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ABSTRACT

Sensor networks have become an important source of data with nu-
merous applications in monitoring various rea-life phenomena as
well as industrial applications and traffic control. Unfortunately,
sensor data is subject to several sources of errors such as noise
from external sources, hardware noise, inaccuracies and impreci-
sion, and various environmental effects. Such errors may seriously
impact the answer to any query posed to the sensors. In particular,
they may yield imprecise or even incorrect and misleading answers
which can be very significant if they result in immediate critical
decisions or activation of actuators. In this paper, we present a
framework for cleaning and querying noisy sensors. Specifically,
we present a Bayesian approach for reducing the uncertainty as-
sociated with the data, that arise due to random noise, in an on-
line fashion. Our approach combines prior knowledge of the true
sensor reading, the noise characteristics of this sensor, and the ob-
served noisy reading in order to obtain a more accurate estimate
of the reading. This cleaning step can be performed either at the
sensor level or at the base-station. Based on our proposed uncer-
tainty models and using a statistical approach, we introduce several
algorithms for answering traditional database queries over uncer-
tain sensor readings. Finally, we present a preliminary evaluation
of our proposed approach using synthetic data and highlight some
exciting research directions in this area.
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1. INTRODUCTION

The emerging field of wireless sensor networks enables large-
scale sensing of the physical world. A typical sensor network con-
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sists of a large number of sensors, embedded in physical spaces,
continuously collecting and communicating their readings to the
base-station or the sensor database in order to answer various user-
defined queries. Existing networks are used for monitoring of sev-
eral physical phenomena such as contamination, climate, building
structure, and so on, potentially in remote harsh environments [30,
19]. They also found several interesting applications in industrial
engineering such as monitoring the quality of food, especially per-
ishable items, aswell asreal life applications such as transportation
and traffic control [3, 28]. In al these cases, the primary source of
sensor data is actual measurements of physical or well-modelled
phenomena, and thus, sensor data is subject to severa different
sources of errors. In general, these sources of errors can be clas-
sified broadly as either systematic errors (bias) or random errors
(noise). Systematic errors arise due to changes in the operating
conditions, e.g., temperature, humidity, etc., or other factors such
as ageing of the sensor. They can be corrected by calibration as
has been recently addressed in [6]. Calibration is not the focus
of this paper. We are particularly interested in reducing the ef-
fect of random errors on sensor readings since they may seriously
affect queries over sensor data. The sources of random errors in-
clude, but are not limited to, (1) noise from external sources, (2)
random hardware noise, (3) inaccuracies in the measurement tech-
nique (i.e., readings are not close enough to the actual value of
the measured phenomenon), (4) various environmental effects and
noise, and (5) imprecision in computing a derived value from the
underlying measurements (i.e., sensors are not consistent in mea-
suring the same phenomenon under the same conditions).

Several examples from the current technology reved that sen-
sors vary significantly in their precision and accuracy, tolerance to
hardware and external noise, etc., based on their type, cost and ap-
plication. For example, experiments showed that the distribution
of noise varies widely in different photovoltic sensors [6]. GPS
inaccuracy in determining the position can be up to few meters
(dfia.com). Precision and accuracy of humidity sensors may also
vary significantly (www.veriteq.com). The environment in which
the sensors operate is also usually unpredictable or harsh. Nu-
merous other external and uncontrollable factors may in turn affect
the quality (accuracy) of the reported sensor reading, and in many
cases result in inaccurate measurements. An example is recording
the distances to a fixed point by using signa strength (SS). The
recorded distance varies widely as the SS values at the sensor are
subject to external conditions. Also, weights of trucks can be mea-
sured by means of strain gauges, attached to bridges, which can be
affected by other vibrations. The aim of the industry, however, is
to manufacture tiny cheap sensors that can be scattered everywhere
and disposed when they run out of their batteries[1]. Therefore, in-
tolerance to internal and external noise, imprecision, and inaccura-



cies areinevitable and highly expected among those cheap sensors.
They will basically vary with the cost of the sensors.

Such random errors may seriously impact the answer of any
query posed to the sensors. In particular, they may yield imprecise
or even incorrect and misleading answers. The cost of the errors
can be very significant, especially when they result in immediate
critical decisions or activation of actuators. We argue that errors
in sensor data cannot be ignored. For example, consider the sce-
nario of Figure 1(a), simplified for the sake of illustration. Bacteria
growth in perishable itemsis monitored over the time by attaching
cheap wireless temperature and humidity sensors over them which
can be quite noisy. If the temperature and the humidity conditions
of any item fall under or go over given thresholds, the item should
be thrown away. Assume that the range of acceptable humidity and
temperature are [h1, ho], and [r1, r2], respectively. ¢; refersto the
true temperature and humidity readings at item 4, while o; refersto
the reported (observed) readings at item 4. As shown in the figure
and based on the reported noisy data, items 1, 4 should be thrown
away while items 2,3 should remain. However, based on the true
readings item 1 should remain whileitem 3 should be thrown away!
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Figure 1: (a) Based on the observed readings items 1,4 will be
thrown away, (b) Based on the uncertainty regions, only item 3
will be thrown away.

