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ABSTRACT 

The MANTIS MultimodAl system for NeTworks of In-situ 
wireless Sensors provides a new multithreaded embedded 
operating system integrated with a general-purpose single-board 
hardware platform to enable flexible and rapid prototyping of 
wireless sensor networks.  The key design goals of MANTIS are 
ease of use, i.e. a small learning curve that encourages novice 
programmers to rapidly prototype novel sensor networking 
applications in software and hardware, as well as flexibility, so 
that expert researchers can leverage or develop advanced software 
features and hardware extensions to suit the needs of advanced 
research in wireless sensor networks. 
Categories and Subject Descriptors 
D.4.7 [Operating Systems]: Organization and Design - real-time 
systems and embedded systems, interactive systems.  C.3 
[Computer Systems Organization] Special-purpose and 
Application-based Systems - real-time and embedded systems. 

General Terms 
Design, Experimentation, Performance, Security, Human Factors. 

Keywords 
Wireless sensor networks, operating systems, lightweight, 
multimodal prototyping, dynamic reprogramming, GPS. 

1. INTRODUCTION 
The growing popularity of wireless sensor networks (WSNs) has 
placed increasing demands upon the infrastructure of today's 
general-purpose hardware/software sensor systems [1,2,3,4] to 
support improved flexibility, ease of use, and lower cost.  The 
MANTIS MultimodAl system for NeTworks of In-situ wireless 
Sensors provides a new multithreaded embedded operating 
system integrated with a general-purpose single-board hardware 
platform to enable flexible and rapid prototyping of wireless 
sensor networks.  The key design goals of MANTIS are ease of 
use, i.e. a small learning curve that encourages novice 

programmers to rapidly prototype novel sensor networking 
applications, as well as flexibility, so that expert researchers can 
continue to adapt and extend the hardware/software system to suit 
the needs of advanced research. 
 
The first goal in the design of the MANTIS OS (MOS) was to 
meet the objective of ease of use or convenience while also 
adapting MOS to the resource constraints of wireless sensor 
networks, namely limited memory and power.  To lower the 
barrier to entry into the field of sensor networks and encourage 
novice application developers, early design choices of MOS 
adhered to familiar themes in programming languages and 
operating systems design.  For these reasons, MOS selected as its 
model the classical structure of layered multithreaded operating 
systems, which includes multithreading, pre-emptive scheduling 
with time slicing, I/O synchronization via mutual exclusion, a 
standard network stack, and device drivers.  Familiarity with these 
classical structures lowers the learning curve for novice 
developers.  A key challenge has been to adapt these classical 
structures to the limited memory of sensor nodes.  At present, the 
MOS kernel is able to achieve multithreaded pre-emptively 
scheduled execution with standard I/O synchronization and a 
network protocol stack, all for less than 500 bytes of RAM, not 
including individual thread stack sizes. 
 
Another means by which MOS achieves the goal of ease of use is 
via its choice of a standard programming language.  In particular, 
the entire kernel and API are written in standard C.  This design 
choice not only considerably flattens the learning curve, due to 
the vast number of programmers with prior experience in C, but 
also accrues many of the other benefits of a standard 
programming language, including cross-platform support and 
reuse of a vast legacy code base.  For example, a standard stop-
and-wait reliable protocol as well as a standard RC5 security 
algorithm [5] are both available in C, and have been ported into 
the MOS kernel.  The choice of C also eases development of 
cross-platform multimodal prototyping environments on X86 PCs, 
as explained below.  As a result, MOS has the potential to 
considerably shorten development cycles by enabling rapid 
prototyping of applications as well as rapid testing and debugging 
of additions and modifications to our MOS kernel.  
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The second objective of MOS is to promote flexibility for 
advanced research in sensor networks.  Towards this end, MOS 
supports useful yet sophisticated features that are tailored to 
advanced sensor networks, including dynamic reprogramming of 
sensor nodes via wireless, remote debugging of sensor nodes, and 
multimodal prototyping of virtual and deployed sensor nodes.   
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Figure 1.  MANTIS OS architecture compresses a
classic multithreaded layered operating system design
into <500 bytes of RA

In the remainder of the paper, Section 2 describes the MOS 
architecture, how it offers a convenient environment for 
development of WSN applications., and how it achieves a 
lightweight implementation.  Section 3 provides a detailed 
overview of advanced MOS features.  Section 4 focuses on the 
hardware.  Section 5 describes deployed applications, and Section 
6 finishes with future work. 

2. LIGHTWEIGHT MANTIS OPERATING 
SYSTEM DESIGN 
In this section, we describe the architecture of the MANTIS 
operating system, which adheres to a classical layered 
multithreaded design, as shown in Figure 1.  The top application 
and API layers provide an opportunity to observe how the choice 
of a simple C API promotes ease of use, cross-platform 
portability, and reuse of a large installed code base.  In the lower 
layers of MOS, we describe our novel adaptation of classical OS 
structures to achieve a small memory footprint. 

