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Abstract— The ability to extract topological regularity
out of large randomly deployed sensor networks holds
the promise to maximally leverage correlation for data
aggregation and also to assist with other tasks such as
sensor localization. This paper focuses on extracting such
regular structures through the development of a dis-
tributed clustering scheme. The Topology Adaptive Spatial
Clustering (TASC) algorithm is a distributed algorithm
that partitions the network into a set of locally isotropic,
non-overlapping clusters without prior knowledge of the
number of clusters, cluster size and node coordinates.
This is achieved by deriving a set of weights that encode
distance, connectivity and density information within the
locality of each node. The derived weights form the terrain
for holding a coordinated leader election in which each
node selects the node closer to the center of mass of
its neighborhood to become its leader. The clustering
algorithm also employs a dynamic density reachability
criterion that enables the grouping of nodes according
to their neighborhood density properties. Our simulation
results show that the proposed algorithm can produce
uniform sized isotropic clusters and it is tolerant to up
to 30% measurement noise. In the cases of non-uniform
distribution the network is partitioned according to the
local density attributes. Using these behaviors we then
illustrate how such clustering scheme can benefit ad-hoc
localization.

I. INTRODUCTION

The anticipation of large-scale sensor networks and
experience from preliminary deployments has demon-
strated the need for meaningful decomposition of large
distributed sensor networks into a set of smaller sub-
networks. Such decomposition should be conducted in
a manner that facilitates sensor node coordination and
enhances the feasibility network management and in-
network processing and aggregation of sensor data. In
this paper, we explore this issue of network decomposi-
tion through the development of a specialized distributed
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clustering scheme. The scheme we investigate tries to
extract regularity from irregular network topologies by
allowing the nodes to organize themselves into groups
of locally isotropic (or regular) clusters without requir-
ing the knowledge of node locations. Given the close
coupling of sensors to the physical world we advocate
that such classification of sensor nodes according to
their spatial attributes would be beneficial from multiple
aspects.

Besides the intuitive benefit of improving the ease
of network management, the spatial grouping of nodes
with respect to regions of close proximity and similar
deployment density promotes efficient data aggregation
and compression of sensor data. As pointed out by [11]
spatial irregularity in sensor sampling can exacerbate
the load and cost imbalance between different parts
of the network. This is mainly because many of the
existing distributed signal processing and compression
algorithms assume spatially regular data samples. This
also entails that the spatial grouping of nodes can help
reduce the propagation of redundant data inside the
network. This argument is further reinforced by the re-
cent results presented in [16] that suggests the existence
of optimal cluster sizes under certain conditions based
on the correlation among measurements from multiple
sensors and the routing costs of forwarding the data to
the sinks.

In addition to improving sampling, the understanding
of network structure and spatial clustering can benefit
other important network tasks such as the formation of
hierarchies and node localization. In node localization
the organization of nodes into smaller groups reduces
the required computation and helps limit redundant com-
putations, something that is favorable for small resource
constrained sensor nodes. Moreover, in the case where
high precision locations are required, the organization
of nodes in isotropic clusters can also help with limiting
error propagation inside the network. In section VI we
describe a study case for weight driven localization and
outline a multistart scheme for limiting error propagation
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in distributed localization systems.
Despite the fact that clustering has been previously

studied both theoretically and in the context of ad-hoc
networks [1], [3], [4], [8], [10], its consideration in the
context of sensor networks gives rise to a new problem
setup. From this perspective, the uniqueness of this work
lies in its ability to cluster large networks in to a set of
small non-overlapping clusters in a distributed manner
without any prior knowledge on the number of clusters
and cluster sizes. The algorithm operates at each node
and encodes local information on inter-node distances
and routing information into a set of weights that form
the terrain to elect a set of leaders and hence organize
nodes into clusters. The size and density properties of
each cluster are controlled with the introduction of a
dynamic density reachability metric, a variation of the
density reachability concept borrowed from data-mining
[20], [26]. The advantages of this approach arise from
the ability to capture the topology information within the
locality of a node a single quantity - the weight of a node
that can be used as a starting point for leader election
and hierarchy creation.

