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Abstract— In the paper, we devise and evaluate a fully decentral-
ized, light-weight, dynamic clustering algorithm for target tracking.
Instead of assuming the same role for all the sensors, we envision a
hierarchical sensor network that is composed of (a) a static backbone
of sparsely placed high-capability sensors which will assume the role
of a cluster head (CH) upon triggered by certain signal events; and (b)
moderately to densely populated low-end sensors whose function is to
provide sensor information to CHs upon request. A cluster is formed
and a CH becomes active, when the acoustic signal strength detected
by the CH exceeds a pre-determined threshold. The active CH then
broadcasts an information solicitation packet, asking sensors in its
vicinity to join the cluster and provide their sensing information.

We address and devise solution approaches (with the use of Voronoi
diagram) to realize dynamic clustering: (I1) how CHs cooperate with
one another to ensure that for the most of time only one CH (prefer-
ably the CH that is closest to the target) is active; (I2) when the active
CH solicits for sensor information, instead of having all the sensors
in its vicinity reply, only a sufficient number of sensors respond with
non-redundant, essential information to determine the target loca-
tion; and (I3) both packets with which sensors respond to their CHs
and packets that CHs report to subscribers do not incur significant
collision. Through both probabilistic analysis and ns-2 simulation,
we show with the use of Voronoi diagram, the CH that is usually
closest to the target is (implicitly) selected as the leader and and that
the proposed dynamic clustering algorithm effectively eliminates con-
tention among sensors and renders more accurate estimates of target
locations as a result of better quality data collected and less collision
incurred.

I. INTRODUCTION

With the advancement of MEMS technologies, sensor net-
works have opened new vistas for a wide range of application
domains. These sensor networks usually comprise small, low-
power devices that integrate sensors and actuators with limited
on-board processing and wireless communication capabilities.
One of their most important applications is target tracking, with
the targets to be tracked ranging from security attacks in the
forms of chemical, biological, or radiological weapons, to mov-
ing objects in civil surveillance, and to changes in light, tem-
perature, pressure, acoustics in environmental monitoring. The
type of signals to be sensed are determined based on the types of
objects to be tracked.

In spite of the different targets to be tracked and the various
signals to be sensed, tracking applications share several com-
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mon characteristics: First, the tracking system should report the
location of the target to subscribers (usually remote controllers)
accurately and in a timely manner. Second, because the data col-
lected by sensors may be redundant, correlated, and/or inconsis-
tent, it is desirable to have sensors collaborate on processing the
data and transporting a concise digest to subscribers. This re-
duces not only the number of packets to be transported, but also
the possibility of collision and interference in the shared media.
Localized and collaborative data processing also aids in reduc-
ing the power consumed in communication activities and hence
prolonging the lifetime of sensor networks.

To facilitate collaborative data processing in target tracking-
centric sensor networks, the cluster architecture is usually used
in which sensors are organized into clusters, with each cluster
consisting of a cluster head (CH) and several neighboring sen-
sors (members). In the conventional cluster architecture, clusters
are formed statically at the time of network deployment. The at-
tributes of each cluster, such as the size of a cluster, the area
it covers, and the members it possesses, are static. In spite of
its simplicity, the static cluster architecture suffer from several
drawbacks. First, fixed membership is not robust from the per-
spective of fault tolerance. If a CH dies of power depletion, all
the sensors in the cluster render useless. In the case that sen-
sors die, a cluster may not have sufficient sensors to carry out its
tracking tasks. Second, fixed membership prevents sensor nodes
in different clusters from sharing information and collaborating
on data processing. Lastly, fixed membership cannot adapt to
highly dynamic scenarios of interest in which sensors in the re-
gion of high (low) event concentration may be instrumented to
stay awake (go to sleep).

Dynamic cluster architectures, on the other hand, offer several
desirable features. Formation of a cluster is triggered by cer-
tain events (e.g., detection of an approaching target with acous-
tic sounds). Specifically, when a sensor with sufficient battery
and computational power, detects with a high signal-to-noise ra-
tio (SNR), certain signals of interest, it volunteers to act as a
CH. No explicit leader (CH) election is required, and hence no
excessive message exchanges are incurred. On the other hand, a
judicious, decentralized approach has to be used to ensure that
for most of the time only one CH is active in the vicinity of a
target to be tracked. Sensors in the vicinity of the active CH are



“invited” to become members of the cluster and will report their
sensor data to the CH. In this manner, a cluster is only formed
in the area of high event concentration. Sensors do not statically
belong to a cluster, and may support different clusters at different
times. Moreover, as only one cluster is active in the vicinity of
a target, redundant data is suppressed and potential interference
and contention at the MAC level is mitigated.

In this paper, we devise and evaluate a fully decentralized,
light-weight, dynamic clustering algorithm for single target
tracking. We focus on acoustic target tracking, although the
proposed approaches can be readily applied to other types of
tracking applications. In acoustic tracking, two most common
methods for target localization are the time delay-based [6] and
energy-based [4], [5] approaches. While time delay-based ap-
proaches are susceptible to estimation errors in time synchro-
nization, on-set detection and echo effect, energy-based ap-
proaches are more robust in these aspects. Hence we adopt in
this paper the energy-based approach as the localization method.
Sensors in the acoustic tracking systems perform two types of
computation: (1) sensing the energy level of signals; (2) sound
analysis, classification, and data fusion. The former is not com-
putational intensive and can be handled by sensors with minimal
computation power. The later, however, requires much higher
computation power. To this end, we envision a hierarchical sen-
sor network that is composed of (a) a static backbone of sparsely
placed high-capability sensors which will assume the role of a
CH upon triggered by certain events of interest; and (b) mod-
erately to densely populated low-end sensors whose function is
to provide sensor information to CHs upon request. A cluster
is formed and a CH becomes active in an on-demand fashion,
when the acoustic signal strength detected by the CH exceeds
a pre-determined threshold. The active CH then broadcasts an
information solicitation packet, asking sensors in its vicinity to
join the cluster and provide their sensing information. After re-
ceiving a sufficient number of replies from sensors, the CH ap-
plies a localization method to estimate the location of the target
and send a report to the subscribers.