M. 

sense_and_forward.c 

#include <stdio.h> 
#include "led.h" 
#include "scheduler.h" 
#include "network.h" 
#include "adc.h" 
 
void test_adc_send(); 
  
void start(void){ 
  net_init(CHANNEL_1); 
  thread_new(mos_inetd, 128, 
PRIORITY_NORMAL); 
  thread_new(test_adc_send, 128, 
PRIORITY_NORMAL); 
} 
 
void test_adc_send(){ 
  uint8_t value; 
  adc_open(); 
  set_addr(0x11); 
  set_radio_power(0xff); 
 
  while(1){ 
    led_yellow_toggle(); 
    value = 
adc_convert_eight_polling(ADC_CH_2); 
     mos_send_to(0x41, 0x02, &value, 
0x01, FLOODING); 
  } 
} 

 

Figure 2.  Sample application C code, sense-and-
forward.c. 

2.1 Applications  
MANTIS provides a convenient environment for creating WSN 
applications.  Figure 2 illustrates a simple yet commonly used 
“sense_and_forward” application, which is available along with 
the complete MANTIS software release 0.1 at 
http://mantis.cs.colorado.edu/.  This simple application, which 
runs on a sensor Nymph (see Section 4), toggles a yellow LED, 
reads a sensor value from an analog to digital converter (ADC) 
port and then transmits the value of the sensor over the radio.  

All applications begin with start. Before transmitting, the 
network must be initialized first by calling net_init before any 
threads are spawned. Then two threads are spawned with 
thread_new.  One call spawns the mos_inetd, which is provided, 
and the other call spawns the test_adc_send application, which 
has been developed by the user.  Thus, an application may 
conveniently be built of more than one thread. 

Within the test_adc_send thread, reading a sensor requires that an 
analog-to-digital converter (ADC) be opened with adc_open.  
The node address is set as well as the radio frequency power, by 
calling set_addr and set_radio_power, respectively.  With these 
preliminaries completed, the application can now toggle an LED, 
read the sensor value from the ADC and send it over the radio, by 
calling the led_yellow_toggle, adc_convert_eight_polling and 
mos_send_to. 

All of the function calls mentioned so far are part of the MANTIS 
System Application Programming Interface (API).  The program 
is compact and requires a fairly shallow learning curve for C 
programmers.   Early empirical experience with MOS suggests 
that application developers can rapidly prototype new 
applications in this environment.  Applications such as a sensor-
enabled conductor's wand [6] of Section 5 were prototyped in 
hours, while applications such as a frequency-hopping protocol 
and a port of the RC5 security standard were completed in less 
than two nights. 

2.2 System APIs 
MANTIS provides a comprehensive set of System APIs for I/O 
and system interaction. For a complete list and information on all 
the APIs please refer to http://mantis.cs.colorado.edu/.  For the 

http://mantis.cs.colorado.edu/
http://mantis.cs.colorado.edu/
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preceding sense_and_forward application example, the APIs that 
were used in the application can be categorized as: 

Networking: net_init, set_addr, set_radio_power, mos_send_to

On board sensors  (ADC): adc_convert_eight_polling, 
adc_open 

Visual Feedback (LEDs): led_yellow_toggle 

Scheduler: thread_new 

 
The choice of a C language API simplifies cross-platform support 
and the development of a multimodal prototyping environment.  
The MANTIS System API is preserved across both physical 
sensor nodes as well as virtual sensor nodes running on X86 
platforms.  As a result, the same C code developed for MANTIS 
sensor Nymphs with ATMEL microcontrollers [7] can be 
compiled to run on X86 PCs with little to no alteration. 

2.3 Kernel and Scheduler 
The design of the MOS kernel resembles classical, UNIX-style 
schedulers.  The services provided are a subset of POSIX threads 
[8], most notably priority-based thread scheduling with round-
robin semantics within a priority level.  Binary (mutex) and 
counting semaphores are also supported.  The goal of the MOS 
kernel design is to implement these familiar services in a manner 
efficient enough for the resource-constrained environment of a 
sensor node. 
The most limited resource on a MANTIS node is the RAM.  
There are two logically distinct sections of RAM: the space for 
global variables that is allocated at compile time, and the rest of 
RAM that is managed as a heap.  When a thread is created, stack 
space is allocated by the kernel out of the heap.  The space is 
recovered when the thread exits.  In the current implementation, 
the user is not able to dynamically allocate heap space, although 
that was an API decision and is not an inherent limitation of 
MOS. 
The kernel's main global data structure is a thread table, with one 
entry per thread.  Since the thread table is allocated statically, 
there is a fixed maximum number of threads and a fixed level of 
memory overhead.  The maximum thread count is adjustable at 
compile time (the default is 12).  Each thread table entry is ten 
bytes and contains a current stack pointer, stack boundary 
information (base pointer and size), a pointer to the thread's 
starting function, the thread's priority level, and a next thread 
pointer for use in linked lists.  Note that pointers on the AVR 
microcontroller are only two bytes.  A thread's current context, 
including saved register values, is stored on its stack when the 
thread is suspended.  This is significant, because the context is 
much larger than a thread table entry, and it only needs to be 
stored when the thread is allocated.  Thus the static overhead of 
the thread table is only 120 bytes. 
The kernel also maintains ready-list head and tail pointers for 
each priority level (5 by default, for 20 bytes total).  Keeping both 
pointers allows for fast addition and deletion, which improves 
performance when manipulating thread lists.  This is important 
because those manipulations are frequent and always occur with 

