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Abstract 
In this paper, we present a real-time 

communication protocol, called SPEED, for sensor 
networks. The protocol provides three types of real-time 
communication services, namely, real-time unicast, 
real-time area-multicast and real-time area-anycast. 
SPEED is specifically tailored to be a stateless, 
localized algorithm with minimal control overhead. 
End-to-end real-time communication guarantees are 
achieved using a novel combination of feedback control 
and non-deterministic QoS-aware geographic 
forwarding with a bounded hop count. SPEED is a 
highly efficient and scalable protocol for the sensor 
networks where node density is high while the 
resources of each node are scarce.  Theoretical 
analysis and simulation experiments are provided to 
validate our claims. 

1. Introduction 
Many exciting results have been recently 

developed for large-scale ad hoc sensor networks. 
These networks can form the basis for many types of 
smart environments such as smart hospitals, 
battlefields, earthquake response systems, and learning 
environments.  

The main function of sensor networks is data 
delivery. We distinguish three types of communication 
patterns associated with delivery of data in such 
networks. First, it is often the case that one part of the 
network detects some activity that it needs to report to a 
remote base station. This common mode of 
communication is called regular unicast. Alternatively, 
a base station may issue a command or query for an 
area in the ad hoc sensor network. For example, it may 
ask all the sensors in the region of a damaged nuclear 
plant to report radiation readings, or command all lights 
in a given area to turn on. This type of communication 
motivates a different routing service where one end-
point of the route may be an area rather than an 
individual node. We call it area-multicast. Finally, since 
sensors often measure highly redundant information, in 

some situations it may be sufficient to have any node in 
an area respond. We call a routing service that provides 
such capability, area-anycast. SPEED provides the 
aforementioned three types of communication services. 

In addition, since sensor networks are dealing with 
real world processes, it is often necessary that 
communication meet real-time constraints. To date, few 
results exist for ad hoc sensor networks that adequately 
address real-time requirements. In this paper we 
develop a protocol that provides real-time guarantees 
based on feedback control and stateless algorithms in 
large-scale networks. We evaluate SPEED via 
simulation using GloMoSim [17] and compare it to 
DSR[5], AODV[11] and GF[14]. The performance 
results show that SPEED reduces the number of packets 
that miss their end-to-end deadlines, reacts to transient 
congestion in the most stable manner, and has the least 
control packet overhead. 

2. State of thea Art 
A number of routing protocols (e.g., [2] [5] [8] [11] 

[12]) have been developed for ad hoc wireless 
networks. Sensor networks can be regarded as a sub-
category of such networks, but with a number of 
different requirements.  

First, in sensor networks, location is more 
important than a specific node ID. For example, 
tracking applications only care where the target is 
located, not the ID of the reporting node. In sensor 
networks, such position-awareness is necessary to make 
the sensor data meaningful. Therefore, it is natural to 
utilize location-aware routing. A set of location based 
routing algorithms have been proposed. For example, 
MFR [14] by Takagi et al. forwards a packet to the 
node that makes the most progress towards the 
destination. Finn [3] proposed a greedy geographic 
forwarding protocol with limited flooding to 
circumvent the voids inside the network. GPSR [7] by 
Karp and Kung used perimeter forwarding to get 
around voids. Another location-based routing algorithm 
is geographic distance routing (GEDIR) [14] which 
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guarantees loop-free delivery in a collision-free 
network. Basagni, et. al. proposed a distance routing 
algorithm for mobility (DREAM)[2], in which each 
node periodically updates its location information by 
transmitting it to the all other nodes. The updating rate 
is set according to a distance effect in order to reduce 
the number of control packets. LAR [8] by Young-Bae 
Ko improves efficiency of the on-demand routing 
algorithm by restricting routing packet flooding in a 
certain “request zone.”  

SPEED also utilizes geographic location to make 
localized routing decisions. The difference is that 
SPEED is designed to handle congestion and provide 
delay guarantees, which were not the main goals of 
previous location-based routing protocols. 