In traditional databases, the source of data is either an explicit
data-entry operation or atransaction activity. The origin of datais
typically business, financial or personnel. The data model assumes
clean data. Noisy data, if any, isassumed to be cleaned off-lineby a
separate database functionality. Sensor data, on the other hand, has
different characteristics; it is updated continuoudly, i.e., it forms
a data stream. In addition, it is usually used for decision mak-
ing or triggering of actuators in real-time. Therefore, cleaning of
noisy sensor readings cannot be a separate off-line operation asin
traditional databases. Recent work on query processing in sensor
databases has focused on data gathering using network primitives,
in-network aggregation, and query languages [18, 19, 12, 26]. The
emphasis of these approaches is to take into consideration the re-
source constraints of sensors such as bandwidth and energy. We
argue that errorsis also a serious limitation of sensors as important
as energy and bandwidth constraints. They result uncertainty in de-
termining the true reading (measurement) of the sensor: since the
Sensor is prone to errors it is uncertain about its true reading. We
therefore introduce a general framework for cleaning and querying
of noisy sensors. Our cleaning functionality aims at reducing the
uncertainty associated with the reading of each sensor that arises
due to random noise, thus obtaining a more accurate estimate of
the true “unknown” reading. Specifically, we present a Bayesian
approach for reducing the uncertainty in an online fashion. This
cleaning functionality can be performed either at the sensor level
or at the database level (base-station). We assume that the reading
of each individual sensor is important, and therefore, our cleaning
functionality works on every single sensor. Even if the readings of a
set of sensors are combined (aggregated) into a single more robust
reading to reduce the effect of noise [29], our approach can till

work on this single reading, thus yielding more accurate results.
Based on our proposed uncertainty models and using a statistical
approach, we introduce severa algorithms for answering a wide
range of traditional database queries over uncertain sensor read-
ings. We shall show that the above scenario of perishable items can
be avoided using our proposed framework for cleaning and query-
ing. Finally, we present a preliminary evaluation of our proposed
approach using synthetic data and highlight some exciting research
directionsin this area.

The rest of this paper is organized as follows. We describe our
data domain and present our proposed framework in Section 2. In
Section 3, we discuss a Bayesian approach for reducing the un-
certainty associated with noisy sensors. We introduce algorithms
for evaluation of queries over uncertainty modelsin Section 4. We
discuss an experimental evaluation of our framework in Section 5.
Section 6 discusses related work. Finally, Section 7 concludes this
paper and highlights our major future work directions as well as
challenging research problemsin this area.

2. OVERALL FRAMEWORK

In this section, we give an overview of our domain. We also
describe our proposed framework for dealing with noisy sensors.

2.1 Domain Description

We assumethat thereisaset of n sensors, S = {s;},i =1---n,
scattered in the space and forming a wireless sensor network. The
sensors are capable of providing their measurements at each time
instance ¢ and reporting them to a specific collecting point (base-
station). Low-level networking techniques for routing, topology
maintenance, communication, etc., are implicitly assumed to be
available. We think of each sensor s; at a specific time instance
t as atuple in the sensor database with attributes corresponding to
the readings of the sensor. Each sensor has one or more reading
corresponding to each measurement. The attributes of a specific
sensor, s;, at a specific time instance ¢ are denoted by s; - A(t) =
{si.a;(t)},7 =1---m,wherem isthe total number of attributes.
We assume that the same sensor may be used for sensing differ-
ent phenomena or that many specialized sensors, installed at the
same location, are combined to form one “virtual” multi-attribute
sensor. Furthermore, we assume that all the sensors have the same
number of attributes. If thisis not the case then each phenomenon
is treated separately and the sensors will have a single attribute
for each phenomenon. We assume that all the attributes are real-
valued. However, the proposed framework can be extended to the
case of discrete-valued attributes in a fairly similar way. We are
concerned with the readings of each sensor (attributes’ values) at a
specific time instance, hence, we may drop the time index ¢ when
referring to the sensors and their readings. Since our focus is un-
certainty due to random errors, we assume that all the tuples exist
(no missing tuples) and are complete (no incomplete tuples), but
that the attributes are noisy.
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Figure 2: Overall Framework.

Our overall framework is shown in Figure 2. It consists of two



major modules; a cleaning module and a query processing module.
The cleaning module is responsible for cleaning the noisy sensor
data, in an online fashion, by computing accurate uncertainty mod-
els of the true “unknown” data. In particular, there are three inputs
to this cleaning module: (1) the noisy observations reported from
the sensors, (2) metadata about the noise characteristics of every
sensor (error model), and (3) information about the distribution of
the true reading at each sensor (prior knowledge). We shall discuss
the latter two inputs shortly. The output of the cleaning module
is probabilistic uncertainty models of the reading of each sensor
(posterior), i.e., aprobability density function (pdf) of the true “un-
known” sensor reading taking on different values. Computing these
modelsis the topic of the next section. The query processing mod-
uleisresponsible for producing answers to any posed query to the
system using the uncertainty models of the current readings. Since
the uncertainty models are probabilistic, traditional query evalua-
tion algorithms, that assume asingle value for each reading, cannot
be used. Hence, our query processing module uses algorithms that
are based on statistical approaches for computing functions over
random variables. In Section 4, we shall introduce these algorithms
in details.

The error model of each sensor is basicaly the distribution of
the noise that affectsit. It isassumed to follow a Gaussian distribu-
tion with zero mean. In order to fully define the model we need to
compute its variance. The variance is computed based on the spec-
ification of each sensor (accuracy, precision, etc.), and on testing
calibrated sensors under normal deployment conditions. This test-
ing can be performed either by the manufacturers or by the users
after installation and before usage. Environmental factors or char-
acteristics of the field should also be taken into consideration. The
error models may change over the time and new modified models
may replace the old ones. The models should be stored as a meta-
data at the cleaning module. Sensors are not homogeneous with re-
spect to their noise characteristics, and therefore, each sensor type,
or even each individual sensor should have its own error model.

Prior knowledge, on the other hand, represents a distribution of
the true sensor reading taking on different values. There are several
sources to obtain prior knowledge. It can be computed using facts
about the sensed phenomenon, learning over time (history), using
less noisy (more precise) readings as priors for the more noisy ones,
or even by expert knowledge or subjective conjectures. Neverthe-
less, they can be computed dynamically at each time instance if the
sensed phenomena is known to follow a specific parametric model.
For example, if the temperature of perishable items is known to
drop by afactor of % fromtimet — 1 to time ¢ then the (cleaned)
reading of the sensor at timet¢ — 1 is used to obtain the prior distri-
bution at time ¢. The resultant prior along with the error model and
the observed noisy reading at time ¢ are then input to the cleaning
module in order to obtain the uncertainty model of the sensor at
time ¢. Our approach in this case of dynamic priors indeed resem-
bles Kalman filters[17].