interrupts disabled.  There is also a current thread pointer (2 
bytes), an interrupt status byte, and one byte of flags.  The total 
static overhead for the kernel is thus 144 bytes. 
Semaphores in MOS are 5-byte structures that are declared as 
needed by applications; they contain a lock or count byte along 
with head and tail list pointers.  At any given time, each allocated 
thread is a member of exactly one list; either one of the ready lists 
or a semaphore list.  Semaphore operations move thread pointers 
between lists, and the scheduler cycles through the ready lists to 
locate the next thread to execute. 
The scheduler receives a timer interrupt from the hardware to 
trigger context switches; switches may also be triggered by 
system calls or semaphore operations.  The timer interrupt is the 
only one handled by the kernel--other hardware interrupts are sent 
directly to the associated device drivers.  Upon an interrupt, a 
device driver typically posts a semaphore in order to activate a 
waiting thread, and this thread handles whatever event caused the 
interrupt.  There are currently no 'soft' interrupts supported by the 
MOS kernel, although the design does not preclude adding them 
in the future. 
In addition to driver threads and user threads, there is also an idle 
thread created by the kernel at startup.  The idle thread has low 
priority and runs when all other threads are blocked.  The idle 
thread is in a position to implement power-aware scheduling, as it 
may detect patterns in CPU utilization and adjust kernel 
parameters to conserve energy. 

2.4 Network Stack 
Wireless networking is critical for the correct operation of a 
network of sensors.  Such communication is typically realized as 
a layered network stack, not to be confused with the thread stack.  
The design of the MANTIS network stack is focused on efficient 
use of limited memory, flexibility, and convenience. The stack is 
implemented as one or more user-level threads.  Different layers 
can be flexibly implemented in different threads, or all layers in 
the stack can be implemented in one thread.  The tradeoff is 
between performance and flexibility.  The stack is designed to 
minimize memory buffer allocation through layers.  The data 
body for a packet is common through all layers within a thread.  
The headers for a packet are variably-sized and are pre-pended to 
the single data body.  The stack is conveniently designed in a 
modular manner, with standard APIs between each layer, thereby 
allowing developers to easily modify or replace layer modules.  
The routing protocol is assigned on a per packet basis, so that 
different routing mechanisms can coexist, including flooding, 
multicast, and unicast.  The stack flexibly supports multi-
frequency radio communication over 30 channels, enabling 
research into MAC protocol design, security and reliability.  A 
flexible range of packet sizes is supported, from 12 bytes to 64 
bytes, avoiding waste of scarce sensor network bandwidth. 
The network stack consists of four layers, i.e. application layer, 
network layer, MAC layer and physical layer.  At the bottom is 
the physical layer implementation that controls the hardware or 
virtual hardware (for XMOS).   A set of standard APIs is provided 
on top of the physical implementation in order to mask the 
underlying hardware details from the MAC Layer.  The MAC 
layer is responsible for controlling such aspects as network duty 
cycle, wherein the radio is adaptively slept to save on energy 
consumption.   
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Together, the MAC and physical layers are realized as one user-
level thread, as shown in Figure 1, and is known as the base 
thread of the network stack.  MANTIS extends the concept of 
user-level implementation of network stacks from such projects as 
ALPINE [9] to the sensor networking domain, and outlines the 
advantages of this approach below.  The base network stack 
thread blocks on a well-known semaphore.  When a packet arrives 
at the radio interface, the interrupt is handled by a device driver, 
which places the data in a queue and then posts the semaphore 
where the base network stack thread is sleeping.  This wakes the 
base network stack thread and activates the MAC layer within the 
base thread to fetch incoming bytes from the queue.  The MAC 
fetches bytes from the queue and assembles them into a packet.  If 
the destination address is a broadcast address or matches the local 
node's address, the MAC layer uses the destination port in the 
packet to find the local thread that is blocking waiting for this 
packet. 
The network layer can either be implemented as part of the base 
network thread or can be implemented separately in another 
thread.  In the latter case, the base thread will post the semaphore 
on which network layer thread is blocking, and then the packet 
will be copied from thread to thread.  In general, if the upper layer 
is implemented outside of the lower layer's thread, then a packet 
will be copied between two user-level threads.   
The advantage of a multi-threaded user-level network stack is that 
it promotes flexibility, at a cost in performance.  In comparison, 
systems with a monolithic network stack implemented as part of 
the kernel are relatively inflexible.  Suppose an application 
designer did not know in advance which features out of multicast, 
broadcast, or unicast are needed in a sensor network deployment.   
In systems with a monolithic network stack, the designer in the 
worst case is forced to load all three network layer modules at run 
time, leading to inefficient usage of highly limited RAM (less 
than 4 KB on ATMEL microprocessors [7]). 
The MANTIS decision to implement the network stack as one or 
more user-level threads allows a designer to activate or deactivate 
a particular routing protocol or reliable protocol on demand as a 
user-level thread.  For example, if a routing protocol has been 
stored in flash, then that protocol can be activated by simply 
starting it in RAM.  If needed, multiple routing protocol threads 
can coexist at the same time.  Each packet is directed to the 
appropriate protocol thread on a per-packet basis.  This flexible 
structure is especially useful for dynamic reprogramming in 
sensor networks, enabling application developers to dynamically 
reprogram network functionality such as routing in deployed 
sensor nodes by starting, stopping, and deleting user-level threads.   
The decision to implement a network stack as a set of user-level 
threads is also useful for cross-platform prototyping of network 
stack functionality on X86 PCs prior to deployment in WSNs, as 
described in the next section. 
The MANTIS system enables zero copies within a thread and 
single copies across threads.  If a network stack is wholly 
implemented within the base network stack thread, then our 
approach begins to resemble the zero copy approach of TinyOS, 
SMAC [10] and zero copy sockets [11].  At present, we are 
investigating zero copies across multiple threads.   
In MANTIS, the header and the data buffer for a packet are 
allocated separately. The MANTIS network stack allows each 
layer to define its own header structure.  Each header consists of 