Reactive routing algorithms such as AODV[11], 
DSR[5] and TORA [10] maintain routing information 
for a small subset of possible destinations, namely those 
currently in use. If no route is available for a new 
destination, a route discovery process is invoked. Route 
discovery can lead to significant delays in a sensor 
network with a large network diameter (measured in 
multiples of radio radius). This limitation makes those 
algorithms less suitable for real-time applications.     

Several research efforts have addressed providing 
quality of service guarantees in traditional wireless 
mobile networks. Lin [9] proposed an on-demand QoS 
routing scheme for multi-hop mobile networks. The 
scheme is based on a hop-by-hop resource reservation. 
This scheme works with small-scale mobile networks, 
where each node has enough memory to record the flow 
information and has high bandwidth to accommodate 
control overhead. In sensor networks, such schemes 
break due to scarce bandwidth and constrained 
memory.  To the best of our knowledge, no algorithm 
has been specifically designed to provide real-time 
guarantees for sensor networks.  

3. Design Goals 
The goal of the SPEED algorithm is to provide 

three types of real-time communication services, 
namely, real-time unicast, real-time area-multicast and 
real-time area-anycast, for ad hoc sensor networks. In 
doing so, we satisfy the following additional design 
objectives.  
1. Stateless architecture. The physical limitations of ad 

hoc sensor networks, such as large scale, high failure 
rate, and constrained memory capacity necessitate a 
stateless approach in which routers do not maintain 
much information about network topology and flow 
state. Routing-table based protocols, such as DSDV 
[12], are suitable for wireless networks with a 
relatively small number of nodes and large memories.  
It is hard to imagine, however, that each sensor node 
in a sensor network would be able to have thousands 

of routing entries that would be needed in state-based 
approaches. In contrast, SPEED maintains neither a 
routing table nor per-flow state. Thus, its memory 
requirements are minimal. 

2. Real-time guarantees. Sensor networks are 
commonly used to monitor and control the physical 
world. To provide a meaningful service such as 
disaster and emergency surveillance, meeting real-
time constraints is one of the basic requirements of 
such protocols. Algorithms using on-demand routing 
[5] [10] [11] are not designed to provide delay 
guarantees and may therefore fail to be suitable 
candidates for real-time applications. SPEED 
provides per-hop delay guarantees through a novel 
distributed feedback control scheme. Combining this 
feature with a simple scheme that bounds the number 
of hops from source to destination, SPEED achieves 
an end-to-end delay guarantee with small overhead. 

3. QoS routing and congestion management.  Most 
reactive routing protocols can find routes that avoid 
network hot spots during the route acquisition phase. 
Such protocols work very well when traffic patterns 
don’t fluctuate very quickly during a session. They 
are less successful when congestion patterns change 
rapidly compared to session lifetime. When a route 
becomes congested, such protocols either suffer a 
delay or initiate another round of route discovery. 
SPEED uses a novel backpressure re-routing scheme 
to re-route packets around large-delay links with 
minimum control overhead. 

4. Traffic load balancing. In sensor networks, the 
bandwidth is an extremely scarce resource compared 
to a wired network. Because of this, it is valuable to 
utilize several simultaneous paths to carry packets 
from the source to the destination. Most current 
solutions (e.g., [5][10][11]) don’t utilize multiple 
paths, which leads to high queuing delays and 
unbalanced power consumption. Instead, SPEED 
uses non-deterministic forwarding to balance each 
single flow among multiple concurrent routes. 

5. Localized behavior. Pure localized algorithms are 
those in which any action invoked by a node should 
not affect the whole system. In this sense, for 
algorithms such as AODV, DSR, and TORA this is 
not the case. In these protocols a node uses flooding 
to discover the new path. In sensor networks where 
thousands of nodes communicate with each other, 
broadcast storms may result in significant power 
consumption and possibly a network meltdown. 
Instead, all distributed operations in SPEED are 
localized to achieve high scalability. 

6. Loop-free routing. Since SPEED is based on greedy 
geographic forwarding, it is inherently loop-free [15].  

 
While SPEED does not use routing tables, SPEED 

does utilize location information to carry out routing. 
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This means that we assume that each node is location-
aware. We also assume that the network is dense 
enough to allow greedy routing. In other words, at 
every hop of the path it is possible to find a next hop 
that is closer to the destination. In Appendix A we 
present a lower-bound analysis of node density that 
permits such greedy routing.  