There are several issues that we have to address and devise
solution approaches in order to realize the notion of dynamic
clustering: (I1) how CHs cooperate with one another to ensure
that for most of the time only one CH (preferably the CH that is
closest to the target1) is active; (I2) when the active CH solicits
for sensor information, instead of having all the sensors in its
vicinity reply, only a sufficient number of sensors respond with
non-redundant information to determine the target location; and
(I3) both packets with which sensors respond to their CHs and
packets that CHs report to subscribers do not incur significant
collision.

�

The reason why the CH closer to the target should be activated is because the
quality of sensing data decreases with the distance from the target.

To deal with these issues, we propose, with the use of Voronoi
diagram, a probabilistic leader volunteering procedure and a sen-
sor replying method. Initially, we enable all the sensors to cal-
ibrate their relative positions to their neighbors (at the CH �

CH level and the sensor � sensor level) at the time of network
deployment. Then, with the use of Voronoi diagram, each CH
(or sensor) can calculate and tabulate the probability that given
an distance estimate between a target and itself, the CH (sen-
sor) is closest to the target. This information is used to set up
the timer used by a CH to announce its willingness to be active
in the leader volunteering process. If no other CHs volunteer
before the timer expires, the CH becomes active; otherwise, it
suppresses its timer. Similarly, this probabilistic information is
also used by a sensor to determine whether or not it should re-
spond to a CH upon request to provide sensor information and
the timer value with which it responds to such a request. Note
that due to the limited mobility nature of sensors, the calibration
and tabulation process needs only to be carried out initially at
network deployment and infrequently during system operation.

Research in using sensor networks for target tracking has re-
cently attracted much attention. The type of work can be roughly
categorized into two categories. In the first category, data cap-
tured in different sensors are collected at a node, and signal pro-
cessing schemes, such as Maximum Likelihood testing (ML) [5]
and minimum square estimation [4], are applied to localize the
target. In the second category, the target location is estimated
successively based on the current measurement at a sensor and
the past history at other sensors [8], [2], [3]. These types of
work mainly focus in the signal processing aspect, rather than
the communication aspect, of target tracking. In contrast, our
proposed approach balances in selecting a subset of most ade-
quate sensors to conduct tracking tasks. The signal processing
techniques mentioned above can be incorporated with the pro-
posed approach in a complementary manner. Clustering tech-
niques, on the other hand, have been proposed in wireless net-
works for routing [14], [13], [7], bandwidth reuse [11], and data
gathering [12]. None of them are targeted for the purpose of
target tracking and hence do not consider issues (I1 – I3) com-
prehensively.

Through both the probabilistic analysis and ns-2 simulation,
we evaluate and demonstrate the effectiveness of the proposed
approaches. In particular, we show via a simplified model
(which captures all the essential properties) that the probabil-
ity that packets collide with one another is very small under the
proposed approaches. We also show via simulation that with the
use of Voronoi diagram, the CH that is usually closest to the tar-
get is (implicitly) selected as the leader and that the proposed
dynamic clustering algorithm effectively eliminates contention
among sensors and renders better and more accurate estimates
on target location as a result of better quality data collected and



less collision incurred. As compared to the performance of the
static cluster, the proposed approaches reduce the estimation er-
ror and latency by 23% and 15%, respectively.

The rest of the paper is organized as follows. We lay the
necessary technical background and give an overview of the
proposed dynamic clustering algorithm in Section 2. We then
delve into the algorithm details In Section 3. Following that we
present, respectively, the analysis and simulation results in Sec-
tions 4–5. Finally we conclude the paper in Section 6.

II. SYSTEM OVERVIEW

A. Energy-Based Localization

The fundamental principle applied in the energy-based ap-
proach [4], [5] is that the signal strength (i.e., energy) of a re-
ceived signal decreases exponentially with the propagation dis-
tance[2], [4]:

���������
	��������	������������ ���! "�!#$� (1)

where ��� is the received signal strength in the  �%'& sensor, �)(+*
is the (unknown) strength of an acoustic signal from the target,�!(,*.- is the target position yet to be determined, � � (�*.- is
the known position of the  %'& sensor, / is the (known) attenuation
coefficient, and � � is the white Gaussian noise with zero-mean
and variance 0 - .

Instead of solving for the unknowns in Eq. (1) based on en-
ergy readings from multiple sensors, we use the following sim-
ple Voronoi diagram-based approach. Conceptually, each pair of
energy readings, ( �1���2�43 ), from two sensors  and 5 determines a
half plane that contains the target, i.e., if �6��78��3 , the target is
closer to sensor  than to sensor 5 and hence lies in the half plane
that contains sensor  . With multiple pairs of energy readings,
the target location can be confined to be the intersection area of
all the half planes. It can be shown that for a set of 9 sensor
readings, 9 �� out of the total 9;:'9 <�>=�?A@ half planes are in-
dependent. Therefore, in order to obtain a bounded intersection
area, at least four sensor readings are required. As the locations
of sensors are static (only subject to environmental factors such
as wind), the intersection area can be determined in advance in
the form of Voronoi diagram. For completeness of the paper, we
define the Voronoi diagram below [1]:

Definition 1: (Voronoi) Let B � �DCFE �G���G�G� C�H � be a finite set
of points in the 9 -dimensional space *JI and their location vec-
tors K �ML� K 3A�ONP �L� 5 . The region given by QR: C �S="� � KUT 	 K  K �D	V�	 K  K 3 	W�XN 5 L�Y � is called Voronoi cell associated with

C � and

QR:SB =;�
HZ�\[ E QR: C � = is said to be the Voronoi diagram of B .

We claim that the Voronoi cell QR: C �]= associated with the pointC � is exactly the intersection area of all the half planes by the
following observation:

Observation 1: QR: C �S= � ^E�_ 3 _PHM` 3�a[b�>c : C �2� C 3�= , where

c : C �O� C 3>= is the open half plane containing
C � .