The proposed distributed algorithm does not require
node locations but it assumes that nodes are aware of
their 2-hop neighborhood and that distances between
nodes are known. We consider both assumptions rea-
sonable. The former is a standard assumption for many
neighborhood discovery algorithms whereas the latter is
becoming a common feature of many sensor networks.
Accurate distance measurements in the sensor network
domain have been demonstrated using ultrasound in the
system described in [28], the MIT Crickets [27] and in
the Medusa MK-2 node [22] developed us. In the radio
domain, ultra-wide-band ranging systems such as the one
offered by Ubisense [29] have already demonstrated very
accurate distance measurements in very small packages
that will be suitable for sensor networks. From our
simulation results we found that our algorithm is resilient
to high levels of noisy measurements. This implies that
it may be possible to use this techniques with radio
signal strength distance measurements in environments
We also note that the spatial clustering of the network
before node localization is actually an advantage for ad-
hoc localization. As we will describe in section VI, ad-
hoc localization schemes such as [17], [22], [24] may
actually benefit from the properties of our algorithm to
eliminate computation redundancies and geometric error
propagation.

The contributions of this paper include the develop-
ment and characterization of a Topology Adaptive Spatial
Clustering Scheme (TASC), through the development of
weights and dynamic density reachability. In addition to

this this work illustrates the application of TASC to node
localization and enumerates a set of additional sensor
network applications that can be assisted by TASC.

The paper is organized as follows. In the next section
we highlight the related work. Section III describes the
clustering problem requirements. Section IV provides the
details on the creation of weights and describes the clus-
tering algorithm. Section V explains the details of TASC
and explains the election algorithm, Section VI illustrates
how TASC can be applied in ad-hoc localization. Section
VII discusses some additional attributes and section VIII
states our conclusions and plans for future work.

II. RELATED WORK

The idea of clustering is not new, and it has been
studied in many different domains including computer
theory, neural networks, astronomy and many others.
In general it is considered a hard problem in terms
of optimality, but many application specific algorithms
exist. A brief overview of this work is provided here.

A. K-means clustering

A mathematical framework that has similarities with
the network clustering problem is the k-means clustering
[3]. In classical k-means, the number of cluster center
points is set in advance. Initially, center points are placed
to data either according to some a priori knowledge
or randomly. Then, for each data point, the algorithm
computes the cluster center that is closest to the data
point based on specified nearness criteria. After that,
each center point is moved to the location that is the
average of the locations of those points that are closest
to that center. One famous modification of the classical
k-means problem is the fuzzy k-means clustering, where
the same point can simultaneously belong to several
clusters and have membership degree that is specific to
each cluster.

The idea of figuring out the clusters based on some
incomplete a priori knowledge is similar to ad hoc
clustering. Furthermore, some k-means clustering modi-
fications that are interesting in ad hoc clustering point
of view are recently presented in [4], [7], [8]. What
makes the setting we investigate different from others
is the fact the amount of prior knowledge is smaller
than typical k-means applications. Nodes are only able to
measure distances to their one hop neighbors, positions
are unknown and the network architecture does not offer
the centralized knowledge needed for basic k-means
algorithm applications.
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B. Ad Hoc Network Clustering

From the ad-hoc networking perspective, Gupta et al
[9] present a way of finding optimal sensor cover to a
query that targets in a specific region in the network area.
In their application, each query has a time window and
a geographical window associated with it. Each piece
of data generated in the sensor network has a timestamp
and a location stamp. The algorithm uses the redundancy
of the network to select a small subset of sensors that
defines a connected sensor cover. The main novelty is
savings achieved in power consumption. Both centralized
and discrete versions of the algorithm are presented [9].
Chen and Liestman [10] present a zonal algorithm to
find weakly connected dominating sets. The algorithm
consists of three phases. First, an input graph represent-
ing the ad hoc network is partitioned into regions of
approximately size x. Then, the distributed algorithm
for weakly connected sets is run in each region and
finally some additional region border vertexes are added.
Basagni in [1] uses weight-based criteria in a distributed
ad hoc clustering algorithm. Each node has a weight,
and nodes are grouped based on their own weight and
the weight of the nodes in their one hop neighborhood.
Beyond its distributed nature, the proposed algorithm can
deal with changing topology. When nodes are moving,
one can set node weights to be inversely proportional
to their velocity and then set the nodes having lowest
velocity to be cluster centers.

In our approach, local variations in network topology
and density are taken into account so that we are able
to locally split anisotropic network into a set of locally
more isotropic clusters. The clustering parameters are
able to adapt to different network types without the re-
quirement of manually changing them. The final number
of clusters depends on network topology.

III. CLUSTERING OBJECTIVES

When considering a clustering scheme for ad-hoc
sensor networks one first needs to define the meaning
of a good cluster. In the trivial case of uniform de-
ployment and known node coordinates, the network can
be partioned using a grid construct. In [16] an optimal
cluster size is computed with respect to the energy cost
of forwarding data from a set of sources to the sink.
When considering irregular ad-hoc sensor deployments,
the question of determining the optimal cluster size
while considering network densities still remains an open
question. Some theoretical work by Jain and Dubes [13]
suggest techniques to estimate cluster validity in terms
of compactness and isolation, but the general problem of
defining a baseline on which results should be compared

Fig. 1. An example of the clustering outcome

remains open, even though one suggested solution is the
use of studies based on Monte Carlo simulations.