It is worth mentioning that a straightforward approach for mod-
eling uncertainty in sensor readings due to noise is to assume that
the true unknown reading of each sensor follows a Gaussian pdf,
centered around the observed noisy reading, with variance equals
to the variance of the noise at this sensor. However, it is a fun-
damental fact among estimation theory community that the use of
prior knowledge leads to more accurate estimators [15]. This mo-
tivated our use of prior knowledge in cleaning, in order to reduce
the uncertainty associated with noisy sensors. We shall justify this
fact in Section 3 by proving that the estimation error in our pro-
posed cleaning approach is less than that of the straightforward
case. Some priors, however, are more useful than the other; in

the sense that they have less variance. Thisin turn resultsin more
reduction in the uncertainty and enhance the overall accuracy of
our framework. In general, if the prior knowledge is not strong
enough (i.e., has a very wide distribution compared to the noise
distribution), then our approach will still be superior, though not
“very” advantageous in terms of estimation error. Fortunately, in
many situations this is not the case as we discussed before. For
example, situations where we have cheap and very noisy sensors
scattered everywhere to collect measurements of a well-modelled
phenomenon such as temperature, etc. A strong prior can be eas-
ily computed in this situation while the noise is expected to have a
very wide variance.

The final point that we address in this section is some deploy-
ment issues. Specifically, there are two places where cleaning and
query processing can be performed, at the sensor level or at the
database level (or base-station). Each option has its communica-
tion and processing costs, which can be interpreted to energy con-
sumption, and storage cost. Due to the limited space, we will not
introduce explicit cost models for each case since there are many
factors involved. Sensor capabilities, application, etc., will force
the decision of which approach to use. Experimentation to guide
this decision is part of our future work. In what follows, we aim
at illustrating rough estimates of the advantages and limitations of
each option.

Sensor Level When the cleaning is performed at the sensor thereis
a storage cost to store the prior and the error models at the sensor.
The storage cost depends on the complexity of the two models; the
more complex (more parameters) the more storage space. Further-
more, there may be a significant communication cost to send the
prior to the sensor from the base-station. Specificaly, if the pri-
ors are dynamic and depend on factors other than the readings of
the sensor, e.g., readings of other sensors, then this option is not
advantageous. On the other hand, if the prior is (almost) static, or
dynamic but can be computed at the sensor, then the communica-
tion cost will be negligible. Cleaning also introduces a processing
cost to compute the posteriors. This cost can be significant as we
shall present in Section 3. However, the major advantage of per-
forming the cleaning at the sensor level is that a point estimation
of the resultant posteriors can be obtained. Consequently, tradi-
tional approaches to in-network query processing and aggregation
can be used with error bounds [19, 30]. Performing the cleaning
at the sensor and the query processing at the database level has no
advantages. Thisis clearly due to the fact that communicating the
noisy reading (a single value) to the base-station and performing
the cleaning there always has less communication cost than com-
municating the parameter(s) of the resultant uncertainty model. In
addition, it introduces a storage cost (prior, error models).
Database L evel We assume that any processing or storage at the
database level has no cost which is the major advantage of per-
forming the cleaning and the query processing there. Furthermore,
communication cost of sending dynamic priors to the sensors is
saved. Answersto posed queries will also be computed exactly us-
ing techniques of Section 4. The mgjor limitation, however, is that
distributed query processing cannot be used.

3. REDUCING THE UNCERTAINTY

In this section, we present our approach for reducing the un-
certainty associated with noisy sensor reading, i.e., for computing
more accurate uncertainty models of each sensor. Our proposed
approach isan online cleaning; we combine the prior knowledge of
the true sensor reading, the error model of the sensor, and its ob-
served noisy reading together, in “one step” and online. This step
is performed using Bayes' theorem shown in Equation 1, where the



likelihood isthe probability that the data = would have arisen for a
given value of the parameter 6 and is denoted by p(z|6) [4, 11, 9].
This leads to the posterior pdf of 8, p(6|z). Therest of this section
includes a background of Bayes' theory. Readers who are familiar
with it may skip to the next section.

_ likelihood x prior
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3.1 Single-Attribute Sensors

Sensors of this class have only one attribute. Due to occurrence
of random errors the observed value of the attribute o will be noisy,
i.e., it will be higher or lower than the true value t. Asdiscussed in
Section 2, the random error isnormally distributed (Gaussian) with
zero mean and aknown standard deviation ~ N (0, 6?). Therefore,
the true value ¢ follows a Gaussian distribution centered around a
mean p = t and with variance &2, i.e.,, p(olt) ~ N(t,4%). We
apply Bayes' theorem to obtain a more accurate uncertainty model
(posterior pdf) for ¢, p(t|o). In particular, we combine the observed
value o, error model ~ N (0, 62), and the prior knowledge of the
true reading distribution p(t) as follows.

@

evidence

p(olt)p(t)
2(0) @

Equations 3,4 shows the computation when the reading of a spe-
cific sensor s isknown to follow a Gaussian distribution with mean
s and standard deviation o, i.e., t ~ N(us,0,%) (prior). Specif-
ically, by applying Bayes theorem and using some properties of
the Gaussian distribution we conclude that the posterior probability
p(t|o) aso follows a Gaussian distribution N (u, 0¢?) [4, 11]. In
general, we do not restrict the prior distribution of the true reading,
t, to a specific class of distributions. However, Gaussian distribu-
tions have certain attractive properties which makes them a good
choice for modeling priors. In particular, they yield another Gaus-
sian posterior distribution with easily computed parameters which
enables performing the cleaning at the sensor level, they are known
to be analytically tractable, they are useful for query processing and
yield closed form solutions aswe will show in Section 4, and finally
they also have the maximum entropy among all distributions [9].

p(tlo) =

p 2
52 o

Ht = 052+62us+052:‘620 (3)
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Example Let us obtain the uncertainty model of atemperature sen-
sor at a specific time instance. Assume that our prior knowledge is
that the temperature r follows aGaussian distribution, and itismost
likely 9 degrees with standard deviation of 4, i.e., r ~ N(us =
9,02 = 4%). Further assume that the noise at this sensor is known
to have a standard deviation of 10; noise ~ N(0,6*> = 10%). If
the reported noisy temperature is 15 then, using equations 3 and 4,
we obtain a mean =~ 9.8 and a standard deviation ~ 3.7 of the
posterior distribution for the true unknown temperature, p(t|o) ~
N(9.8,3.7%) asshown in Figure 3.