As a result, as long as the sensor with the maximum energy read-
ing, say

C � , can be identified, the location of the target is inside
QV: C �S= and the position of

C � can be used as the approximate loca-
tion of the target. Note that the error of the above approximation
is small and bounded if the target is at a bounded Voronoi cell
QV: C � = . In the case that the Voronoi cell identified is not bounded,
more detailed estimation is needed. For example, as indicated in
[4], each pair of energy readings determines a circle on which
the target may reside. To estimate the target location, a nonlinear
least square equation has to be solved. Considering the limited
computational power sensors are equipped with, we assume in
this paper a target travels within a bounded region, and it is suf-
ficient to estimate the location of the target with the position of
the sensor with the maximum signal strength.

B. Overview of Proposed Dynamic Clustering Algorithm

As mentioned in Section 1, we envision a heterogeneous, hier-
archical sensor network that is composed of (a) a static backbone
of sparsely placed high-capability sensors called CHs; and (b)
moderately to densely populated low-end sensors whose func-
tion is to provide sensing information to CHs upon requests.
Because of the limited mobility nature of sensors, the calibra-
tion process of sensor locations is executed only once when the
network is deployed. In this calibration process, geographical
information required to construct the Voronoi diagram is col-
lected, and the Voronoi diagram constructed. Furthermore, both
CHs and sensors construct several tables to facilitate determina-
tion of the back-off timer values (to be used when a CH intends
to volunteer itself as a leader and when a sensor intends to re-
spond to a CH).

A CH volunteers to become active when it detects that
the strength of an acoustic signal it receives exceeds a pre-
determined threshold and the signal matches one of the signal
patterns which the system intends to track. As multiple CHs may
detect the acoustic signal with a sufficiently high signal-to-noise
ratio and volunteer themselves as active leaders, we devise in
Section 3.2 a two-phase volunteering procedure to determine in
a decentralized manner the CH with the strongest signal strength.

The tasks of an active CH include the following four steps:

1) broadcasting a packet that contains the energy and the ex-
tracted signature2 of the detected signal to sensors,

2) receiving replies from sensors,
3) estimating the location of the target based on replies,
4) sending the result to subscriber(s).

d
The extracted signature can be eithor the raw data or the extracted feature of

a signal.



Upon receipt a broadcast packet from a CH, a sensor matches
the signature with its buffered data. In the case of a match,
the sensor then determines, with the use of the Voronoi diagram
based table, whether or not it may be (i) the sensor that is clos-
est to the target or (ii) one of the neighbors of the sensor that is
closest to the target. If any of the above two conditions holds,
it replies, after a random delay, to the CH the strength of the
signal it receives. The random delay is determined based on the
strength of the signal the sensor receives so as to mitigate colli-
sion. We will elaborate on how a sensor determines whether or
not, and when, it should reply to a broadcast message from a CH
in Section 3.3.

Once the CH collects enough replies, it ignores all subsequent
replies (if any), generates the localization result and sends the
result back to subscribers. Sensors that decided to reply but have
not yet done so (as their timers have not expired) stop replying,
if they overhear the packet that carries the localization result.

The relationship between the radio transmission range and the
acoustic signal detection range determines the size of a cluster.
The radio transmission range is controlled by adjusting the trans-
mission power, while the acoustic signal detection range is con-
trolled by adjusting the detection threshold. If the acoustic sig-
nal detection range is larger than the radio transmission range,
multiple CHs may become active and multiple clusters formed
at the same time, without knowing the existence of one another.
The results obtained from different clusters may differ dramati-
cally because a CH may not be able to recruit sufficient sensors
and gather enough sensor information to confine the target in a
bounded Voronoi cell. On the other hand, if the radio transmis-
sion range is larger than the acoustic signal detection range, the
localization results will be more accurate but collision has to be
handled carefully. In this paper, we assume that the radio trans-
mission range is set to be twice of the acoustic signal detection
range.

III. DETAILED DESCRIPTION OF PROPOSED DYNAMIC

CLUSTERING ALGORITHM

The proposed dynamic clustering algorithm is composed of
four component mechanisms: initial distance calibration and
tabulation, CH volunteering, sensor replying, and reporting of
tracking results. In what follows we elaborate on each of the
four component mechanisms.

A. Distance Calibration and Tabulation

Before the acoustic tracing system starts to function, each sen-
sor has to know the positions of sensors in its tracking ranges.
Under the assumption that the radio transmission range is larger
than the acoustic detection range, a sensor can notify other sen-
sors of its ID, device function (CH or sensor), and location in-
formation by broadcast. To reduce the possibility of collisions,

CH i

Fig. 1. Voronoi diagram of ����� . If a target locates within the inner dotted
circle, ����� is sure that the target is in its Voronoi cell. On the other hand, if a
target resides outside the outer dashed circle, ����� is sure that the target is out
of its Voronoi cell.

a broadcast packet is delayed by a back-off value determined
based on the sensor ID.

Construction of Voronoi diagrams at a CH: After receiving
the location information from all the neighboring sensors, a CH
constructs two Voronoi diagrams around itself, one for the set
of neighboring sensors and the other for the set of neighboring
CHs. In what follows, we first elaborate on how to use Voronoi
diagrams to construct response tables and will explain their us-
age in Sections 3.2–3.3.

Construction of the response table based on Voronoi dia-
grams at a CH: After the Voronoi diagrams are constructed, a
CH proceeds to construct the response table to facilitate deter-
mination of back-off timer values (to be used when the CH in-
tends to volunteer itself as a leader). The table is indexed by the
estimated distance from the target to the CH, � , and each table
entry stores the conditional probability that with the distance � ,
a target indeed locates within this CH’s Voronoi cell.