Our clustering approach is motivated by the require-
ments of the sensor network domain. More specifically,
a clustering algorithm should partition the network so
that the nodes inside each cluster have high correlation
in sensor measurements and are evenly spaced in order
to maximize gains and reduce errors due to ill geometric
positioning as in the case of node localization.

In contrast to uniform deployments, one cannot dictate
a fixed number of clusters or use a grid construction
since that would diminish the exploitation of correlation
properties. Instead of requiring a fixed number of cluster
sizes and in order to avoid the creation of single node
clusters, our algorithm requires only the minimum num-
ber of nodes in a cluster. The problem we pursue aims
to partition networks with density non-uniformities, into
a set of smaller locally isotropic clusters by grouping
nodes with similar density attributes. We consider this
to be the analogous of grid partitioning in deterministic
deployments that will enable the clustering of nodes in
non-uniform deployments, such as deployments along
winding corridors and other non-isotropic patterns.

IV. DISTRIBUTED LEADER ELECTION

A. The Leader Election Algorithm

The distributed leader election algorithm builds on two
main components, node weights and density reachability
and takes place in two phases nomination and voting
followed by a merging phase. During the first phase,
each node considers the weights of nodes in its 2-hop
neighborhood, nominates the node with the maximum
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Inputs: 2-hop neighborhood, inter-node

distance measurements, minimum cluster size, MinPoints

Output: Leader node

———————————————————-
weight = ComputeWeight();

BroadcastToNeighborhood(weight);

If all weights received:

Select heaviest density reachable node

as nominee;

BroadcastToNeighborhood(nominee);

EndIf

If all nominations have been received:

Select the closest nominee as leader;

BroadcastToNeighborhood(leaderID, nodeID);

EndIf

If this node is leader:

Wait until election timeout;

BroadcastToNeighborhood(clustermembers);

EndIf

If cluster size is received:

If clustersize < minimum cluster size:

select the closest neighbor for which

clustersize ≥ minimum cluster size

and join its cluster;

EndIf

BroadcastToNeighborhood(leaderID, clustersize)

EndIf

Fig. 2. Leader Election Algorithm

weight as an election candidate and notifies the nodes
in its neighborhood of this nomination. In the second
phase, each node elects the closest candidate as its leader.
Nodes that end up in clusters that are smaller than a
pre-specified minimum cluster size are dismantled and
their node members join bigger existing clusters. The
pseudocode of the leader election algorithm running on
each node is given in Figure 2. A detailed description
of weights and density reachability is provided in the
next subsections. We recommend the reader to revisit the
leader election algorithm after reviewing those sections.

B. Weight Computation: Discovering Local Network
Structure

The computation of node weights tries to achieve the
reverse effect of greedy forwarding in geographic routing
[5], [6]. In greedy forwarding, a node found on the
path to a packet destination, forwards the packet to its
neighboring node with location closest to the location of
the destination. Instead of trying to forward traffic the
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Fig. 3. Weights example

neighboring node that is closest to destination, TASC all-
pairs-shortest path routing based on distance measure-
ments to extract information about the network topology.
More specifically, a node weight is a measurement of two
key quantities 1) the frequency a node is found on the
shortest path between pairs of nodes and 2) the distance
contribution of that node with respect to the total length
of the path. In the basic case of uniform deployment in
a circular field, the node found closer to the center of
mass of the network will have the highest weight.

Consider the network in Figure 3a. If we define the
weights to be the number of times a node is found on a
the shortest path then we can compute a weight for each
node. Node A for instance can be found on the paths AB,
AC , AD and AE hence it will have a weight of 4. Node
C is found on eight different paths hence it receives a
weight of 8. To construct a proof of this behavior we
use the principle of optimality [2]:

If S is the shortest Euclidean path between two nodes,
it includes all shortest paths between all pairs of nodes
that are located in path S.

Definition 1: Each node in the sensor network gets
weight +1 each time the shortest Euclidean path between
any pair of nodes in the network crosses that node
or ends at it. Paths are assumed undirected in weight
computation.

Theorem 1: Let S be the shortest Euclidean path
between two nodes, and let 2n + 1 be the total number
of nodes in path S. When computing all shortest paths
between each pair of nodes in path S and assigning
weights to each node in S as presented in Definition
1, the node that is from equal hop distance from both
endpoints of path S, gets the biggest weight.