two parts, i.e. a common header and a protocol header.  The 
structure of the common header is static while the structure and 
length of the protocol header could be varied. 
The MANTIS network stack occupies about 200 bytes of RAM, 
when only the MAC and physical layers of the base network 
thread are considered.  Two system data queues are required of 64 
bytes each.  The rest of the space is largely consumed by low-
level configuration parameters for the CC1000 radio.  Modules 
for a broadcast flooding routing protocol and a simple stop and 
wait protocol are provided in MOS as default examples for 
developing protocols at the network and application layers.  
Network layer broadcast flooding adds an additional thirty bytes 
of RAM.   
The following APIs are provided for connectionless packet I/O: 

mos_send(char* header, char headerLen, char* data, char 
dataLen); 

mos_send_to(uint16_t addr, uint8_t port, char* data, char 
dataLen, uint8_t proto); 

mos_recv(Packet* pkt, uint8_t port, uint8_t proto); 

The network stack also allows the application to specify the 
length of time that the thread is willing to be blocked on the 
mos_recv() function in order to avoid waiting indefinitely.   
Together, the code size of the kernel, scheduler, and network 
stack occupies less than 500 bytes of RAM and about 14 KB of 
flash.  This permits sufficient space for multiple application 
threads to execute in the ATMEL's 4 KB of RAM, as well as 
sufficient storage in the ATMEL's 128 KB of flash storage.  

2.5 Device Drivers 
MANTIS adopts the traditional logical/physical partitioning with 
respect to device driver design for the hardware.  For example, to 
turn the green LED on, the LED system API provides a 
led_green_on call (logical level), which is transformed to a 
PORTA |= 0x80 (physical level) action.  The application 
developer need not interact with the hardware to accomplish a 
given task.  However, full access is available to the hardware for 
the adventurous. 

3. ADVANCED SENSOR-SPECIFIC 
FEATURES OF MANTIS OS 
Sensor networks impose additional unique demands on the design 
of operating systems beyond lightweight resource constraints.  
Sensor networking application developers need to be able to 
prototype and test applications prior to distribution and physical 
deployment in the field.  Also, during deployment, in-situ sensor 
nodes need to be capable of being both dynamically 
reprogrammed and remotely debugged.  In the next sections, 
MANTIS identifies and implements each of these three key 
advanced features for expert users of general-purpose sensor 
systems. 

3.1 Multimodal Prototyping Environment 
The MANTIS prototyping environment provides a framework for 
prototyping diverse applications across heterogeneous platforms.  
A key requirement of sensor systems is the need to provide a 
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Figure 3.  Multimodal prototyping integrates both virtual 
and physical sensor nodes across heterogeneous X86 and
ATMEL sensor platforms. 

prototyping environment to test sensor networking applications 
prior to deployment.  Postponing testing of an application until 
after its deployment across a distributed sensor network can incur 
severe consequences.  As a result, a prototyping environment is 
an especially helpful tool for sensor network application 
developers. 
The MANTIS prototyping environment extends beyond 
simulation to provide a larger framework for development of 
network management and visualization applications as virtual 
nodes within a MANTIS sensor network.  First, MANTIS has the 
desirable property of enabling an application developer to test 
execution of the same C code on both virtual sensor nodes and 
later on in-situ physical sensor nodes.   Second, MANTIS 
seamlessly integrates the virtual environment with the real 
deployment network, such that both virtual and physical nodes 
can coexist and communicate with each other in the prototyping 
environment, as shown in Figure 3.  Seamless integration enables 
phased deployment and testing of an application, i.e. application 
code could first be evaluated on an all-virtual network, then be 
deployed without modification to a hybrid network of both virtual 
and a few physical nodes, followed by full deployment on an all-
physical network.   The combination of all-virtual, hybrid, and 
all-physical modes of testing form a multimodal prototyping 
environment.  Third, MANTIS permits a virtual node to leverage 
other APIs outside of the MANTIS API, e.g. a virtual node with 
the MANTIS API could be realized as a UNIX X windows 
application that communicates with other renderering or database 
APIs to build visualization and network management applications, 
respectively.  This virtual node, a.k.a. UNIX application, would 
incorporate the MANTIS system API as a simple means of 
becoming just another node within the MANTIS network of 
virtual and physical nodes. 
MANTIS achieves a multimodal prototyping environment by 
preserving a common C API across all platforms.  This approach 
resembles WINE [12], but eliminates the problems of hidden 
system calls, since all such calls are publicly known in MANTIS.  
Due to the wide availability and support for the AVR 
microcontroller under Linux and Windows, it is possible to build 
MOS, with minor modifications, as an application that runs on the 
X86 platform over both Linux and Windows. We call this user 
space application running on an X86 platform XMOS.   For 
example, Figure.4 illustrates XMOS utilizing a POSIX shim layer 
to translate between MANTIS' uniform API and the underlying  
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Figure 4.  X86 MANTIS OS (XMOS) architecture uses 
POSIX shim layer to translate to/from underlying OS.
NIX operating system.  In this way, MOS applications can be 
ealized as both virtual sensor nodes on X86 platforms as well as 
ve applications on ATMEL sensor nodes (AMOS).  This enables 
ANTIS to support multimodal networks, consisting of XMOS 

odes and AMOS nodes seamlessly interacting with each other. 
he same C source code runs transparently over both XMOS and 
MOS platforms, enabling phased deployment from XMOS to 
MOS.   Figure 3 shows the structure of the network, with the 
o networks connected to each other via a serial RS232 link. 

