.
Proof: If a node pair [u, v], u, v ∈ V (G0) satisfies

d(u, v) ≤ dmax, by Lemma 2, there exists a path p = (w0 =
u,w1, w2, . . . , wm−1, wm = v) such that wj ↔ wj+1, j =
0, 1, · · · ,m − 1, where wk ∈ V (G0), k = 0, 1, · · · ,m. The
same result holds for G−

0 since all links in p are bi-directional
and the removal of uni-directional links does not affect the
existence of such a path. Following the same line of argument
as presented in Theorem 2, one can prove that G−

0 preserves
the connectivity of G.

B. Determination of Information Exchange Period

We determine the time interval between two information
exchanges (i.e., two broadcasts of Hello messages) by a
probabilistic model with the following assumptions:
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Fig. 5. Calculation of the probabilities that a new neighbor moves into the transmission range of a node and that an existing neighbor moves out of the
transmission range, within a time interval of t.

(i) All nodes are randomly distributed within a disk of
area S0 and the total number of nodes in G, N , is
known.

(ii) For a short time interval of length t, each node moves
independently toward a random direction in (0, 2π],
with a constant speed v that is uniformly distributed
in [0, vmax].

(iii) The maximum transmission range of a node is d =
dmax.

Under these assumptions, one can calculate the probabilities
that a new neighbor moves into the transmission range of node
u and that an existing neighbor moves out of the transmission
range of node u, within a time interval of t. Here we denote
D(u, d) as the disk of radius d centered at node u,

1) Probability That Node w Moves Into the Disk D(u, d):
As shown in Figure 5(a), suppose node u is located in
position A, with its neighbor w in position B. The maximum
transmission range of node u is AC = d, and the distance
between nodes u and w is x(> d). Let BC = r = vmax·t. The
probability that node w moves into the transmission range of
node u within time t is the probability that node w moves into
the disk D(u, d) (i.e., the shaded area in Figure 5(a)) within
time t. This probability can be calculated by considering the
following two cases:

• Case I: 0 < r < 2d. The probability, pjoin, that node w
moves into D(u, d) within time t is

pjoin =
∫ d+r

d

2πx
S0

S1

πr2 dx =
∫ d+r

d

2xS1

S0r2 dx,

where

S1 = α1d
2 + α2r

2 − xr sinα2,

α1 = ∠CAB = arccos
x2 + d2 − r2

2xd
,

α2 = ∠CBA = arccos
x2 + r2 − d2

2xr
.

• Case II: r ≥ 2d. The probability of interest is

pjoin =
∫ r−d

d

2πx
S0

πd2

πr2 dx +
∫ d+r

d

2πx
S0

S1

πr2 dx

=
∫ r−d

d

2πx
S0

d2

r2 dx +
∫ r+d

r−d

2xS1

S0r2 dx

=
πd2

S0r2 [(r − d)2 − d2] +
∫ r+d

r−d

2xS1

S0r2 dx

=
πd2(r − 2d)

S0r
+

∫ r+d

r−d

2xS1

S0r2 dx.

2) Probability That Node w Moves Out of the Disk D(u, d):
The probability that an existing neighbor w moves out of the
maximum transmission range of node u within time t is the
probability that w moves out of the disk D(u, d) (i.e., into
the shaded area in Figure 5 (b)) in time t. We consider three
cases:

• Case I: 0 < r < d. The probability, pleave, that node w
moves out of D(u, d) in time t is

pleave =
∫ d

d−r

2πx
S0

S2

πr2 dx =
∫ d

d−r

2xS2

S0r2 dx,

where

S2 = (π − α2)r2 − (α1d
2 − xr sinα2),

α1 = ∠CAB = arccos
x2 + d2 − r2

2xd
,

α2 = ∠CBA = arccos
x2 + r2 − d2

2xr
.

• Case II: d ≤ r < 2d. The probability of interest can be
expressed as

pleave =
∫ r−d

0

2πx
S0

π(r2 − d2)
πr2 dx +

∫ d

r−d

2πx
S0

S2

πr2 dx

=
∫ r−d

0

2πx
S0

(r2 − d2)
r2 dx +

∫ d

r−d

2xS2

S0r2 dx
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Fig. 6. The information update period versus the maximum speed with
respect to different values of pth.

=
π(r + d)
S0r2 (r − d)3 +

∫ d

r−d

2xS2

S0r2 dx.

• Case III: r ≥ 2d. The probability of interest can be
expressed as

pleave =
∫ d

0

2πx
S0

π(r2 − d2)
πr2 dx =

π(r2 − d2)d2

S0r2 .

3) Determination of information exchange periods: Given
that node u has n neighbors and the total number of nodes
is N . the probability that no new neighbor enters the visible
neighborhood of node u is

p1 = (1 − pjoin)N−n−1, (5)

and the probability that no neighbor leaves the visible neigh-
borhood of node u is

p2 = (1 − pleave)n. (6)

Thus, the probability that the visible neighborhood of node u
changes is

pchange = 1 − p1p2. (7)

Given a predetermined probability threshold pth, we can deter-
mine the topology update interval t such that pchange < pth.

To demonstrate how the period of information exchange
is affected by the maximum speed vmax and the probability
threshold pth, we consider a scenario in which 100 nodes
are randomly distributed inside a disk of radius 1000m. The
maximum transmission range is dmax = 250m. The number
of neighbors is set to 25. Figure 6 gives the curve of the
information update period versus the maximum speed with
respect to different values of pth. For example, to ensure the
probability of visual neighborhood change is below 0.2, the
information update period decreases from 10.6 sec to 1.06
sec when the maximum nodal speed increases from 1 m/s to
10m/s.