The distance from the target to a CH, say �	� � , can be
estimated (with the noise ignored and the conjectured signal
strength from the target3) as � � : �A? �6= � E�
 � . That is, the pos-
sible position at which the target may be located is a circle cen-
tered at �	� � and with radius � . Next, we derive the conditional
probability, ���:  T � = , that the target locates within the Voronoi
cell of �	� � , given the distance from the target to �	� � , � . Let
� � ` � � I and � � ` ����� denote, respectively, the distance from �	� �
to its nearest neighboring CH and that from �	� � to the farthest
Voronoi vertex of its Voronoi cell. We have to consider three
cases (Figure. 1)

1) ��� � ?W@ � � � ` � � I : �	� � is the nearest CH to the target
because the circle that is centered at �	� � and has a radius
of � lies completely within �	� � ’s Voronoi cell. Hence
��>:  T � =;� ��� � .

2) � 7 � � ` ����� : By the definition of � � ` ����� , the circle cen-

�
Initially � is set to a default value and dynamically adjusted according to the

previous localization results.



CALC ��������� 	�
���	�

1. gain � 0; loss � 0
2. for �� 1 to resolution
3. ���������� /resolution
4. ������� ��� ��� 	���!�"$#%�&�$
 ; '(����� �)� '*�+	���#,�&-.�&�/

5. if ���10)'2
 is within Voronoi cell 34�5��� � 

6. gain++
7. else if ���10�'2
 is within 34�5���76$
 and 	%�8#�9:�����;0<'2
=0����>6$
?

1/2 � 	 6A@ B �DC
8. loss++
9. return gain/(gain+loss)

Fig. 2. The algorithm that calculates E;F�GIH�J KAL when M=N:O�PQK � @ B �DCSRTK RK�� @ BVU,W .
tered at �	� � with a radius of � lies completely outside
�	� � ’s Voronoi cell. Hence ���:  T � =;� � � � .

3) � ?W@ � � � ` � � I � � � � � ` ����� : The circle that is centered
at �	� � and has a radius of � is partially located within
�	� � ’s Voronoi cell and hence � � � � ��>:  T � =�� ��� � . We
will further estimate � �:  T � = using the algorithm given in
Fig. 2.

Note that lines 5 and 7 in the algorithm can be executed inX :'K8Y$Z 9 = time and
X : 9 = space, where 9 is the number of CHs

in the detection range, after the Voronoi diagram is constructed.
Essentially the algorithm takes :5[2\ �
? resolution = samples on the
circle that is centered at �	� � and has a radius of � , where res-
olution is a tunable parameter. Whenever a sample lies within
QR: �	� �]= , the variable gain is incremented. On the other hand,
when a sample may lie within QV: �	�+] = for some neighboring
�	�^] , the variable loss is incremented, except that samples that
are surely located in the Voronoi cell of one neighboring CH are
not counted in loss. The probability sought for ���:  T � = is then
estimated as _ � � I_ � � Ia`.bDc=d�d .

Note also that in line 7 �	� � needs to know �e] ` � � I for ev-
ery neighboring �	�+] . This can be achieved by having each CH
broadcast the distance to its nearest CH in the second round.
Also, if �	� � ’s Voronoi cell is not bounded, the algorithm ex-
cludes in line 5 samples which are in QV: �	� � = but with the dis-
tance to �	� � larger than that from �	� � to its farthest Voronoi
vertex.

To keep the table size at a fixed value, we quantize the dis-
tance from the target to itself � as follows. The table containsf

entries. The first entry is indexed by the maximum value of
� (denoted as � � � I ) such that � �:  T � � � I =R� � � � , while the last
entry by the minimum value of � (denoted as � ����� ) such that
��>:  T � ����� =;� � � � . The other

f .@ entries are indexed by values
evenly spaced between � � � I and � ����� . Given an arbitrary dis-
tance � , a binary search is made to locate the two entries with the
closest distance and interpolation is used to obtain the approxi-
mate value of ���:  T � = .

Construction of the Voronoi diagram and the response ta-
bles at a sensor: A sensor g 3 constructs one Voronoi diagram

around itself for the set of neighboring sensors. The response
table is indexed by the ratio, �1�ihR3 , of the signal strength at a
�	� � to its received energy, where �	� � is the CH that initiates
the solicitation. Each table entry stores the conditional prob-
ability, ��>: 5 T � �ihR3 = , that the target locates in g 3 ’s Voronoi cell
QV:8g 3 = rather than other neighboring sensors or CHs, given the
ratio � �ihR3 . Specifically, suppose a sensor g 3 , located at ( � - �=j - ),
receives an information solicitation packet from a CH �	� � , lo-
cated at ( � E ��j E ). Assume that the signal strength detected at
�	� � and g 3 , is, respectively, � E and � - . Then � �ihR3 �lk=mk�n �
:$o mo n = � � . Let p>q� :Qo mo n =O- � : k�mk�n = � -


 � . After a few algebraic oper-
ations, one can derive that the locus of the potential position of
the target, ( �b��j ), is a circle characterized by

: � J� E = - � : j rj E = - � pW: � �� - = - � pW: j�rj - = -
or

: �  Y � = - � : j  Y%s = - �ut - �
where :5Y � � Y%s =+� :Qv � n � � mv � E � v s n � s mv � E = is the center of the circle

and t �xw vy v � E�z n � :2: �
E �� - = - � : j E {j - = - = is the radius of

the circle.

Given the above expressions and the signal strength detected
at �	� � , each sensor can locate the potential positions of the tar-
get. Using a similar algorithm to that in Fig. 2, we can calcu-
late and tabulate � �:\5PT � �ihR3 = . Each sensor g 3 then maintains,
for each CH within its transmission range, a table of

f
entries.

In addition, let # 3 denotes the event that the target is in nei-
ther QV:8g 3>= nor the Voronoi cells of any of g 3 ’s Voronoi neigh-
bors. Then each sensor calculates the conditional probability,
� �: # 3 T ���ihR3�= , that the target is located at neither QV:8g 3G= nor the
Voronoi cells of any of g 3 ’s Voronoi neighbors. Note that g 3
needs only to store the minimum value of � �ihR3 , � � � I , such that
� �: # 3 T � � � I =;� � � � .