4. SPEED protocol 
  The SPEED protocol consists of the following 
components:   

• The API 
• Neighbor beacon exchange. 
• Receive delay estimation 
• The stateless geographic non-deterministic 

forwarding algorithm (SNGF). 
• Neighborhood Feedback Loop. 
• Backpressure Rerouting. 
• Last mile local flooding. 

These components are described in the subsequent 
sections, respectively.   

4.1. Application API and Packet Format 
 
The SPEED protocol provides four application-

level API calls: 
• AreaMulticastSend (position, radius, deadline, 

packet): This service identifies a destination 
area by its center position and radius. It 
guarantees that every node inside that area will 
receive a copy of the sent packet within the 
specified end-to-end deadline.  

• AreaAnyCastSend (position, radius, deadline, 
packet):   This service guarantees that at least 
one node inside the destination area receives 
the packet before the deadline. 

• UincastSend(Global_ID,deadline,packet): In 
this service the node identified by Global_ID 
will receive the packet before the deadline. 

• SpeedReceive(): this primitive permits nodes 
to accept packets targeted to them.  

 
There is a single data packet format for the SPEED 

protocol. It contains the following major fields: 
• PacketType: this field denotes the type of 

communication: AreaMulticast , AreaAnyCast 
or unicast. 

• Global_ID: this field is only used in the 
unicast case to identify destination node. 

• Destination area: Describes a 3D space with a 
center point and radius where the packets are 
targeted.   

• TTL: Time To Live field is the hop limit used 
for last mile processing.  

• Payload. 

4.2. Neighbor Beacon Exchange 
SPEED relies on neighborhood information to 

compute per-hop delays. Periodically and 
asynchronously, every node broadcasts a beacon packet 
to its neighbors. Each beacon packet has three fields: 

 
(ID, Position, node receive delay) 

where node receive delay is an average delay 
computed as described in the next subsection. 
 

After receiving the beacon, a node saves the 
information in a neighborhood table, which will be used 
by other parts of the protocol. 

In scarce bandwidth environments, the beaconing 
rate can’t be too high; otherwise, it will impose 
significant overhead. To trade off control overhead for 
response time, in addition to periodic beacon 
transmissions, SPEED uses on-demand beacons to 
quickly identify traffic changes inside the network. 
With the help of on-demand beaconing, periodic beacon 
rates can be reduced to 1 per minute without degrading 
performance. Piggybacking [7] methods can also be 
exploited to reduce the beacon overhead. In our 
solution, beacon exchange doesn’t introduce much 
overhead, but it does provide multiple benefits: 

First, a beacon provides a way to detect node 
failure. If a neighbor entry is not refreshed after a 
certain time, it will be removed from the neighbor table. 
In this case packets will not be sent to that neighbor. If 
the un-responding neighbor later becomes available, the 
node will detect this and it will be added to the table.  

Second, through beaconing, each node obtains the 
location information of its neighbors and this is used by 
SNGF to do geographic forwarding. 

Third, the node receive delay, explained in the next 
section, is a metric that denotes the load of a neighbor.  
It is exchanged with beacons and used by the 
neighborhood feedback loop component of the protocol 
to provide real-time, single hop delay guarantees. 

4.3. Receive Delay Estimation 
We decided to use delay to approximate the load of 

a node. Nodes will transmit their delay to neighbors via 
a beacon packet. To do this each node keeps a neighbor 
table. Each entry inside the neighbor table has the 
following fields: (NeighborID, Position, 
ReceiveFromDelay, SendToDelay, ExpireTime). Since 
wireless channels are asymmetric, we separate the delay 
into two directions. The SendToDelay is the delay 
value received from the beacon message coming from 
neighbors and used to make routing decision by SNGF 
as discussed later. ReceiveFromDelay is estimated by 
measuring the real delay experienced by the data packet 
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in the MAC layer of the sender plus a propagation 
delay.  This measurement can be done at the sender side 
without clock synchronization. Periodically the 
ReceiveFromDelays for each neighbor are averaged to 
compute a single node receive delay. If the new node- 
receive delay is larger or smaller than the previous node 
receive delay by a certain threshold, then an on demand 
beacon will be issued, otherwise there is no beacon. 