Proof: Observe path S having total number of 2n+
1 nodes, and let c be the node located from equal hop
distances from both ends of the path S. Since the total
number of nodes in path S is 2n + 1, there are n nodes
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on both sides of node c. Based on basic routing theory, S
includes shortest paths between all pairs of nodes located
in S. Thus, the weight of node c is equal to the total
number of shortest paths crossing node c and ending at
node c:

Wc = n · n + 2n = n2 + 2n (1)

Pick then a node g from the path S so that there are
k < n nodes from the other side of that node. In that
case there are n + (n − k) nodes on the opposite side.
The weight of node g is:

Wg = k(n+(n−k))+k+n+(n−k) = 2nk+2n−k2

(2)
When comparing the weights (1) and (2) we get

Wg < Wc ⇔ 2nk + 2n − k2 < n2 + 2n ⇔
n2 − 2nk + k2 > 0 ⇔ (n − k)2 > 0

(3)

That holds always when 0 < k < n.
Corollary 1: If there are 2n nodes in the path S

discussed in Theorem 1, two nodes in the middle get
both equal biggest weight values.

Proof: The result follows from equations (1)-(3),
when total number of 2n nodes are used.

Theorem 2: When weights in network graph are com-
puted like presented in Definition 1, the node or nodes
closest to the network center get the biggest weights.

Proof: The proof is a generalization of the discus-
sion presented in equations (1)-(3). Observe M shortest
paths that are crossing each other in one node, and mark
N = 2M . In the symmetric case, the number of nodes in
each path is 2n+1 and all paths are crossing each other
in the midmost node c. When all shortest paths between
pairs of nodes located in paths M are taken into account
in weight computation, the weight of the node c is

Wc = n · (N − 1) · n + n · (N − 2) · n + ...

+n · n + N · n = n2
N−1∑

i=1

i + Nn
(4)

Observe next asymmetric case, where one of the paths
has n+ k +1 nodes, where 1 ≤ k < n, when the rest of
paths have still 2n+1 nodes, and paths are crossing each
other in node g so that in path Mj there are n nodes on
the one side and k nodes on the opposite side of node
g. For other paths Mi,i�=j , g is still the midmost node.
In that case the weight of node g is:

Wg = n · (N − 2) · n + kn + n · (N − 3) · n + kn + ...

+n · n + kn + kn + (N − 1)n + k

= n2
N−2∑

i=1

i + (N − 1)kn + (N − 1)n + k

(5)

When comparing weights Wc and Wg, we get

Wg < Wc ⇔

n2
N−2∑

i=1

i + (N − 1)kn + (N − 1)n + k < n2
N−1∑

i=1

i + Nn

n2
N−2∑

i=1

i + (N − 1)kn + (N − 1)n + k < ...

< n2
N−2∑

i=1

i + n2(N − 1) + Nn

(N − 1)kn + (N − 1)n + k < (N − 1)n2 + Nn

(N − 1)kn + k < (N − 1)n2 + n

which is true under assumption 1 ≤ k < n.
This is enough to show that always the node that tends

to be the midmost related to all shortest communication
paths (in terms of hops) gets the biggest weight. The
result of Corollary 1 generalizes this result so that if
some of the paths have even number of nodes, there can
be several nodes with equal biggest weights in the mid-
dle. An illustrative example of the weight behavior for
a deterministic grid deployment and a non-deterministic
deployment is shown in Figure 4.

1) Including Distances in Weight Computation: Al-
though this method of computing weights would decide
the central node, it does not give enough information
in the cases where the paths are symmetric such as
the paths in the example network shown in Figure
3b. To handle this problem, we augment the weight
computation to incorporate distance information. Instead
of incrementing the weight by one each time a node is
used in a path, we increment the weight as a function of
the distance a node contributes to the path. If a node k
is found on the path from node i to node j in between
nodes a and b, then the weight increment of node k is
given by equation 6 where la,k and lk,b are the lengths of
the edges between nodes a and b and node k respectively
and li,j is the length of the whole path from node i to
node j.

wij =
la,k + lk,b

lij
(6)

An example of this method of weight computation is
shown in Figure 3b. According to equation 6 the weight
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contribution from path AG to node D is (3 + 5)/12. In
the same figure we also note that the use of distances in
weights helps to identify the node closest to the center
of mass of the network. Node D and E have symmetric
path configurations and the consideration of routing only
would have resulted in equal weights for both nodes.
The consideration of distances and shortest routes helps
identify the node that is closest to the center of mass,
node E in this case.