One point is worthy of mentioning — the process of table
construction takes place only once at each CH/sensor. In the case
that sensors are not equipped with sufficient circuitry to perform
this pre-processing, their nearest CH may construct the tables on
their behalves and transmit the resulting tables to them.

B. Cluster Head Volunteering

In the first step of dynamic clustering, a CH volunteers to
recruit sensors to form a cluster if its detected signal strength
exceeds a predefined threshold. One fundamental design issue
to consider is which CH(s) should be elected to form a clus-
ter if more than one CH detect simultaneously signals with the
strength exceeding the threshold. Note that if two or more clus-
ters are active simultaneously, packets exchanged in one cluster
may interfere/collide with those in the other cluster(s). (This is
corroborated by our performance study in Sec. 4 in which we



will investigate the performance in the case that more than one
cluster is active.) Ideally, the CH that is closest to the target
(or the CH with the largest SNR ratio) should be elected. Since
the communication cost of deterministic leader election is very
high, we propose to use a two-phase, random delay-based broad-
cast mechanism to implicitly determine the active CH. In what
follows, we first describe how the random delay is set and then
delve into the two-phase broadcast mechanism.

Determination of back-off timer values: Without a central-
ized facility and/or excessive message exchanges for CH elec-
tion, the most effective method to determine the active CH is to
figure in the received signal strength into the determination of
the back-off timer values used to send solicitation packets. A
CH whose received signal strength exceeds the pre-determined
threshold sets a back-off timer and does not broadcast its solici-
tation packet until the timer expires. If by the time the back-off
timer expires, the CH receives a solicitation packet from some
other CH, it cancels the timer. Specifically, the back-off time,�

, for which �	� � (with the estimated distance � ) delays before
sending its solicitation packet is:

� ��� � � I � : � ����� �� � � I =
� : �  � G:  T � =�=A��� : � k � I =�� (2)

where � � � I and � ����� denote the minimum and maxi-
mum backoff timer values, � : = is the uniform distribution in� � ��� k � I  �	� , and ��>:  T � = can be retrieved from the response
table (Section 3.1). Note that

�
contains two parts. The first

two terms in Eq. (2) are the deterministic part that relates the
estimated distance to the back-off delay value, and the third
term accounts for the random part that prevents potential col-
lision when the distances from the target to two or more CHs
are approximately the same. The random part is an order of
magnitude smaller than the deterministic part. Note also that
the back-off timer is set at the application level, meaning that
a CH only passes an information solicitation broadcast packet
onto its MAC layer when the back-off timer expires. An under-
lying carrier-sense MAC protocol, such as a light-weight version
of IEEE 802.11b, is still needed to mitigate collision at the MAC
level.

Two-phase broadcast with energy and signature packets:
Although the above random back-off delay method reduces the
possibility of collision, it does not totally eliminate it. This is
in part due to the fact that these information solicitation pack-
ets may be queued at the MAC layer before being transmitted.
Moreover, in order for sensors to identify which event a CH is
interested in, information solicitation packets contain not only
the signal strength but also the signature of the acoustic sound
and as a result are usually quite large. A sensor then attempts to
match the received signature with its buffered data to make sure
the same event is being tracked. These solicitation packets of
large sizes also contribute to the possibility of collision.

To deal with the above problems, we propose a two-phase
broadcast mechanism: in the first phase, an energy packet that
carries only the signal strength information is broadcast. In the
second phase, a signature packet that contains the detailed sig-
nature information is then broadcast. Both packets are subject to
the same random back-off delay value (except for the random-
ized term). Specifically the two-phase broadcast mechanism op-
erates as follows:

(R1) A CH sets its back-off timer with the value of
�

(Eq. (2)) for the energy packet.
(R2) When the timer in the first phase expires, the CH

broadcasts an energy packet and sets its back-off timer
to the same value in the second phase (except for the
randomized term).

(R3) When the timer in the second phase expires, the CH
broadcasts a signature packet.

(R4) If by the time the timer expires in the first or second
phase, the CH overhears (i) a broadcast packet with
the signal strength larger than that it itself detects or
(ii) a signature packet, it cancels its timer and does not
henceforth volunteer. Otherwise, the overheard packet
is ignored.

Note that the energy packet in the first phase is much shorter than
the signature packet in the second phase and hence the possibil-
ity of collision is reduced. Also, as will be analyzed in detail
in Section 4, even if the energy packet of a CH collides with
other packets, the CH may still be able to broadcast its signature
packet in the second phase.

Operations performed by a volunteering CH: In order to
realize the above mechanism, clock synchronization is required
in two respects. First, a CH has to inform sensors of the time
when the event takes place so that sensors can match the signa-
ture contained in the packet with its buffered data. Second, when
a CH sends the localization result to the sink, it has to inform the
sink of the time when the event takes place. To avoid the expen-
sive clock synchronization process, we use relative clock values
rather than absolute clock values. A CH records the time it de-
tects the event. Before broadcasting the signature packet, the
CH calculates the time lag (which includes the processing time,
back-off delay and expected propagation delay), and attaches the
time lag in the signature packet. When a sensor receives the sig-
nature packet, it can infer the time when the CH detected the
event.

After broadcasting the signature packet, a CH sets a timer to
wait for replies from neighboring sensors. If a sufficient number
of replies are received before the timer expires, the CH cancels
the timer and calculates the localization result; otherwise, the
result is generated upon the expiry of the timer.



C. Sensor Replying

After a sensor receives a signature packet, the first step is to
match the signature with its buffered data. The search range
can be confined with the use of the time lag information in the
signature packet. If the signature is matched, the signal strength
in the buffered data (as well as the ratio of the signal strength
detected at the CH to that in the buffered data) is calculated.