The benefit of choosing an averaged node receive 
delay as the metric to denote load of a node is to reduce 
the channel capture effect [1] at the routing layer. The 
neighbor node that captures the channel will be notified 
of a longer delay through the beacon data than it 
actually experiences. As we can see in section 5.6, then 
it will re-route a fraction of packets to other forwarding 
nodes to reduce the load in this node. By using a single 
delay feedback, a node can indicate to all its neighbors 
to react cooperatively, such that the congestion can be 
reduced more fairly without starving any neighbor 
nodes. 

4.4. Stateless Non-deterministic Geographic 
Forwarding (SNGF) 

Before elaborating on SGNF, we introduce two 
definitions: 
• The Neighbor Set of node i: This is the set of nodes 

that are inside the radio range R of node i and also 
at least K distance away from node i. Formally, NSi 

(K) = {node | K ≤ distance(node , node i ) ≤  R }.  
• The Forwarding Candidate Set of node i: A set of 

nodes that belong to  NSi(K) and are at least K 
distance closer to the destination. Formally, FSi 

(Destination) = {node ∈  NSi (K) |  L – L_next ≥ K } 
where L is the distance from node i to the 
destination and L_next is the distance from the next 
hop forwarding candidate to the destination. These 
nodes are inside the cross-hatched shaded area as 
shown in Figure 1. We can easily obtain FSi 

(Destination) by scanning the NS set of nodes once. 
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Figure 1.  NS and FS definitions 

 

It is worth noticing that the membership of the 
neighbor set only depends on the radio range R and 
distance K, but the membership of the forwarding set 
also depends on the position of destination nodes. 
 

Since SPEED nodes only keep the Neighbor Set 
(NS), not the routing table, the memory requirement is 
only proportional to the number of neighbors, which 
can be ignored compared to the vast size of a sensor 
network. 
 

Based on the destination of the packet and the 
current FS, the Stateless Non-deterministic geographic 
forwarding (SNGF) part of our protocol routes the 
packet according to following rules: 
 
1. Packets are forwarded only to the nodes that 

belong to the FSi (Destination). If there is no node 
inside the FSi (Destination), packets are dropped. 
To reduce the chance of such a drop, we deduce a 
lower bound on node density that can virtually 
eliminate such drops from happening (appendix A).  

2.  SPEED divides the neighbor nodes inside FSi 

(Destination) into two groups. One group is the 
nodes that have SendToDelay less than a certain 
single hop delay D. The others are the nodes that 
have SendToDelay longer than a certain single hop 
delay D.   

3. The forwarding candidate is chosen from the first 
group, and the neighbor node with highest relay 
SPEED ( |L – L_next | / SendToDelay ) has a 
higher probability to be chosen as the forwarding 
node. In our approach, we use a discrete 
exponential distribution to trade off between load 
balancing and optimal path length. 

4. If there are no nodes belonging to the first group, a 
relay ratio is calculated based on the neighborhood 
Feedback Closed Loop, which we will discuss in 
more detail later. Whether a packet drop will really 
happen depends on whether a randomly generated 
number between (0,1) is bigger than the relay ratio. 
In SPEED a packet is dropped only when no 
downstream node can guarantee the single hop 
delay and an action must be taken to reduce the 
congestion. SPEED also provides back-pressure to 
the upper stream node which leads to automatic 
rerouting as we show in section 5.6. 

 
SNGF provides two nice properties to meet our 

design goals. First, since it only sends packets to a node 
that is K nearer to the destination, it gives an upper 
bound on the number of hops the packet will travel to 
the destination (L/K+1). This, together with a single 
hop delay guarantee provided by the Neighborhood 
Closed Loop Feedback routine and back-pressure 
rerouting (discussed later), can provide a steady state 
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end-to-end delay real-time guarantee for ad hoc sensor 
networks. Second, SNGF can balance the traffic and 
reduce congestion by dispersing the packet into a large 
relay area. (An analysis on load balance performance is 
provided in appendix B). This load balancing is 
valuable in a sensor network where the density of nodes 
is high and the communication bandwidth is scarce and 
shared. Also load balancing can balance the power 
consumption inside the sensor network to prevent some 
nodes from dying faster than others. 