V. PERFORMANCE EVALUATION

In this section, we present several simulation results to
demonstrate the effectiveness of LMST. Although network
throughput is an important performance metric, it is highly
influenced by many other factors, such as MAC protocol,
routing protocol, etc. That’s the reason why most related work
described in Section II doesn’t give throughput performance.
Instead, we use the following metrics in this paper:

1) Node degree: A smaller average node degree usually
implies less contention/interference and better spatial
reuse.

2) Radius: As each node u sets ru as its transmission range
for broadcasting, a smaller value of the radius implies
better network spatial reuse.

3) Average link length: The link length reflects the power
level to be used for point-to-point communication. A
smaller value of the average link length implies a less
power level.

In the simulation study, we compare LMST against R&M
and CBTC(5π/6) with respect to the above three metrics.
Also, the topology generated using the maximum transmission
power is used as a baseline. The reason for selecting R&M and
CBTC for comparison is that LMST comes closest to R&M
and CBTC. In particular, (a) CONNECT and its extension
are centralized algorithms that require global information,
while LMST is a decentralized algorithm that builds the
network topology based on information locally gathered; and
(b) COMPOW is known to give poor performance in the case
of uneven spatial distributions (as all the nodes have to adopt
the transmission power between two most distant neighbors),
while the performance of LMST is not subject to the spatial
distribution (and as a matter of fact, is especially well-suited
in the case of unevenly spatial distributions).

In the first simulation, 100 nodes are uniformly distributed
in a 1000m×1000m region. The maximal transmission range
is dmax = 250m for all the nodes. The topology derived using
the maximum transmission power, R&M (Two-ray ground
model), CBTC, LMST, and LMST with link removal are
shown in Figure 7(a), (b), (c), and (d), respectively. The
corresponding maximum, minimum, and average node degrees
in these network topologies are given in Table I. R&M, CBTC
and LMST all dramatically reduce the average node degree,
while maintaining network connectivity. Moreover, LMST
outperforms both R&M and CBTC.

In the second simulation, we vary the number of nodes in
the region from 50 to 250. The average node degree for the
topologies generated using the maximum transmission power,
R&M, CBTC, and LMST is shown in Figure 8(a), where
each data point is an average of 100 simulation runs. The
average node degree derived under both R&M and CBTC
increases slightly, while the average node degree by LMST
does not increase with the spatial density. The average node
degree for topologies derived under LMST, LMST with all uni-
directional links converted to bi-directional links, and LMST
with all uni-directional links removed is shown in Figure 8(b).
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(a) The topology derived using maximum transmission power.
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Y x 103

3X x 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0

(b) The topology derived under CBTC.
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(c) The topology derived under R&M.

Topology by LMST with Link Removal
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(d) The topology derived under LMST with link removal

Fig. 7. Network topologies derived under different algorithms.

TABLE I

THE MAXIMUM, MINIMUM, AND AVERAGE DEGREES IN THE NETWORK TOPOLOGIES DERIVED USING THE MAXIMUM TRANSMISSION POWER,

R&M(TWO-RAY GROUND MODEL), CBTC(5/6π), LMST, AND LMST WITH UNI-DIRECTIONAL LINKS REMOVED.

Algorithm Maximum degree Minimum degree Average degree
Max trans. power 28 4 16.48

CBTC(5π/6) 5 1 2.97
R&M(Two-ray ground model) 5 1 2.64

LMST 3 1 2.06
LMST with link removal 3 1 2.04
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Fig. 8. Performance comparisons (w.r.t. degree, radius, and average length of links) among different algorithms.

Two observations are in order: (i) the average node degree
under LMST and its two variations does not differ much, and
decreases as the node density increases. This is in contrast with
the observation that the average node degree of the topology
generated using the maximum transmission power increases
almost linearly; (ii) the average node degree under LMST is
very close to that of a global spanning tree, which is known
to have the least average node degree (2− 2

n → 2, as n → ∞)
among all the spanning subgraphs. The average radius and
the average link length for the topologies generated using the
maximum transmission power, R&M, CBTC, and LMST with
link removal are shown, respectively, in Figure 8(c) and 8(d).
LMST outperforms in both cases.

In the third simulation, we compare the average power
needed to transmit a packet to the sink node located at
the center of the region under different propagation channel
models. The setting is similar to the previous simulations,
and the comparison is made between LMST and R&M, since
the latter has been proved in [9] to find the minimum power

topology. As shown in Figure 9, LMST uses slightly more
power than R&M, due to the fact that LMST does not utilize,
or optimize its operations with respect to, any information of
the propagation channel model.

VI. CONCLUSION

In this paper, we present a decentralized MST-based topol-
ogy control algorithm (LMST) for wireless multi-hop net-
works with limited mobility. As each node builds its local
minimum spanning tree independently using locally collected
information, the algorithm incurs less message overhead/delay
in constructing the topology, and can perform local repair
in the case of mobility. The algorithm also has several nice
properties: (1) the topology derived preserves the network
connectivity; (2) the degree of any node in the topology is
bounded by 6; and (3) the topology can be transformed into
one with bi-directional links (without impairing the network
connectivity) after removal of all uni-directional links.

The simulation results show that the topology under LMST
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(b) Two-ray ground model.

Fig. 9. Performance comparisons (w.r.t. power consumption) between LMST (with uni-directional link removal) and R&M.

has a small average node degree (which is very close to the
theoretical bound), and a small average radius. The former
reduces the MAC-level contention, while the latter implies a
small transmission power needed to maintain connectivity.

Our approach tries to minimize the overhead to maintain
a connected topology in a dynamic wireless ad hoc net-
work. Therefore, we constructed a minimal topology which
approximates a tree structure. However, there is a trade-off
between the redundancy and the stability of the topology.
Also the topology control algorithm has impact on other
layers, especially MAC and routing layer. Those issues will
be addressed in our future research.
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