A sensor g 3 does not respond if ��>: 5 T � �IhV3 = ��� and � �ihR3��p�� � � � � I , where p�� is a constant and � � � I is the minimum value of� �ihR3 such that � �: # 3 T � � � I =R� ��� � . In the case that a response
is to be sent, a similar, random back-off method is used to avoid
potential collision of all the replies from sensors to �	� � . That
is, a sensor g 3 delays its reply by a back-off value determined by

� � � � �� � I � : � ������ �� �� � I =�� : �  � 4: 5 T �>�IhV3�=2=6� � : � �k � I =4�
where � �� � I and � ������ are the minimum and maximum back-
off values, and � �:\5PT � �IhR3 = can be retrieved from the response
table (Section 3.1).

If by the time the back-off timer expires the sensor overhears
reply packets from other sensors, it records the sensor that re-
ports the largest signal strength. When the timer expires, the
sensor sends a reply packet only if (i) the signal strength it de-
tected is larger than that carried in any of the overheard reply
packets; or (ii) it is one of the Voronoi neighbors of the sensor
node that reports the largest signal strength. The two conditions
ensure that the set of replies that the active CH will receive in-
cludes a reply from a node g 3 with the largest signal strength,
and replies from all g 3 ’s Voronoi neighbors. Due to the con-
vexity of the propagation model, the target is guaranteed to be
within the Voronoi cell of g 3 , QV:8g 3 = . Finally, when a sensor
overhears a tracking report packet from a CH, if it prepares to
reply to this CH and the event ID is the same, the sensor cancels
its timer and does not respond.

D. Reporting Tracking Results

A CH generates the localization result, if either the timer set
after the signature packet was sent expires or the CH receives
a sufficient number of replies, whichever occurs first. By “suffi-
cient,” we mean the set of replies includes a reply from a node g 3
with the largest signal strength, and replies from all g 3 ’s Voronoi
neighbors. In this manner, the target is guaranteed to be within
the Voronoi cell of g 3 , QV:8g 3 = , due to the convexity of the prop-
agation model. Then, a simple localization approach is used to
determine the position of the target: the position of the sensor
that reports the largest signal strength is taken as the estimate of
the target. A more sophisticated localization method is currently
under investigation and will be figured in our future work.

Once the localization result is generated, the CH has to send
the location and time information of the target to the sink(s).

sensor cluster head

10 m

Fig. 3. The scenario that shows how CHs and sensors are deployed in the
analysis.

The CH calculates the time difference between the time instant
when it detected the event and the expected time instant when
the packet arrives at the next hop and sends the tracking report
packet. Each intermediate router accumulates and updates the
time lag in the same manner. When the sink receives the report,
it can calculate the time when the CH detected the event.

IV. ANALYSIS OF PROPOSED ALGORITHM

In this section we analyze the performance of the CH volun-
teering procedure (Section 3.2) and show that with properly se-
lected parameters �

� � I , �
�����

, and � k � I , (a) the CH with the
largest signal strength ( �	� E ) transmits its energy packet earlier
than any other CH (and thus suppress other energy packets) with
a high probability; and (b) in the case that (a) is not true, �	� E
still has a very good chance to become the leader eventually. To
facilitate derivation, we make the following simplifications:

1) Both the CHs and the sensors are deployed on a regular
square grid shown in Fig. 3. In this scenario, at most four
CHs will contend to become a leader.

2) The following equation, rather than Eq. (2), is used by
�	� � to determine its back-off time:

� ��� � � I � : � �����  � � � I =G� : � ��
E

� - �� E =�� � : � k
� I = (3)

where � is the estimated distance from the target to �	� � ,
� E is half of the distance from �	� � to the closest neigh-
boring CH, and � - is the distance from �	� � to its far-
thest Voronoi vertex. In the scenario given in Fig. 3,
� - �	� @��
� E . Note that we replace �  ��>:  T � = in Eq. (2)
with o � % m% n � % m to simplify the analysis.

Given the position of a target, we number CHs in the increasing
order of their distances to the target, such that if � � denotes the
distance from �	� � to the target, we have � E � � - � �G�G� �
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Fig. 4. Regions of possible collisions from ��� � . � � � d���� N:O .
� H . Ideally by the end of the volunteering process, �	� E

should
become the leader. Now we consider three cases:

1) Case (i): �	� E transmits its energy packet earlier than any
other CHs and by overhearing �	� E ’s energy packet, other
CHs cancel their back-off timers and do not volunteer.

2) Case (ii): �	� � , for some  R7 � successfully transmits its
energy packet earlier than �	� E .4 �	� E proceeds to trans-
mit its energy packet by (R4) in Section 3.2, and assume
this packet does not collide with �	� � ’s signature packet
or energy packets from other CHs. In this case, if �	� E ’s
energy packet is sent earlier than �	� � ’s signature packet,
�	� E will still becomes the leader.

3) Case (iii): The energy packet from �	� E collides with the
energy packet from �	� 3 , 5 7 � . but the energy packet
from �	� � ,  7 � is successfully transmitted. In this case,
�	� E may still have chance to become active if its signa-
ture packet is sent earlier than any other signature packets
and does not collide with other packets.

First we show in the following lemma that cases (ii) and (iii)
occur with small probabilities, if the parameters �

� � I , �
�����

,
and � k � I are properly selected.

Lemma 1: Cases (ii) and (iii) occur only if � �  � E ��� , where
�J� �	��
� � E

��� 
� � ����� � � : � -  � E = , where �
� � I and �

�����
are the

maximum and minimum backoff timer values and
� �U� � k � I ,�	�

is the range of the uniform distribution in Eq. (3).

Proof: Cases (ii) and (iii) occur only if
� � � � E

, for some  ,
where

� � is the backoff time determined by Eq. (3). That is,

� � � � � � I � : � �����  � � � I = � : � �b��
E

� - �� E =b� � : � k
� I =

� � � � I � : � �����  � � � I = � : �
E �� E
� - �� E =b� � : � k

� I ="� � E �
�
There may be multiple such CHs.