In order to prove the effectiveness of our approach in reducing
uncertainty, we compute the Bayesian mean squared error, E[(t —
£)?] for the resultant posterior, wheret, ¢ are the true unknown read-
ing, and the posterior mean, respectively. We then compare it with
the case when no prior knowledge is utilized which is the straight-
forward approach, discussed in Section 2. The error (uncertainty)

T
prior
—— posterior

N Observed
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Prior

20

Figure 3: The resultant uncertainty model of the true temper-
ature (posterior) and the observed erroneousreading.

in the resultant posterior equals o;> = 6?(%) (please refer
to [15] for details). This amount is less than §2, the error (uncer-
tainty) when no prior is utilized. Moreover, when the variance of
the prior becomes very small as compared to the variance of the
noise, or in other words, when the prior becomes very strong, the
error of the posterior becomes smaller and the uncertainty isfurther
reduced. Consequently, our resultant uncertainty model becomes
far more accurate than the no-prior case. Equation 3 also illustrates
an interesting fact. It shows that our approach in general compro-
mises between the prior knowledge and the observed noisy data.
When the sensor becomes |ess noisy, its observed reading becomes
more important and the model depends more on it. At very high
noise levels, the observed reading could be totally ignored.

3.2 Multi-Attributes Sensors

We now extend our approach to the case of multi-attributes sen-
sors. We assume that the random errors on the attributes are in-
dependent and normally distributed, but not necessarily identical,
i.e., therandom error e; on attribute s.a; is normal with zero mean
and a known standard deviation ~ N(0, 8;%),i = 1---m, where
m isthe number of attributes. The observed noisy readings of the
attributes are represented by the column vector O, x 1 whilethe un-
known true readings are represented by the column vector T;,, 1.
Based on our error model, we assess that 7' follows a multivari-
ate Gaussian distribution centered around an m—component mean
column vector ¢ = T and with an m x m covariance matrix %,
i.e, p(O|T) ~ N(T,%). The prior knowledge in this case is a
multivariate distribution p(T") that models the prior knowledge of
the true readings and the correlation between the attributes appro-
priately.

52 0 0
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Similar tothe single attribute case, the posterior pdf of T', p(T'|O)
is computed using Bayes' theorem. For example, assume that the
readings of a specific sensor s follow a multivariate Gaussian dis-
tribution with mean vector u, and a covariance matrix X, i.e., the
prior T' ~ N(us,3s), p(O|T) follows aGaussian distribution cen-
tered around 7" with a covariance matrix X described by equation 5,
i.e, p(O|T) ~ N(T, X). Using Bayes theorem and the properties
of Gaussian distributions, the multivariate posterior pdf, p(T'|0O),
isaso Gaussian ~ N(ur, Xr), where pur and X1 are computed
asfollows.
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The terms 25 [%s + ] 71, 7 will be computed off-line. They
need not be recomputed at every time instance as long as the prior
does not change. Moreover, if the attributes are known to be uncor-
related, the covariance matrices 5, X1 will be diagonal and the
computations will be further simplified. In general, if the attributes
are known to be uncorrelated, the multivariate case will reduce to
m individual single attribute cases where the uncertainty associ-
ated with each attribute can be obtained independently of the other
attributes. In fact the multivariate posterior pdf in this case is the
product of theindividual posteriors. Correlation between attributes,
when exists, however, usually leads to more accurate models.

4. EVALUATION OF QUERIES

In this section, we highlight the major differences between eval-
uation of queries over data of uncertainty models and data of single
points. We also give a classification of queries that we consider
in this paper. We then present algorithms for evaluation of queries
over sensor data, presented using our proposed uncertainty mod-
els discussed in Section 3. These algorithms are used in the pro-
cessing module of our framework over the output of the cleaning
module and at the database level. In what follows, for simplic-
ity of notation, we use the term p;, (¢) to describe the uncertainty
model in the univariate case, i.e., the posterior distribution, p(¢|o),
of sensor s;. For the multi-attribute case, we will use the term
ps; (T) = ps; (t1,t2, ..., tm) torefer to p(T'|O) of sensor s;.

Based on our uncertainty models, the reading of each noisy sen-
sor at a specific timeinstance is considered arandom variable (r.v.)
described by the posterior pdf of the sensor and not necessarily
by a single point with probability 1. Therefore, traditional query
evauation algorithms that assume single points cannot be used for
evaluation over noisy sensors. Another significant difference be-
tween queries over exact data (single points) and over noisy sensor
data (uncertainty models) isillustrated by the following example.
Example Consider the scenario where we have noisy temperature
sensors. A user poses the following query to the system at a spe-
cific time instance, “return the maximum reading of those sensors
that record a temperature > 50F”. If the data is exact (no noise)
then the system will have a single reading of each sensor, i.e, the
true reading of each sensor will be known exactly and equalsto its
observed reading with probability 1. Consequently, the system can
check whether each sensor satisfies the provided predicate or not.
It then returns the maximum of those sensors that satisfy the predi-
cate. Now consider noisy sensorsin our framework, the processing
module does not have a single estimate of the true reading of each
sensor. It only has a pdf that represents the “ possible” values of the
true reading. In order to determine whether or not a specific sensor
satisfies the given predicate, the processing module can compute
the probability that each sensor satisfies the predicate using its pos-
terior pdf. However, when the probability is less than 1, which is
highly expected, the module will be “uncertain” whether the sensor
satisfies the predicate or not. Even though there is a high chance
that a specific sensor satisfies the query as its probability approach
1, eg., 0.85, neither the processing module nor any person can de-
cide for sure. Therefore, there is no answer to this predicate and
consequently we do not know which sensor is the maximum. In
order to overcome this difficulty without violating any statistical
rules, we propose modifying predicate queries by rephrasing them