C. Density Reachability: Grouping Similar Densities

While the information from node weights can be used
to identify local centers, we would still like to construct
clusters by grouping nodes in regions with similar den-
sity attributes. To achieve this goal, in addition to consid-
ering weights we need to consider additional means of
pulling areas with high node densities towards the center
of a cluster. To be able to do so using only distance
measurements, we must define a group specific to each
node in which nodes have similar or higher densities to
the node under consideration. This can be achieved with
a modified version of density reachability traditionally
applied in data clustering [20], [26] to cluster spatial
data in the presence of obstacles.

When density reachability is used, each node can
further limit the number of nodes that it can potentially
nominate by considering only density reachable nodes
as nomination candidates. The determination of density
reachabilily is based on a dynamic distance metric called
density range defined as follows:

Definition 2: The density range ri of node i with
respect to the minimum number of nodes MinPoints
is the smallest disk centered at i that covers m−1 other
nodes in the vicinity of i.

Based on this we define a node to be density reachable
as follows:

Definition 3: A node j is density reachable from i if
there is a path from i to j where the length of every hop
l satisfies the constraint: l ≤ ri.

Figure 5 shows an example network when m = 3.
Nodes j, k and the black nodes are density reachable
from node i since the hop length to reach each of these
nodes from i is smaller than ri. Note that for the purposes
of our clustering algorithm, density reachability can only
expand within the 2-hop neighborhood of each node.

V. EVALUATION OF CLUSTER PROPERTIES

To characterize the properties of the clustering algo-
rithm, we run a set of simulations on a suite of 100 ran-
dom scenarios. In each scenario, 100 nodes are deployed
on a square deployment field of size 1000 by 1000. Each

Fig. 4. 64 nodes having range 10 scattered in 80x80 area. In first case
nodes are placed in regular grid and in second case node placement
is random. Each node computes its weight based on shortest paths
in its two hop environment. In the case of grid placement there is no
changes in local topology and because of that the weight distribution
is smooth increasing from borders to the middle. In random placement
case maximum weights indicates centers of local topology structures.

ri
j

k

i

Fig. 5. Selecting density reachable nodes. Node i select its density
reachable nodes when min nodes = 3

scenario is used five times for five different measurement
ranges 200, 250, 300, 350 and 400. For most cases, the
minimum number of nodes per cluster is set to 4. The
simulation also assumes that the distance measurement
range of the node is equal to the communication range.
In practice, we expect that the communication range is
greater than the measurement range, so this assump-
tion does not violate the fundamental properties of our
clustering algorithm. Our simulations are implemented
with an in-house version of NeslSim [15], which is
implemented in PARSEC. The main role of the NeslSim
environment in our work is the enforcing of a distributed
implementation of our clustering algorithm. The compu-
tation of shortest paths is done using the Floyd-Warshall
algorithm running at each node. The measurement noise
model is modeled as additive noise following a white
gaussian distribution that the standard deviation of which
is entered as a percentage of the maximum measurement
range. Cluster characterization is based on one main
metric, the estimation of the area of a cluster from a
discrete set of points, the coordinates of each node. The
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area of a cluster is approximated by the area of an ellipse
that contains at least 99% of the nodes that form the
cluster. The major axis of the ellipse is the straight line
regression of the y coordinates on the x coordinates and
the center of the ellipse is the the center of mass of
the cluster (the mean of the x and y coordinates of the
cluster members). The ratio of the major to minor axes is
the ratio of the standard deviation of the node distances
to the cluster center of mass, projected onto the major
and minor axes. The area of this ellipse is used as an
estimate of the cluster area. Although the area of the
ellipse will always be larger than the actual cluster area,
the relative ratios of cluster areas remain the same. An
alternative method to estimate cluster areas is to compute
the sum of the areas of the Delaunay triangles included
in the convex hull of the cluster. We chose to use an
ellipse fitting instead since this metric also allows us to
estimate the axial ratio (roundness) of a cluster. Using
the estimated cluster area, our evaluations also make use
of the term cluster density in nodes per meter square.

1) Cluster Isotropy: The first experiment was to eval-
uate the cluster isotropy by computing the average node
separation in each cluster, when the density reachability
parameter MinPoints and the minimum cluster sizes are
set to 4. This is the average distance from each node
in the cluster to its closest neighbor. Figures 6a-c shows
the distribution of average distances to each node within
each cluster plotted against the density of their cluster for
three different measurement ranges 200, 300, 400. Each
dot in the figure, is the average separation per clusters
for each of the clusters resulting from our scenario
suite. From figure 6 we observe that the majority of
the dots fall within 40 and 100. This result shows
that the clustering algorithm creates clusters by packing
nearby nodes together thus producing locally isotropic
configuration. This property is also illustrated in Figures
9 and 10. Figure 9 shows the average axial ratios for all
scenarios in our test suite. Figure 10 is a snapshot of
the axial ratios for the resulting clusters in the example
network in Figure 1.