hus, a mos_send(…) system call on the AMOS nodes causes the 
ata to be transmitted over the radio.  The bridge nodes on either 
ide of the bridging serial link would additionally send the data 
ver the serial link using the mos_uart_send(..) call.  A 
os_send(…) call on the XMOS nodes causes the data to be 
ansmitted over the IP network instead. 

he structural implications of the above multimodal prototyping 
nvironment afford great flexibility to application developers.  
irst, XMOS nodes need not be identical and indeed 
eterogeneous applications can be supported simultaneously.  For 
xample, some XMOS nodes can be written as base stations, 
hile others may perform aggregation duties for directed 
iffusion [13], and still others may coexist to perform multicast 
outing [14].  Second, XMOS nodes are not confined to a single 
C, and can be distributed across any number of PCs, maintaining 
ommunication via IP packets.  This eases the ability of the 
rototyping environment to scale to large numbers of XMOS 
irtual nodes.  Third, an arbitrary number of bridging links can 
onnect XMOS and AMOS environments, and need not be 
mited to serial links either.  Fourth, virtual nodes must support 
ut are not limited to the MANTIS API.  As a result, a virtual 
ode realized as a UNIX application could be integrated into the 
ANTIS sensor network on one side and speak with a rendering 
PI, database API, X windows API, or socket API on another 

ide.  Thus, the sensor network can be accessed from any virtual 
ode, easing development of applications for visualization, 
etwork management, and gateway translation to other networks.  
he gateway function is especially critical to translate sensor 
acket data to/from IP networks.  Fifth, since the network stack is 

plemented as user-level thread(s) above the common API, then 
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an added bonus is that the XMOS environment can be used to 
prototype OS functionality in the form of networking routing and 
reliability functions.  XMOS is not confined to prototyping user 
programs only.  Finally, provided that hardware translation is 
correct, the XMOS architecture offers the potential to feed real 
sensor data into virtual nodes to drive prototype evaluation. 

A variety of other sensor networking simulators possess some but 
not all of the features of the MANTIS multimodal prototyping 
environment.   TOSSIM is a simulator for TinyOS [15], and 
enables the same code to run in PC simulation as on real sensor 
nodes, enabling debugging and verification on PCs prior to 
deployment.  However, the simulator has to run on one machine 
and with the same application instance inside. TOSSF extends 
TOSSIM to enable heterogeneous applications, but they're still 
confined to one PC [16].  Sensorsim is an extension to ns2 and 
provides a simulation framework which models the sensor nodes 
and also provides a “hybrid” simulation combining the real and 
virtual network  [17].  However, the sensor network applications 
are required to be re-implemented for the target platform, 
resulting in two completely different code bases that must be 
maintained.  emStar is a framework for developing applications 
on wireless sensor networks and combines pure simulation, 
hybrid mode and real distributed deployments [3]. However, the 
implementation is based on the combination of HP iPAQ platform 
and the motes.  In MANTIS, no extra hardware such as the iPAQ 
is required.  

The MANTIS multimodal framework does have some limitations.  
By choosing to preserve a high-level API across platforms rather 
than low-level instructions as in a virtual machine, each XMOS 
node does not perfectly model the performance of a sensor node.  
Our tradeoff has been for improved flexibility rather than precise 
emulation.  Also, not all OS functionality can be tested in the 
above architecture.  While the network stack and remote shell via 
the command server can be tested, as well as user programs, other 
functionality such as the kernel's scheduler are at present beyond 
the cross-platform testing capabilities of XMOS. 

3.2 Dynamic Reprogramming 
Dynamic reprogramming or retasking is an especially useful 
feature for sensor networks.  Research has found that sensor 
nodes should be remotely reconfigurable over a wireless multi-
hop network after being deployed in the field [18].  Since sensor 
networks may be deployed in inaccessible areas and may scale to 
thousands of nodes [19], this simplifies management of the sensor 
network, i.e. so that biologists need not go into the field again to 
reprogram sensors and change parameters such as. the sensor's 
sampling rate and trigger threshold or algorithms such as sensor 
calibration or time synchronization. 
MOS achieves dynamic reprogramming on several granularities: 
reflashing of the entire OS; reprogramming of a single thread; and 
changing of variables within a thread.  Another feature that is 
especially useful for sensor systems is the ability to remotely 
debug a running thread.  MOS provides a remote shell that 
enables a user to login and inspect the sensor node's memory, e.g. 
the thread table of an executing thread. 
To overcome the difficulty of reprogramming the network, MOS 
includes two reprogramming modes.  The simpler programming 
mode is similar to that used in many other systems and involves 
direct communication with a specific MANTIS node.  On a 

Nymph, this would be accomplished via the serial port: The user 
simply connects the node to a PC and opens the MANTIS shell.  
Upon reset, MOS enters a boot loader that checks for 
communication from the shell.  At this point, the node will accept 
a new code image, which is downloaded from the PC over the 
direct communication line.  From the shell, the user also has the 
ability to inspect and modify the node's memory directly (peek 
and poke), as well as spawn threads and retrieve debugging 
information—including thread status, stack fill, and other such 
statistics—from the operating system.  The boot loader transfers 
control to the MOS kernel on command from the shell, or at 
startup if the shell is not present. 