As � : � k � I = is a discrete random variable with the uniform dis-
tribution in

� �U� � k � I  � � , we set � : � k � I = in
� � to be zero and

� : � k � I = in
� E

to be � k � I �� for the worse case, and can reach
the following conclusion

� �  � E � � k � I !�
� �����  � � � I � : � - ��

E = q��� �
. �
In this paper we set � k � I�� � ����� (approximately three or-
ders of magnitude smaller) to make � a very small value, thus
ensuring �	� E transmits its energy packet earlier than any other
packets with a high probability.

Lemma 2: In case (ii), �	� E will become the leader if
� k � I � � � � I � : � �����  � � � I =F� : - o �X� o m�� % m% n � % m = ��� .
Proof: As discussed in Section 3.2, after �	� � sends its energy
packet, it has to wait for

� �� units of time before sending the
signature packet. Moreover, the timer is cancelled and the sig-
nature packet is not sent, if �	� � overhears an energy packet with
a larger signal strength. Therefore, as long as �	� E sends its en-
ergy packet before

� � � � �� , �	� � will not send the signature
packet. That is,

� k � I � � � � I � : � �����  � � � I = � : @ � �� �
E �� E

� - �� E = � ���
�

In this paper we set � k � I to be equal to �
� � I , thus ensuring in

case (ii) �	� E always becomes the leader.

Now we inspect the probability that �	� E will not become a
leader in case (iii). In this case, �	� E may still become the leader
if (a) �	� � ’s signature packet is not scheduled before �	� E ’s sig-
nature packet and (b) �	� E ’s signature packet does not collide
with any other signature or energy packets. As the probability of
the above events can not be exactly and easily calculated, we use
the probability that �	� E ’s energy packet collides with other en-
ergy packets as the upper bound of the probability that �	� E

can
not become the leader. This is because if the energy packet from
�	� E does not collide with other packets, �	� E always become
the leader. We will show that this probability is very small.

The first step to calculate the probability that �	� E ’s energy
packet collides with other energy packets is to identify the re-
gion in the Voronoi diagram in which collisions may potentially
occur. By Lemma 1, any point in such a region possesses the
following property: The distance between the distance from
this point to �	� � , � � , and that to �	� E , � E , is less than � . As
� �  � E ��� is a hyperbola in the Voronoi diagram, the region is
bounded by the hyperbolas and the Voronoi cell boundaries. For
example, if the CHs and sensors are deployed in the square grid
in Fig. 3, then the hyperbolas that bound the collision region are
given in Fig. 4. Because �	� E ’s Voronoi cell is symmetric, we
only consider its one eighth portion in the northwestern corner
(i.e., the area bounded by �	� E , B�� , and B E ).
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TABLE I

CONDITIONAL PROBABILITY, E;F�G COLLISION OF ��� � ’S ENERGY PACKET J * � G,+�-�./L5L , THAT ��� � ’S ENERGY PACKET COLLIDES WITH OTHER ENERGY

PACKETS WHEN THE TARGET IS LOCATED AT / � . 0 � IS THE DETERMINISTIC PART IN THE BACKOFF TIMER VALUE OF ��� � .

The collision region under consideration is composed
of four sub-regions, * E : �	� E � B - � B21 = , * - :'B E � B)3 � B�1 � B - = ,* 1 :SB 1 � B 3 � B24 = , and * 3 :'B 3 � B � � B�4 = . (Points in the parenthe-
sis represent the vertices of the sub-regions in the clockwise
direction.) If the target is located in region * E , by Lemma
1 �	� E sends its energy packet earlier than any other CHs.
On the other hand, if the target is located in region * ���2 ��@6� [ �%5 , �	� E ’s energy packet may collide with :   ��= other
energy packets. For example, if the target is located in re-
gion * 1 , �	� E ’s energy packet may potentially collide with
energy packets sent by the CHs in the left lower grid and in
the right upper grid. Given that the target is located at

C �
: ����jU= in region * � �� � @U� [ �5 , the conditional probability,
��>: collision of �	� E ’s energy packet T C � : �b��jU=�= , that �	� E ’s
energy packet collides with other energy packets is given in Ta-
ble 1. Finally the probability that �	� E ’s energy packet collides
with other energy packets can be expressed as:

687 � collision of ��� � ’s energy pkt 
)� �9 d ��9
� � d �;:�< � 687 � collision of ��� � ’s energy pkt � �=� ���;0<' 
�
;�:	%� 	%' � �

In this paper we set �
�����

, �
� � I , � k � I to be 0.1 second,� � � 3 second, and � � � 3 second, respectively.5 In this case

� � [ � [ �?>=@,� � � 3 � , and region *+� is much smaller than region* E . The numerical result of � �: collision of �	� E ’s energy pkt =
is equal to A � [ @,� � � 4 . This ensures the probability that �	� E ’s
energy packet collides with other energy packets is almost zero,
and the proposed algorithm always elects the CH with the largest
signal strength to be the leader.

V. SIMULATION RESULTS

In this section, we evaluate the proposed dynamic clustering
algorithm using SensorSim [10] (which is built upon ns-2[9]).
The surveillance area is 180 @ 180 B - . A total of 324 devices,
including 36 CHs and 288 sensors, are deployed in the area. In
addition, a sink is located at (0,0) in the system. Two deploymentC

If the slot time is 20 D second, 0 � U C can be divided into 5 slots.

configurations are considered: one is to deploy the CHs and sen-
sors on a square grid shown in Fig. 3, and the other is to assume
both CHs and sensors are uniformly distributed in the area. The
detection threshold of each acoustic microphone is adjusted so
that the acoustic detection range is 25 meters. The radio trans-
mission range is set to be twice of the acoustic detecting range,
i.e., 50 meters. A static topology based sink tree rooted at the
sink is built by the underlying routing protocol. IEEE 802.11b
is adopted as the underlying MAC protocol.

The performance metrics of interest are (i) the location error:
the deviation (in meters) of the estimated location from the exact
location of the target; (ii) the latency: the time interval from
the instant when the acoustic event occurs till the time instant
when the location result is delivered to the sink; (iii) the number
of events detected and reported to the sink; (iv) the number of
collisions throughout the simulation; and (v) the total number
of control messages (information solicitation messages, replies,
and tracking reports to the sink) throughout the simulation. Each
data point reported below is an average of 30 simulation runs.