2) Cluster Sizes and Density Reachability: The trends
in cluster sizes are shown in Figures 6a-c and 7a-c.
Intuitively, one would expect the average cluster size
increase with increasing measurement range since the
area of the 2-hop neighborhood increases. Instead, the
average cluster size remains constant between 7 and 9
nodes in each of the tested 300 cases. This is enforced by
the density reachability parameter, which prohibits nodes
from electing a leader in from a region of the network
that does not have similar properties than region the node
is in.

The properties of density reachability are better illus-

Fig. 8. Clustering outcome on an anisotropic network
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Fig. 9. Average axial ratios for all scenarios

trated in Figures 12a-c. The three cases show how cluster
sizes change for three different values of MinPoints
and the minimum cluster size set to 4. The parameter
MinPoints sets the density range of a node to be
the distance to the (MinPoints − 1)th neighbor or the
furthest neighbor if the (MinPoints − 1)th neighbor
is not within measurement range. The first case of
MinPoints = 2 limits the density reachable nodes to
the distance of the closest neighbor. This is very small so
the effect of density reachability is overshadowed by the
merging process of the leader election algorithm. With
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Fig. 10. Axial ratios for the clusters of the network in Figure 1
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Fig. 6. Average distance to closest node in each cluster. Measurement range = a)200, b)300, c)400
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Fig. 7. Average Cluster Sizes. Measurement range = a)200, b)300, c)400

no control on the eventual cluster density properties, the
cluster sizes increase with measurement range, and at
high measurement ranges clustering results in a single
cluster that has the size of the whole network. The case
of MinPoints = 4 (Figure 12b) represents the most de-
sirable cases where the majority of the cluster sizes stays
within 4 and 10 nodes. The effects of density reachability
begin to diminish again for high values of MinPoints
as shown in the c part of the figure. As the density range
begins to approach the maximum measurement range of
the node, the effect of density decays to the point where
it cannot differentiate among density variations in the
vicinity of the node. This behavior entails that to obtain
reasonable cluster sizes, density reachability should be
tuned with respect to the maximum measurement range
and deployment area.

A. Behavior with anisotropic networks and noise

Figure 8 shows the clustering outcome on a highly
anisotropic network that includes a winding path, holes
and exhibits large density variations. This pictorial rep-
resentation best describes the outcome of TASC for such
networks, and demonstrates it resilience to density per-
turbations. We also note that since TASC operates using
local information and weights, the clustering outcome
will not be affected by the existence of wholes inside
the network.

From our simulations we also found TASC to be
resilient to measurement noise. With up to 30% mea-
surement error we were able to obtain consistent cluster
sizes. The effect of noise is shown in Figure 11. Between
30% and 60% measurement error, most of the clusters
are still uniform, but some non-uniform clusters exists.
When error level increases to or above 60%, most of the
clusters become non-uniform. Even though our algorithm
is able to produce clusters in the presence of 30%
error level, the effect of density reachability weakens
rapidly between 20% and 30% error levels and thus the
algorithm is not able to take local density variations into
account with the same accuracy as in lower noise levels.
As a result of this, the trend shown in Figures 6 and 12
becomes weaker.

VI. CLUSTERS AND WEIGHTS IN NODE

LOCALIZATION

We now illustrate how the topology information ex-
tracted from weights and the existence of clusters and
leaders can be used to drive computation in distributed
node localization for three main reasons. First, by start-
ing location computation at regions of higher density
(denoted by the cluster heads) one can limit error prop-
agation inside the network. Second, the existence of
clusters keeps location computation tractable on resource
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Fig. 12. Clustering behavior on 100 scenario suite at different density ranges set at the level of a)2, b)4, c)6 neighbors
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Fig. 11. Clustering outcome of the example network shown in Figure
1 without noise and with noise levels 20% and 30%

constrained sensor nodes and third, it reduces the redun-
dancy in location computations.