The more advanced programming mode is used when a node is 
already deployed, and does not require direct access to the node.  
The spectrum of dynamic reprogramming of in-situ sensor 
networks ranges from fine grained reprogramming (modifying 
constants like sampling rate) to complete reprogramming of the 
sensor nodes. MOS has a provision for reprogramming any 
portion of the node—up to and including the operating system 
itself—while the node is deployed in the field.  This is 
accomplished through the MOS dynamic reprogramming 
interface.  The capability to use the dynamic reprogramming 
interface will be built into the MANTIS programming tool. 

Current solutions for dynamic reprogramming [20] are virtual 
machine (VM) -based where the VM resides over the underlying 
sensor operating system and processes the incoming code 
capsules. A special stack-based instruction set is used to 
reprogram the sensor nodes, reducing the amount of data that is 
transmitted over the network. In contrast to the VM based 
approach, MOS allows binary updates to reprogram a node.  The 
developer does not need to learn a new stack-based instruction 
set; instead, the existing deployed application only needs to be 
modified and recompiled, then a binary patch may be transmitted 
to the MANTIS node. 

The dynamic reprogramming capability is actually implemented 
as a system call library, which is built into the MOS kernel.  Any 
application may write a new code image through calls to this 
library; the code image is stored into EEPROM as it is written.  
The application then calls a commit function that writes out a 
control block for the MOS boot loader, which causes it to install 
the new code on reset.  A software reset completes the 
reprogramming process.  Using the reprogramming library, an 
application--such as the MANTIS command server--may 
download a patch using any communications method it desires 
(typically the regular network stack), apply the patch to the 
existing code image, and run the updated code.  Thus, the entire 
code image, with the exception of the locked boot loader section, 
may be reprogrammed over an arbitrary network while the node is 
deployed. 

3.3 Remote Shell and Command Server 
Traditional solutions for network management such as SNMP 
[21] are not applicable to highly dynamic sensor networks.  
Existing solutions for monitoring sensor networks look at 
topology extraction [22] and computing summaries of network 
properties for energy efficient monitoring of sensor networks 
[23].  In addition to these mechanisms, the user may wish to 
manage the nodes in the network in other ways.  To provide this 
flexibility, MOS includes the MANTIS Command Server (MCS).  
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Figure 6.  MANTIS Nymph.  

From any device in the network equipped with a terminal (a 
laptop PC, for example), the user may invoke the command server 
client (also referred to as the shell) and “log in” to a node.  This 
node may be either a physical node (e.g. on a Nymph or Mica 
board) or it may be a virtual node running as a process on a PC.  
Figure 5 illustrates an example of the remote shell interface. 
The MCS itself is implemented as an application thread.  It listens 
on a network port for commands and replies with the results, in a 
manner similar to RPC.  In effect, the shell gains the ability to 
control a node remotely through MCS.  The user may alter the 
node's configuration settings, run or kill programs, display the 
thread table and other operating system data, inspect and modify 
the node's data memory, and call arbitrary user-defined functions.  
The shell is a powerful debugging tool, since it allows the user to 

examine and modify the state of any node, without requiring 
physical access to the node. 
4. MANTIS HARDWARE 
The MANTIS hardware nymph's design was inspired by the 
Berkeley MICA and MICA2 Mote architecture [1].  To help 
lower our development costs, shorten our development cycle, and 
enhance our research goals, we designed the MANTIS hardware 
nymph sensor node, adhering to the same themes of ease of use, 
flexibility, and adaptation to sensor networks that characterized 
our software design.  The learning curve for novice users is 
lowered by employing a single-board design, as shown in Figure 
6, altogether incorporating a low power Atmel Atmega128(L) 
microcontroller (MCU) [7], analog sensor and digital ports, a low 
power Chipcon CC1000 multi-channel RF radio [24], EEPROM, 
power ADC sensor, and serial ports on a quad-layer 3.67 x 3.3 cm 
Printed Circuit Board (PCB).  For the common user, the single-
board design eliminates the need for a separate sensor board or 
separate programming board, which reduces volume and cost.  
The pins for the serial interface are directly accessible on the 
nymph in a standard DIP package, enabling direct connection of 
each nymph to a laptop via a serial cable, as shown in Figure 6.  

Direct serial accessibility combined with dynamic reprogramming 
over wireless largely eliminate the need for a programming board 
for the common user.  Nymphs are versatile in that any node can 
serve as a base station or as a leaf.  In addition, three sensor 
interfaces are built into each nymph and are directly accessible to 
the user via wire-wrappable DIP pins, eliminating the need for the 
sensor board in the common case.  A standard three-wire interface 
similar to the popular Lego Mindstorms was selected, enabling a 
novice to quickly prototype from a large selection of inexpensive 
resistive sensors.  Also, GPS capability has been added to each 
nymph in the form of a connector that fits the Trimble Lassen SQ 
GPS chip shown to the right of the nymph in Figure 6.  Again, the 
goal is to simplify deployment of GPS-enabled applications for 
beginning users.  If the GPS chip is not needed, then the 
connector is simply vacant.  Finally, the nymph includes an 
AC/DC option.  This is useful for prototyping in the lab and 
avoids excessive consumption of batteries.  An AC/DC adapter 
from Radioshack is satisfactory.  A simple 3-way switch toggles 
between the AC/DC option, OFF and the battery option.  We 
envision that the power option will be useful in future 
deployments of indoor sensor networks, where power outlets are 
readily available for exploitation. 