as “return the maximum value of those sensors that have at least
a c% chance of recording at a temperature > 50F". We call ¢ the
“confidencelevel”, and it isdefined by usersaspart of their queries.
Intuitively, in presence of uncertainty users must play arolein de-
termining which answers are considered acceptable and which an-
swers should be rejected due to the lack of confidence. Following
our reasoning, the processing module can now filter out al those
sensors that have a probability lessthan 155 of satisfying the query.
It then computes the maximum over the remaining sensors. This
leave the problem of computing the maximum over a pdf which we
will discuss shortly.

ConfidencelL evel (¢): Theconfidencelevel or the acceptance thresh-
old c isauser-defined parameter that reflectsthe desired user’s con-
fidence. In particular, any sensor with probability p < 155 of sat-
isfying the given predicate should be excluded from the answer to

the posed query.

4.1 Classification Of Queries

Classes of queries related to sensor networks have been identi-
fied broadly as traditional SQL-like queries and aggregates [19, 8,
2] or probabilistic range queries for moving objects [28]. In this
paper, we follow a classification of queries similar to the former
case. However, we do not claim that queries covered in this sec-
tion form a complete set of possible queries on sensors, nor do we
claim that this is the best classification of queries for all applica-
tions. Our objective israther to cover awide range of queries posed
to domain of sensors, and we present a classification that simplifies
our discussions. The algorithms that we introduce here are based
on statistical approaches for computing functions over one or more
random variables; e.g., summing of random variables, computing
order statistics of a set of random variables, and so on. We assume
that queries, posed to our system, will take on one of the following
three forms.

e “What isthereading(s) of sensor z?". We call queries of this
form Single Source Queries (SSQ).

e “Which sensors have at least ¢% chance of satisfying agiven
predicate?’. We call queries of thisform Set Non-Aggregate
Queries (SNAQ), since no aggregation is involved.

e “On those sensors which have at least ¢<% chance of satis-
fying a given predicate, what is the value of a given aggre-
gate?’. The aggregate can be a summary aggregate such as
SUM, AVG, and COUNT aggregates or an exemplary ag-
gregate such as MIN, MAX aggregates. We call the former
Summary Aggregate Queries (SAQ), and the latter Exem-
plary Aggregate Queries (EAQ). This classification of ag-
gregate queries into summary and exemplary has been ex-
tensively used among the database community, e.g., in [19].
The predicate can be empty. In this case, all the sensorsin
the field will be considered for aggregation.

4.2 Evaluation of SSQ

This class of queries returns the value(s) of the attribute(s) of a
specific sensor and no aggregation is involved. We propose two
approaches for answering this class of queries. The first one is
based on computing the expected value of the probability distribu-
tion. For the single attribute case, the output of this approach is
Es,(t) = [ tps, (t)dt of the queried sensor s;. The second ap-
proach isbased on computing the p% confidence interval of ps; (¢).
The confidence factor p can be user-defined with a default value
equals to 95. The confidence interval is computed using Cheby-

chev'sinequdlity [7], asfollows.
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Where s, , o5, are the mean and the standard deviation of p, (¢),

2
Ts;

€ > 0. In order to compute ¢ we set (1 — =) to p and solve.
The resultant p% confidence interval on the attribute will be [, —
€, us; + €]. The two approaches are extended to the multi-attribute
sensors in a straightforward way. We first compute the marginal
pdf of each attribute ¢; of the queried sensor, s;, ps; (t;). We then
output the expected reading of each attribute, or the p% confidence
interval on each attribute ¢; by applying Chebychev inequality, on
itsmarginal pdf.

4.3 Evaluation Of SNAQ

Thisclass of queries returns the set of sensorsthat satisfy agiven
user-defined predicate. We assume that the predicates are smple
range queries on one or more attributes. However, our general algo-
rithm outlined below extends naturally to complex conditions with
mixes of AND and OR as well as conditions that involve more than
one attribute, etc., using a traditional statistical approach for com-
puting the probability on complex conditions.

For the single attribute case, assume that the given range R =
[1, u] is specified by lower and upper bounds on the attribute value,
1, u, respectively. The answer to the SNAQ will be the eligible set
Sr = {si} of those sensors with probability (p; > +55) of being
inside the specified range R, where p; = [ ps, (t)dt along with
their “confidence”, p;.

The fundamental difference in the multi-attribute case isthat the
range will be specified by several intervals on some of the attributes
(aregion) rather than asingleinterval [I, u]. Assume, without loss
of generality, that the attributesinvolved in the original given range,
R, are {t1,t2,--- ,tx}. We start by computing the marginal den-
sity distribution of those attributes, ps; (t1,t2, -+ ,tr). We then
compute the eligible set Sr of those sensors s; with probability
(pi > 15g) Of being inside the specified range. Figure 4 summa-
rizesthe steps of obtaining the eligible set Sk for the multi-attribute
case. If thereading(s) of the sensor is also required we compute it
over the eligible set and using the algorithms of SSQ.

input ¢, S, R, output Sr

Sk {}

if predicate is empty then Sk <+ S
elsefor : = 1to|S| do

Poi(tr, ooy ti) = [ oo 2 pas (b, tm)dbegr - dbm

pi=[ g [ps(tite, o te)dty - dty

if (pi > Wco)then Sr = SrUs;
return Sg

Figure 4: Computing Sr for multi-attributes sensors.