The role of TASC on error propagation is motivated
with the example network in Figure 13. The black nodes
are beacon nodes and nodes A,B,C are unknown nodes.
Positions T1-T5 represent different possible positions
for a second beacon T attached to node A. Table I
shows the error predicted by the Cramèr Rao bound
for each of the five possible beacon positions under the
assumption of white gaussian measurement error. The
Cramèr Rao bound result is obtained from our previous
work in the analysis of error inducing parameters in
multihop localization described detail in [23]. From the
table we can see that in this particular example, the
error in the position estimate of node C can increase
up to 87%. This is an artifact of bad geometric con-
figurations of beacon node T located three hops away.
This geometric dilution of precision effect (GDOP) [23],
[25] can result in the propagation of a significant GDOP
error component in multihop localization. To reduce the
GDOP accrued error, one could initiate localization at the
high-density regions of the network using the topology

T5

T1

T4

T3

T2

A

B C

Node X

Fig. 13. Geometry error propagation

information encoded in the node weights. By starting
localization in locally isotropic regions seeded with the
elected leaders, localization can simultaneously start at
multiple points inside the network, consuming the best
geometric configurations first. Instead of providing the
complete details of how node localization and TASC
can be combined we illustrate this with the following
two examples. A more detailed description of ad-hoc
localization integrated with TASC will be presented in a
subsequent paper.

TABLE I

BOUNDS ON LOCATION ERROR

Test Position Node A Node B Node C

T1 1.48 2.17 2.49
T2 1.36 1.62 1.94
T3 1.34 1.48 1.4
T4 1.43 1.95 2.00
T5 1.5 2.24 2.63

A. Study case 1: Exploiting isotropy and meeting sensor
node computational constraints

In addition to error accumulation to demonstrate the
need for meeting the computational constrains, we draw
from our experience in the design of an ad-hoc localiza-
tion system based on the location aware Medusa MK-
2 recently demonstrated at Sensys 2003. Our current
efforts are focused on the design of a new distributed
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localization stack using a new generation sensor node
the XY Z node designed by the authors to experiment
with location aware systems 1.

The XY Z node, shown in Figure 14, is built around
the OKI ML67Q500x series of ARM THUMB processor
supporting a variable clock speed between 2 and 58MHz,
and the IEEE 802.15.4 and Zigbee compliant radio from
Chipcon. Our primary focus in the implementation of
XYZ is the development of a versatile location stack
described by Figure 15. The memory consumption of
our first round implementation is shown in Table II.
Although this implementation still requires substantial
code optimizations we use the memory footprints of our
current implementation status to provide some insight
into the the memory limitations of sensor nodes. From
our current implementation we found that the XY Z node
has enough memory to form a local coordinate system
for a group of 15 nodes. Our beaconless localization
implementation consists of an enhancement of three
main phases as originally outlined in [22]. In the first
phase, the algorithm identifies a uniquely localizable
configuration of nodes 2. The second phase obtains a set
of initial node position estimates. For this phase we have
implemented the MDS algorithm as described in [24]. Fi-
nally, refinement is implemented with a beaconless ver-
sion of collaborative multilateration we have previously
presented in [22]. With our implementation with found
that TASC shares several common features with the rest
of the localization algorithm so its implementation does
not pose a significant memory overhead. Two of the
main challenges is to minimize error by exploiting local
isotropy and to compute node locations while dealing
with the platform memory constraints. Figure 16 illus-
trates how the weights obtained by TASC can be used
to drive computation during a beaconless localization
process that forms a relative coordinate system for all the
nodes. For readability purposes in this example, distance
information is not included in the weight computation.
The example network demonstrates the use of weights
on a small network with one large cluster and a set
of smaller peripheral clusters. The nodes marked with
a triangle denote the leaders of each cluster after the
completion of the leader election, and the numbers next
to each node represent the computed weights.

1The XY Z node is available to other researchers from Cogent
Computer Systems at the beginning of August 2004

2This is a requirement we have identified in our prior work.
Although this is not completely defined in our implementation, we are
aware of the existence of an algorithm based on rigidity theory [12]
and work in progress in [17] that can identify uniquely localizable
nodes. This however is not the main topic of our discussion in this
paper.

The localization process is initiated at each cluster
leader after a backoff period that is inversely proportional
to the weight of the node. This implies that computation
will start from a locally isotropic view point, at the
leader with weight 22. First the leader identify the set
of uniquely localizable nodes in its cluster and compute
an initial coordinate system using the three-phase scheme
described above in the XY Z node software implementa-
tion. The leader then transfers control to the next heaviest
(but already localized) node found on the perimeter of
the cluster. This node repeats the same process in finding
a uniquely localizable component, but this time, the node
seeks an overlapping set of already localized nodes in
the cluster it belongs to and a set of unlocalized nodes
outside its cluster (Figure 16b). This set of nodes is local-
ized and control is transferred to the next heaviest node
to continue the process until all the nodes are localized
(Figures 16c,d). This incremental localization scheme
has the three desirable effects. First, localization starts
at the center of the network, fully utilizing isotropy and
reducing error propagation. Second, this weight driven
localization helps the formation of a moving cloud of
computation inside the network. This limits the number
of nodes a computing node has to consider to localize
other nodes in its vicinity, thus making localization fea-
sible on memory constrained nodes. The third desirable
feature is that it reduces computation redundancy. For
instance, in the distributed MDS-based scheme (MDS-
MAP(P,R)) described in [24]. Each node computes a
local coordinate system using information in its 2-hop
neighborhood, followed by a coordinated transformation.
If the same localization process is driven by weights then
only a small fraction of the nodes need to perform the
local coordinate system. This also limits the amount of
coordinate system transformations required to establish
a common coordinate system among all the nodes. This
study case hints the use of a multistart TASC driven
localization strategy outlined in the next subsection.