Figure 5.  Remote shell.  

To support advanced research, the nymph includes several 
interfaces that allow expert users to extend its capability.  First, 
the nymph exports a standard sized JTAG DIP interface for expert 
users that need to burn the bootloader into the Atmel's flash.  For 
example, researchers experimenting with dynamic reprogramming 
may need to reset the fuses on the flash.  For the novice user, we 
envision that the bootloader will be preinstalled by the 
manufacturer or an expert user with access to a JTAG 
programming device.  In difficult debugging situations, the JTAG 
interface can also be used for line by line, in-system debugging 
using GDB.  Second, the nymph includes a 20-pin connector with 
standard DIP interface for wire-wrapping or development of an 
advanced add-on boards with mating connector.  This connector 
has direct access to the MCU’s external interrupt pins, I2C bus, 
data lines, timers, and pulse width modulation (PWM) pins. Some 
potential add-on boards would be I2C expanders that use the 
interrupt and I2C pins to add touch pads for example.  The data 
lines may be used to add liquid crystal displays, while the PWM 
pins may be used for controlling motors, timers for time sensitive 
applications, or simply as more pins for general digital I/O.  
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Figure 7.  Rapid prototyping of user interfaces 
(conductor's baton) using MANTIS sensor nymphs.  

Third, the MANTIS nymph supports multiple antenna options, 
including the addition of an antenna amplifier, via another 
connector.  This connector acts more like a jumper enabling and 
disabling the built in low-range low power capabilities and 
replacing them by add-on circuitry. The add-on circuitry 
implements a 30dB low-noise power amplifier that is a 24-pin 
chip plus its additional support circuitry and properly matched 
915 MHz antenna.  The addition of the amplifier increases the 
communication range of the MANTIS Nymph to up to 2km at the 
cost of up to half a Watt additional power consumption.  For those 
reasons we provide the connector as an option and not a 
requirement.  One final important advanced feature is the addition 
of a single channel I2C 16-bit ADC. This ADC enables 
monitoring of the battery voltage level. 

5.2 GPS-Enabled Time Synchronization 
To demonstrate the capabilities of MOS and the MANTIS nymph, 
we implemented and evaluated a variety of time synchronization 
algorithms in a GPS-enabled framework.  GPS-enabled nymphs 
provide a framework for evaluating the in-situ accuracy of 
deployed time synchronization algorithm.  Prior to the advent of 
GPS-enabled nymphs, the accuracy of time synchronization was 
evaluated in more cumbersome ways in sensor networks, either 
via equipment probes, or outside of the sensor network realm 
altogether.  GPS has also been used in sensor networks for 
location awareness [26] and location tracking of wildlife, e.g. 
Zebranet [27]. 

Time synchronization is important for sensor networks in order to 
correctly timestamp an event and coordinate wake/sleep duty 
cycles of low power sensor networks [28,29,30,31]. Figure 8 
illustrates a general network topology in which nodes that either 
lack GPS or lack line of sight to be able to observe GPS satellites 
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Performed (V) (mA)

Just Operating System Running 3.0 13
Scheduled Single Thread While(1) 3.0 14
Scheduler with blinking LED ON 3.
Scheduler with blinking LED OFF 3.0 14
Reading Sensor Data on while(1) 3.0 14
Sensing and Sending over Serial at 19.2kBaud 3.0 14
Sensing and Sending over radio, Transmitting at max power 3.0 73
Sensing and Sending over radio, Transmitting at min power 3.0 40
Sensing and Sending over radio, Receiving at max power 3.0 40
Sensing and Sending over radio, Receiving at min power 3.0 27
Absolute Max power with all LEDs on and radio transmit at max power 3.0 93
Absolute Max power with all LEDs on and radio receive at max power 3.0 60
Single LED power consuption 3.0 9
Everything in sleep mode 3.0 under 1
Ellite Nymph - Operating System and GPS 3.0 98
Ellite Nymph - Everything Running at maximum power including LEDs 3.0 172

0 22

Table 1.  Power consumption of MANTIS Nymph in
various modes of operation. 
request clock synchronization with GPS-enabled nodes.  We 
constructed an experiment consisting of a network topology with 
five sensor nymphs in a row.  This linked routing chain is similar 
to the linear route in Figure 8 taken by node N2's Simple Network 
Time Protocol (SNTP) request [32], which propagates to the GPS-
enabled node four hops away.  On a given sensor node, the 
estimated clock obtained from a time synchronization algorithm is 
compared to the authoritative GPS clock right after reception of 
query response. Sync-requests are initiated by the client every 10 
seconds. This experiment was repeated a hundred times to obtain 

 

ower consumption numbers for the 4-layer nymph are given in 
able 1.  GPS consumes significant power and will require 
reful power management to limit its impact on battery lifetime.  
omparable recent hardware technology includes the MICA2 
otes [25] and the GPS-enabled GNOMES [26]. 