As an example, consider the scenario of Figure 1(b). Assume
that the output of the cleaning module is that the reading of each
sensor is uniformly distributed over the depicted squared uncer-
tainty regions. The probahilities of the items being inside the given
range are (iteml, 0.6), (item2, 1), (item3, 0.05), (item4, 0.85).
If the user-defined confidence level isc = 50%, which is areason-
able confidence level, then only item 3 will be thrown away. This
coincides with the correct answer over the true unknown readings,
and is also more accurate than the answer on the noisy (uncleaned)
readings.

Our approach for obtaining the eligible set bears similaritieswith [8]

for dealing with uncertainty in data due to lag of instantaneous up-

dates. The major differences in our approach lie in excluding all
sensors with probability < 155 from the set, generdization to the
multi-attributes case, and introducing algorithmsto output the read-

ing of each sensor, if required.

4.4 Evaluation Of SAQ

The aggregate functions that fall under this category are SUM,
COUNT, and AVG queries. Before evaluating the aggregate, we
obtain the eligible set Sg of those sensors that satisfy the given
predicate, using algorithms of SNAQ. If the predicate is empty then
all the sensors are considered in the aggregation, Sg = S.

To compute the SUM aggregate, we utilize a statistical approach
for computing the sum of independent continuous random variables
(convolution) since our uncertainty models form a set of indepen-
dent continuous r.v. To sum |Sg| sensors, we perform the convo-
lution on two sensors and then add one sensor to the resultant sum
(also ar.v.) repeatedly till the overall sumisobtained. Assume that
thesum Z = s; + s; of two uncertainty models of sensors s;, s;,
isrequired. If the pdfs of these two sensors are ps, (t), ps; (t), re-
spectively, then the pdf of Z is computed using Equation 9 [7]. The
expected value of the overall sum or a95% confidence interval can
then be computed and output as the answer similar to SSQ.

pz(z) = / " pe(@)ps, (2 — 2)da ©

Computing the COUNT query reduces to output |Sr| over the
given predicate. Finally, the answer of the AVG query equals the
answer of the SUM query divided by the answer of the COUNT
query, over thegiven predicate. Thealgorithms of the multi-attribute
case are analogous after computing Sr and marginalizing over the
attribute involved in the aggregation.

45 Evaluation Of EAQ

This class includes the MIN and the MAX queries. Similar to
the summary aggregate queries, we start by evaluating the eligible
set Sr and then perform the aggregation over sensorsin Sg. The
MIN of m sensorsin Sg isthen computed asfollows (MAX query
is analogous).

Let the sensors s1, s2, - . ., sm be described by their pdfs
ps, (t), ..., ps, (t), respectively, and their cumulative distribution
functions (cdfs) Ps, (¢), ..., Ps,, (t), respectively. Let the random
variable Z = min(s1, s2, ..., sm) be the required minimum of
these independent continuousr.vs. Thecdf, pdf of Z, Pz(z), pz(2)
are computed using Equations 10, 11, respectively [7]. This ago-
rithm also generalizes to the multivariate case. Nevertheless, other
order statistics such as Top-K, Min-K, and median are computed in
asimilar manner.

Py(z) = prob(Z <z)=1—-prob(Z > z)
= 1—prob(si > 2,82 > 2,...,8m > 2)
= 1—(1-Py(2) (=P () (10
pz(2) = —%(1 = P5,(2))(1 = Poy (2)) -~ (1 = Ps,,, (2)) (1)

4.6 Discussion

The above agorithms involve several integrals that are not usu-
ally guaranteed to yield a closed form solution for all families of
distributions. However, there are specific formulas for computing
these integrals easily in the case of Gaussian distributions. For



example, the marginal pdf of Gaussian is aso a Gaussian, o is
the sum of Gaussians (and conseguently the AVG) [7]. Evaua
tion of SSQ simply reduces to the mean parameter u of the Gaus-
sian uncertainty model in the single attribute case, and to the m-
component mean vector in the multi-attributes case. For other fam-
ilies of distributions, where no known closed form solution exists,
the integrals will be approximated by another suitable distribution.
These approximations will be stored in a repository at the query
processing module. This means that a large part of the computa-
tion will be performed off-line and reused when needed, e.g., by
changing the parameters in pre-computed parametric formulas. It
isimportant to distinguish between the approximationsin this case,
where the answer to the query is computed exactly over the uncer-
tainty models, and the case where these models are used to produce
asingle point estimation, either to simplify the computations or to
be used for in-network query evaluation as we discussed in Sec-
tion 2. If traditiona evaluation algorithms are to be used on the
latter case, then the answer itself will be only an approximation
and explicit error bounds should be provided. Furthermore, there
is no justification for shrinking the uncertainty to a single point,
from a statistical perspective. Such a simplification, however, may
work well for some types of sensor data and experiments need to
be run for investigation. We plan to further study these issues by
experimenting with different types of sensor data.

5. EXPERIMENTAL EVALUATION

This section presents a preliminary evaluation of our framework
using synthetic data. We are currently building a prototype of our
framework and more evaluations using this prototype will be re-
ported in the future. We simulated the readings of 1000 single at-
tribute sensors at a specific timeinstance using MATLAB. The data
was drawn evenly from 5 non-overlapping clusters of data by gen-
erating 200 readings randomly from a Gaussian distribution cen-
tered around the cluster mean with variance of 100. The cluster
means were 1000, 2000, 3000, 4000, and 5000, respectively. These
readings represent the unknown true readings of the sensorsin our
experiment. We used the distribution of the cluster that generated
the true reading as the sensor’s prior. It isimportant to notice that
the we did not utilize our knowledge of the exact true reading in
the prior, rather, we used the distribution of the whole cluster asthe
prior. In fact our results would have been even better if we used a
prior centered around the true reading. We generated the noisy data
by adding random noise to each sensor reading, we cal this the
raw data The noise was generated from a Gaussian distribution
with 0 mean. We repeated our experiment at different noise levels
(standard deviations) ranging from 5 to 50 with astep of 5. At each
level we obtained the posterior distribution of the readings using
our proposed approach, we call this Bayesian dataWe generated
random range queries as predicates for evaluation. We repeated for
500 predicates at each noise level and obtained the average error
in each case. Due to the limited space we only discuss the single
attribute case, however the results for multiple attribute case are
comparable. We also include evaluations of some of the queries
that we presented above.