TABLE II

MEMORY REQUIREMENTS ON XY Z NODE

Code Component FLASH(KB) RAM(KB)

Basic OS 10.3 14.24
Floating Point Libraries 49.13 2.216
Beaconless Localization 22.272 4.1

Clustering 1.9 1.2

B. Study case 2: A Multistart Localization Strategy

The existence of locally isotropic clusters suggests a
multistart ad-hoc localization strategy to reduce error
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propagation. Localization can be initiated by cluster lead-
ers in the denser and more isotropic parts of the network
that are less likely to suffer from bad geometries. After
its initialization, localization will begin to expand in
multiple local coordinate systems beyond the boundaries
of each cluster. Two local coordinate systems can merge
with each other each time there is an overlap of three
nodes. Our simulation has shown that this approach will
work for uniform cases, but there are still issues that
remain to be addressed to achieve efficient merging.
At the same time, the merging of coordinate systems
is a least square fit computation that may also induce
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Fig. 16. An example of weight driven localization to limit error
propagation

errors due to bad geometry. The implications of error in
coordinate merging are still not well understood and it
is subject to further research.

VII. DISCUSSION

Despite the encouraging results on the behavior of
TASC, we acknowledge that there are multiple issues to
consider in realistic deployments. First the parameters of
task (radius of neighborhood used, minimum cluster size,
MinPoints and the computation of weights) should be
adapted to fit the particular application needs. The option
of a node running multiple instances of TASC with dif-
ferent parameters is worth exploring. Second, the timing
parameters of the algorithm should be more rigorously
defined to comply with an actual deployment. For some
systems where incremental deployment makes sense the
leader election mechanisms need to be adapted to support
the addition and subtraction of nodes from the network.
Based on our experience from the simulation behavior
and our efforts to build a scalable sensor network testbed,
we believe that these changes are possible.

In addition to the features described here, weight
computation in TASC can reveal important properties of
a network topology that should be further investigated.
For instance, in one particular implementation of weight
computation, we found that we could discover with very
high certainty the nodes that are found on the boundary
of a network. Finally, one of the main drawbacks is the
assumption that every node in the network is capable of
performing distance measurements to its neighbors. An
interesting extension would be to study how clustering
behaves in the case of heterogenous measurement tech-
nologies with different measure confidence levels as well
as the absence of distance measurements in some parts
of the network.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a topology adaptive cluster-
ing algorithm for sensor networks. Our evaluation has
shown that the novel combination of weights and density
reachability achieves the desired behavior that is, it can
decompose large networks into smaller locally isotropic
clusters node locations are computed. The preliminary
TASC implementation on a wireless sensor node has
shown that the algorithm has a small memory footprint,
and a lightweight implementation. This is because from
the implementation perspective, the network level func-
tionality required by TASC has a significant overlap with
neighborhood discovery services; the inter-node distance
measurements needed for distance based localization and
the neighborhood coordination features a sensor node
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is likely to have to be able to collaborate with other
nodes in its vicinity. We anticipate that such an algorithm
would provide a useful service for sensor networks. The
potential usefulness of TASC with node localization has
been described in this paper. Other potential applications
of TASC include the use of clustering to favor data
aggregation as well as non-uniform spatial sampling.
The distribution of weights inside a network can also be
used as an indicator for spatial regularity in a specific
deployment. One possible research avenue would be to
develop and algorithm for making localized decisions
on how nodes should reposition themselves to improve
sampling uniformity. Another possibility is to repeat the
weight-based election process to construct hierarchies.
The initial results are encouraging and suggest the more
rigorous evaluation of TASC needs in more realistic
deployment settings. As part of our future work, we plan
to test TASC in the context of our 3-D testbed comprised
with XY Z nodes. The two immediate uses of TASC
in our 100-node testbed is to assist with ad-hoc node
localization and in radio frequency allocation through
the meaningful, spatial decomposition of a dense Zigbee
network.
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