In the first set of simulations, we compare the performance of
the full-fledged version of the proposed algorithm, including the
distance calibration and tabulation procedure and the two phase
CH volunteering procedure, against two partial versions of the
proposed algorithm and the static clustering approach. The first
partial version includes only one phase in CH volunteering, i.e.,
each time a CH intends to volunteer itself as the leader, it sends
a complete signature packet after its delay timer expires. Also,
the first version does not construct the tables in advance to fa-
cilitate determination of the back-off timer values. Instead a CH
determines its backoff timer value based on Eq. (3), and a sen-
sor sets its backoff timer in proportion to the ratio of the signal
strength detected by the soliciting CH to that detected by itself.
The second partial version employs the two phase CH volunteer-
ing procedure but does not exercise the distance calibration and
tabulation procedure. In the simulation, the target generates an
acoustic event every 0.5 second. The target moves continuously



at the speed of maximum 20 m/s under the random waypoint
model. As each simulation run lasts for 1000 seconds, at most
2000 events can be detected.

Table 2 gives the comparison results under the first configu-
ration (square deployment). Under the assumption of negligi-
ble noises, each sensor can precisely estimate the distance from
the target to itself based on the magnitude of its received signal
strength. As shown in Table 2, the proposed approach incurs
the minimum location error, the smallest latency, and the least
amount of message exchange. The static clustering approach in-
curs the largest location error, as a CH that is not in the vicinity
of the target may be responsible for estimating the location and
reporting the event. Without the two-phase volunteering proce-
dure, the first partial version of the proposed algorithm incurs
significant collision. This is in part because once a solicitation
packet is handed over to the MAC layer for transmission, it can-
not be cancelled by the high-layer algorithm even if collision
occurs. In the case that the solicitation packet contains both the
signal strength and the signature, the chance for MAC level col-
lision increases. This problem is notably mitigated in the second
partial version. However, without carefully setting the backoff
timer values, the second partial version still incurs heavy mes-
sage overhead. In contrast, the full-fledged version incurs the
least collision and the least amount of message exchange, the
former due to the two-phase CH volunteering procedure, and
the latter due to the use of Voronoi diagram to properly deter-
mine the backoff timer values. In the next set of simulations, we
investigate the impact of noise on the performance of the pro-
posed algorithm. The noise for each sensor, � � in Eq. (1), is the
product of noise magnitude and additive Gaussian distribution# : � �G� � � = . Fig. 5(a) gives the average location error and latency
under different magnitudes of noise. The noise with magnitude
40 is approximately equivalent to SNR = 10. The proposed algo-
rithm performs much better than the static clustering algorithm.
This is partially because the proposed algorithm has figured in
the effect of possible errors on measurements and can tolerate
certain levels of noise. Next, we investigate the effect of the
moving speed of the target on the performance (with the noise
magnitude fixed at 40). As shown in Fig. 5(b), even though the
performance of the proposed algorithm degrades as the moving
speed of the target increases, it is still the most robust algorithm
as compared to other three approaches. Finally we investigate
the performance of the proposed algorithm under the assump-
tion that both CHs and sensors are uniformly distributed within
the detection range in the area. Fig. 6(a) gives the results of the
full-fledged and partial versions of the proposed algorithm under
nine deployment configurations with noise = 40 and maximum
speed = 20 (m/s). The full-fledged version of the proposed ap-
proach outperforms two other partial versions, although its per-
formance also degrades. This is due to the fact that as CHs are

not deployed uniformly, under certain cases none of the CHs de-
tects the event. Another interesting observation is that the gap
between the first and second partial versions is significant. This
demonstrates the usefulness of the two phase CH volunteering
procedure. Fig. 6(b) gives the average performance under the
nine deployment configurations as the moving speed of the tar-
get varies. The result exhibits similar trends to that under square
deployment.

VI. CONCLUSIONS

In the paper, we devise and evaluate a fully decentralized,
light-weight, dynamic clustering algorithm for target tracking.
We envision a hierarchical sensor network that is composed of
(a) a static backbone of sparsely placed CHs that assume the
role of leaders upon triggered by certain signal events; and (b)
moderately to densely populated low-end sensors whose func-
tion is to provide sensor information to CHs upon request. A
cluster is formed and a CH becomes active, when the acous-
tic signal strength detected by the CH exceeds a pre-determined
threshold. The active CH then broadcasts an information so-
licitation packet, asking sensors in its vicinity to join the clus-
ter and provide their sensor information. We address and de-
vise solution approaches to the issues (I1)–(I4) as outlined in
Section 1. Through both probabilistic analysis and ns-2 simu-
lation, we show with the use of Voronoi diagram, the CH that
is closest to the target is (implicitly) selected as the leader and
and that the proposed dynamic clustering algorithm effectively
eliminates contention among sensors and renders more accurate
estimates of target locations.

We have identified several research avenues. First we will
engage in devising a more accurate localization method to deal
with sensing errors and multiple tracking targets. Second,
we will integrate dynamic clustering with information quality
driven routing protocols. In conjunction with all the above re-
search tasks, we are currently working on a prototype implemen-
tation on a lab testbed that consists of Berkeley motes integrated
with PC 104 boards.
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avg err(m) latency(s) detected events collision times tot msg sent

static cluster 5.57 0.42 1926 8574 29652
1st base-line 5.89 0.57 1980 30634 57505
2nd base-line 4.87 0.45 1998 10664 40824

proposed algorithm 4.35 0.33 1989 464 17513

TABLE II

COMPARISON BETWEEN THE FULL-FLEDGED VERSION OF THE PROPOSED ALGORITHM, TWO PARTIAL VERSIONS OF THE PROPOSED ALGORITHM, AND THE

STATIC CLUSTERING ALGORITHM UNDER SQUARE DEPLOYMENT AND THE ASSUMPTION THAT NOISE CAN BE IGNORED.
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