SSQ We measured the mean squared errdoetween al the true
readings and the raw data, and between all the true readings and
the Bayesian data at each noise level. Bayesian data was estimated
using the mean of the posterior distribution. We repeated the ex-
periment several times with different prior distributions by varying
the width of the prior distribution (standard deviation). Our objec-
tive isto illustrate the compromise between using the prior and the
noisy reading, which we discussed in Section 3, as the noise level
increases and to show the error in each case. As shown in Fig-

ure 5, our approach indeed reduces the uncertainty of noisy data
and therefore yields far less errors. This coincides with the brief
analysis of errors that we presented in Section 3.1; since the raw
noisy data represents the data of the straightforward approach for
modeling uncertainty (by estimating each reading using the mean
of its Gaussian distribution). As the noise level increases, the re-
sultant uncertainty model of each sensor reduces to that of its prior
and then remains unchanged even when the noise further increases
(Equation 3), and hence, the error reduces to the uncertainty asso-
ciated with the prior. Thisfact isasoillustrated in the figure where
the curves of Bayesian data flatten with the large increase in noise.

Mean squared error
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—¢ raw data
- QO Bayesian - priorc = 10
-\ Bayesian - prior o = 20
| | ¢ Bayesian - prior o = 30
2000 - O Bayesian — prior 0 = 50

error
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Figure5: Mean Squared Error at different prior distributions.

SNAQ As we mentioned before, 500 predicates were generated at
random at each noise level. The standard deviation of the prior was
set to 10 in this experiment. We computed both the set of sensors
that satisfy the predicate in case of raw dataand in case of Bayesian
data and compared them to the true set. Our error metrics in this
class are the Precisionand the Recallof the result with respect to
the true data. Precision and Recall are relevancemetrics that are
widely used in Information Retrieval [11]. Recall represents the
fraction of relevant objects that are retrieved in the answer relative
to the total number of true relevant objects in the data set, while
Precision represents the fraction of retrieved objects that are rele-
vant. It is clear that methods with high Recall and Precision are
favorable since high Recall means low false negatives while high
Precision means low false positives. We repeated the experiment
for different reasonable confidence levels. As shown in Figure 6,
our approach maintains fairly high precision and recall at different
confidence levels even in the presence of high levels of noise since
the uncertainty in the data is effectively reduced.

SAQ In this class of queries we were interested in the mean abso-
lute error of the computed aggregate compared to the true answer
(computed on the true data). Similar to the SNAQ class, we gen-
erated 500 predicates at random at each noise level to represent
the aggregation predicate. We computed the aggregate function in
case of raw noisy data and Bayesian data using our proposed al-
gorithms. The standard deviation of the prior was set to 10 while
the user-defined confidence was set to 0.5 which isafairly typical
scenario. We evaluated COUNT, SUM aggregates as shown in Fig-
ures 7, 8, respectively. The more accurate uncertainty models of
our framework yield smaller errors compared to the raw data. The
difference in the performance becomes very clear asthe noise level
increases.
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6. RELATED WORK

Recently, there has been a tremendous amount of work reported
in the area of sensor networks, both static sensors and sensors on
moving objects. For example, some research has focused on data
centric approaches, routing, storage of sensor data, and fault tol-
erance [25, 24, 14, 13, 5, 16]. In genera, in-network process-
ing was proved to be more energy-efficient theoretically and ex-
perimentally [19, 30, 13], since valuable communication energy is
saved. This motivated the recent work on computing aggregates
in sensor networks by processing the query in-network hierarchi-
caly, in adistributed fashion [19, 30], and on designing and imple-
menting database functionality [20, 12]. Also, generic architecture
for queries over streaming sensors has been proposed in [18]. All
these research efforts take into consideration the severe resource
constraints of sensor networks, especially, energy and communi-
cation constraint, and their unattended deployment potentially in
harsh environments. However, this work does not deal with un-
certainty in sensor data due to random noise. Data obtained from
sensor networks in this research is assumed to be precise and noise-
free. Compared to this work, our focus is on noisy sensors. We
propose aframework for obtaining accurate models for the true un-
known readings of noisy sensors and for querying these models.

General modeling of sensor streams and defining abstractions to
represent sensor networks as databases were studied by Gehrke et
al. aspart of their Cougar project [2, 3, 29]. They have also studied
indexing and retrieval of noisy sensorsin GADT [10]. Specifically,
they proposed abstract data types (ADT) and data structures for
“indexing” noisy sensors that are represented as pdfs. Our focus,
on the other hand, is on reducing the uncertainty associated with
noisy sensors, i.e., computing accurate pdfs that represent sensor
data, and on general agorithms for computing answers to queries
over uncertainty models. Indexing techniquesin GADT can then be
used over our resultant more accurate uncertainty models. Uncer-
tainty in sensor databases due to lag of updates has been addressed
recently in [8]. Dueto continuous changes in sensor values and lim-
ited network bandwidth and energy, the database state may lag the
state of the real world, and therefore, the data inside the database is
considered just an estimate of the actual data. The authors assume
probabilistic uncertainty models for this problem, i.e., a pdf over a
range that is guaranteed to include the current value. Their work,
however, does not deal with erroneous noisy data or with reduc-
ing their uncertainty as we do. Some of our proposed algorithms