. MANTIS APPLICATIONS 

.1 Rapid Prototyping of User Interfaces 
he MANTIS platform has successfully served as the basis for a 
stem for constructing rapid prototypes of wireless input devices 
d user interfaces [6].  The conductor's baton, shown in Figure 7, 

 an example of a gestural interface device that utilizes a two-axis 
celerometer to detect the motion of the user's hand.  Using one 
mph to read the sensor values from the accelerometer and a 
cond nymph (connected to a PC via the serial port) as a base 
ation to wirelessly collect the data, a musical tempo is 
terpreted from the beats marked by the user.  This tempo is then 
ansmitted to an algorithmic music application, which changes 
e speed at which the music is played based on the user's 
stures. 
Figure 8. Active GPS sensor nodes (G) provide clock 
synchronization to N1 (indoors) and N2 (outdoors, lacks 
GPS) via a protocol like SNTP.   
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an average estimate of the inaccuracy.  SNTP provides a simple 
and well-known mechanism for a client to synchronize with a 
server who has an accurate clock by using the roundtrip delay 
over multiple hops.  An adaptation of SNTP [31] that employs 
hierarchy was also implemented, i.e. each child uses SNTP on its 
parent. We call this approach hierarchical SNTP (HSNTP). Both 
algorithms are also evaluated over multi-frequency radios, 
creating MSNTP and MHSNTP. As MANTIS supports 
communicating in multi-channels, by employing a separate 
control channel for time synchronization queries and responses, 
variations in latency due to collisions are reduced, resulting in 
more accurate clock estimation.  Table 2 verifies that multi-
channel radios dramatically improve time synchronization 
accuracy and lower deviation.  Our anecdotal experience with 
GPS was that on power up GPS takes from 3 to 10 minutes to 
compute its position, and less than 30 seconds from a warm start. 
GPS was accurate to 10 meters 90% of the time. 

Algorithm Mean Error StdDev 

SNTP 39.81979 43. 2736 

HSNTP 23.6972 26.438 

MSNTP 20.9021 22.9463 

MHSNTP 10.44147 11.5746 

Table 2.  Time synchronization accuracy in microseconds. 

6. FUTURE WORK 
The MANTIS system is still very much a work in progress.  
While we have managed to achieve a lightweight OS, there are 
additional demands on sensor OS designs that have not yet been 
fully integrated into our design.  We have identified low power 
operation as a key future direction for development of the 
MANTIS OS.  The challenge will be to integrate within a multi-
threaded model the idea of sleeping threads until useful work is 
required.   First, the idle loop must be replaced with a power-
efficient scheduler.  One approach is to add another parameter to 
the thread_new call so that the application can provide static 
hints at the time it is spawned.  A follow-on approach would 
incorporate dynamic hints from within the application with a 
power_hint call to modify the application’s requirements 
dynamically.  Prior work on power-efficient scheduling and 
systems should be leveraged [33,34].  Additional complications 
will result from integrating components such as the Atmel and 
CC1000 with multiple low power modes.  At present, MOS 
exports setting these modes through the API, but applications 
have not yet been developed to exploit these low power features.  
We are further interested in pushing the power-efficient scheduler 
into user space to further streamline the kernel, similar to the 
micro-kernel architecture [35]. 
There is still some work to be done in demonstrating reliability 
for code updates over the network, optimizing the size of updates, 
and ensuring the security and authenticity of updates.  Even after 
those issues are addressed, we have only solved the problem of 
reprogramming a single node remotely.  While one could 
certainly iterate through all nodes in a network in order to 
reprogram them all, that would be inefficient and perhaps 
infeasible if the network were large.  The broader problem of 
remotely reprogramming a network, as opposed to a node, will be 
addressed in future work. 

We also intend to integrate security into dynamic reprogramming, 
so that downloaded code can be authenticated, decrypted, and 
checked for tampering.  At present, we have implemented an 
RC5-based CBC mode block cipher encryption/decryption 
library. This library also provides functions for sending encrypted 
packets and generating message authentication codes to protect 
integrity of packets. The API is: 

mos_sec_send_to(uint16_t addr, uint8_t port, char* data, char 
dataLen, uint8_t proto, rc5key_info *rc5key); 

mos_sec_recv(Packet* pkt, uint8_t port, uint8_t proto, 
rc5key_info *rc5key); 

The overhead of this security library is very small, about 110 
bytes of RAM. The encrypted packet transmission function adds 
about 6% delay compared to non-encrypted packet transmission. 
An area that has not yet been addressed is simulating the wireless 
channel within the multimodal prototyping environment.  One 
challenge is the difficulty of simulating wireless communication 
channels, especially indoor communication.   Another challenge 
is building a structure that enable media contention among 
multiple virtual nodes.   

The MANTIS project was recently awarded an NSF SENSORS 
grant to study the role of sensor networks in fighting forest fires  
Stay tuned to the MANTIS Web site http://mantis.cs.colorado.edu 

7. CONCLUSION  
The MANTIS sensor system achieves a lightweight classically 
structured multithreaded operating system in a memory footprint 
of less than five hundred bytes, including kernel and network 
stack.  The MANTIS OS supports a simple C API that enables a 
shallow learning curve, cross-platform support, and reuse of a 
large installed code base.  MOS also supports advanced sensor-
specific features such as multimodal prototyping, dynamic 
reprogramming, and remote shells.  The MANTIS nymph offers a 
single-board GPS-enabled solution that is also extensible. 
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