for query evaluation bear similarities with their proposed approach
since both rely on statistical rulesfor computing functions over ran-
dom variables. However, we extended some of their algorithms by
defining confidence levels and justifying their use and by proposing
algorithms for computing aggregates subject to aggregation condi-
tions (range queries). They consider single attribute sensors only
while we also generalized to sensor of multiple attributes. Wolfson
et al. have studied the problem of uncertainty in the trajectory of
moving objects due to lack of perfect tracking of the continuous
motion and network delays [22, 28]. Compared to their work, our
focusison reducing uncertainty of the“reported” inaccurate sensor
readings, i.e., dealing with inaccuracy and not location prediction.
Moving objects can also benefit from our approach. In particular,
dynamic priors can be computed (e.g., using information about |o-
cation and speed of the object, and traffic conditions) and then used
for reducing uncertainty of the reported locations. This particular
case of reducing uncertainty using dynamically changing priorsand
Bayes' rule indeed resembles the “measurement step” of Kalman
filters[17]. In addition, unlike our proposed algorithms for differ-
ent classes of queries, the authors focus on range queries, basically
due to the nature of their application.

Calibration errors have been addressed very recently in [6]. The
authors proposed a post deployment calibration technique. In par-
ticular, they derive relative calibration relationships between the
sensors by utilizing temporal correlation between co-located sen-
sors and then follow this step by an optimization agorithm. The
authorsfocus only on calibration and assume that any random noise
has been suppressed. Our focus however is on dealing with random
noise in sensor data and not on calibration errors.

Finally, Bayes-based approaches have been used in literature in
thefieldsof statistics, machinelearning, datamining, pattern recog-
nition and estimation theory [21, 11, 27, 9, 15]. In this paper, we
utilized aBayesian approach for obtaining accurate estimates of the
true unknown sensor readings. The novelty of our work liesin de-
signing an overall framework that utilizes Bayes' rule and illustrat-
ing how to be used for online cleaning of noisy sensor data either
at the sensor level or at the base-station. In addition, based on our
proposed uncertainty model, we a so introduce several algorithms
for answering queries over uncertain data. Uncertainty, in general,
has received attention in literature especialy uncertainty due to in-
complete information. Parsons surveys most of the work done in
this areafrom both Al and database perspectives [23]. Uncertainty



has been handled using fuzzy logic and fuzzy theory. However, our
focus is on noise which cannot be handled using such an approach
since there is no fuzziness or vagueness involved [10].
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7. CONCLUSIONSAND FUTURE WORK

We have highlighted the importance of handling noise in sensor
networks. We introduced a framework for cleaning and querying
noisy sensors. In particular, we presented a Bayesian approach
for reducing the uncertainty associated with noisy sensor data in
an online fashion. Bayesian approaches are popular in literature.
However, they have not been used for noise cleaning in wireless
sensor networks before. The novelty of our work lies in design-
ing aframework that utilizes Bayes' theorem to reduce uncertainty
and inillustrating how it is used for online cleaning of noisy sensor
data, either at the sensor or at the database levels. Nevertheless,
based on our proposed uncertainty models and using a statistical
approach, we introduced several algorithms for answering a wide
range of traditional database queries over noisy sensors. We also
presented a preliminary evaluation of our framework using syn-
thetic data. Other challenges in this area as well as our future work
directions can be summarized as follows.

e We are currently building a prototype for our framework in
order to explore the real deployment issues. Sensors have

different capabilities, noise characteristics and behavior, and
therefore, the prototype isneeded for further experimentation
and characterization. More evaluations from our prototype
will be reported in the future.

Handling other data cleaning problemsthat cause uncertainty
in sensor data such as missing values and outliers. These
sources of uncertainty are also common in data obtained from
wireless sensor networks. They may severely impact the an-
swer to users’ queries as well. Wireless sensors are becom-
ing very pervasive. New applications are emerging every day
that rely on these sensors for decision-making; e.g., the per-
ishable items scenario that we introduced from industrial en-
gineering. The future of wireless sensors therefore lies in
reasoning about and solving these problems “efficiently”, in
terms of the available resources, and “onling’. EXxisting re-
search on missing values in sensor networks either focused
on providing low-level networking solution such as [30], or
customized solutions that work for specific applications such
as[19]. In both cases, the problem persiststhough less severely.
Hence, ageneral purpose solution for this problem aswell as
other sources of uncertainty is needed.

We discussed only simple traditional database queriesin this
paper. Addressing more complicated queries as well as op-
timization issues are part of our future work. In general, an
in depth exploration of different future sensor applications
along with their potential queriesis an important research di-
rection.

Generalizations to heterogenous sensors and to sampling are
challenging problems. Readings obtained from dense sen-
sor network are sometimes highly redundant. In some cases,
they may be complementary to each other. Therefore, queries
can be evaluated only on a sample of the sensors. However,
the sensors in the network may not be homogeneous. They
are indeed expected to differ in their remaining energy, stor-
age, processing, and noise effect. A repository is therefore
needed at the database system to store metadata about the
capabilities and the limitations of each sensor. The database
system should be able to turn the sensors on/off or control
their rate using proxies, similar to the ones proposed in [18].
The underlying networking functionality should allow for
such ascenario.

Usersmay define specific quality requirements on the answer
to their queries, as part of the query, e.g., a confidence level,
the number of false positives/negatives, etc. The challenge
then is how to minimize the number of redundant sensors,
used unnecessarily to answer a specific query while (1) meet-
ing the given quality level (e.g., confidence) and (2) “best”
utilizing the resources of the sensors. We plan to extend our
framework to support this scenario. The sample size may
need to be increased or specific more accurate sensors may
have to be turned on in order to meet the given user’s expec-
tations. The sampling methods may have to be changed over
thetime (random, systematic, stratified, etc.). In general, this
introduces another cost factor in decision making and actu-
ation, query optimization and evaluation, and resource con-
sumption. Unfortunately, a large part of existing work on
guery processing in sensor networks has only focused on ho-
mogeneous clean data from all sensors [18, 19, 12], even
though there are three dimensions of possible sensor data:
homogeneity, uncertainty, and sampling.
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