4.5. Neighborhood Feedback Loop (NFL) 
The Neighborhood Closed Feedback Loop is the 

key component that guarantees the single hop delay. 
The Neighborhood Closed loop is an effective approach 
to maintaining system performance at a desired value. 
This has been shown in [13], where a low, targeted miss 
ratio of real-time tasks and a high utilization of the 
computational nodes are simultaneously achieved. Here 
we want to maintain a single hop delay below a certain 
value D, a performance goal the system builder desires.   

Since SNGF give us an upper bound on the number 
of hops from the source to the destination, once a single 
hop delay D guarantee is provided, formally we can 
provide the following end-to-end real-time guarantee in 
SPEED: 
 
• In steady state, P{ A packet misses its E2E 

deadline} ≤��������������������	
����
��������������
��
theoretically zero) 
 
where the E2E deadline is given as  
D × (Distance/K +1). 
 
We deem it a miss when a packet arrives at a node 

with a single hop delay longer than D, or if there is a 
loss due to collision, or a forced-drop. The percentage 
of such misses for the entire node is called the miss 
ratio. The responsibility of the neighborhood closed 
feedback loop is to force such a miss ratio to converge 
to the set point, namely zero. 

- Relay Ratio
Controller

SNGF
Neighbor

Nodes

������������������������

��������	
�
����

���	�

Neighborhood Table

��������	�
����

��	�

��	�

��	�

��	�



������������������������

��������������	
�����������������	
�����������������	
�����������������	
���

����������������������������������������������������������������������������������������

              
Figure 2.  Neighborhood Feedback Loop (NFL) 
 
As shown in Figure 2, the feedback loop is 

naturally established through the neighbor beacon 
exchange we mention in section 5.2. The Relay Ratio 

controller calculates the relay ratio and feeds that back 
into SNGF where a drop or relay action is made. The 
Relay ratio controller currently implemented is a simple 
multiple inputs single output  (MISO) proportional 
controller that takes the miss ratios of all next-hop 
neighbors as inputs and proportionally calculates the 
relay ratio as output to the SNGF. 

The Relay Ratio controller will be activated only 
when all nodes inside the forwarding set have a 
SendToDelay delay larger than the desired single hop 
delay D, which means that the neighborhood closed 
feedback loop will not be invoked unless there is no 
way to forward the packet to a non-busy node and a 
drop is absolutely necessary to guarantee the single hop 
delay.  As we will see later in the backpressure 
rerouting, such a scheme enforces that re-routing has a 
higher priority than dropping. In other words, SPEED 
will not drop a packet as long as there is another path 
that can meet the delay requirements. 

4.6. Back-Pressure Rerouting 
Back-pressure re-routing is naturally generated 

from collaboration of neighbor feedback loop (NFL) 
routines as well as the stateless non-deterministic 
geographic forwarding (SNGF) part of SPEED without 
any additional control packets required.  To be more 
explicit, we introduce this scheme with an example 
(Figure 3). 
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Figure 3.  Back-pressure rerouting case one 

 
Suppose in the lower-right area, some heavy traffic 

appears, which leads to high delay in nodes 9 and 10. 
Through beacon exchange node 5 will detect that nodes 
9 and 10 have a higher delay. Since SNGF will reduce 
the probability of selecting nodes 9 and 10 as 
forwarding candidates, it will reduce the congestion 
around nodes 9 and 10. Since all neighbors of 9 and 10 
will react the same as node 5, eventually nodes 9 and 10 
will adjust their delay below the single hop deadline 
through Back-pressure re-routing. 
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Things are not always as simple as in previous 
case. A more severe case could happen when all the 
forwarding neighbors of node 5 are also congested as 
shown in figure 4. 
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Figure 4.  Back-pressure rerouting case 2 
 

In this case, the neighborhood feedback loop is 
activated to assist backpressure re-routing.  In node 5 a 
certain percent of packets will be dropped and when 
dropped they count as a packet with delay D in terms of 
computing the delay at this node. The increased average 
delay will be detected by upstream nodes, here node 3, 
which will react in the same way as above.  If, 
unfortunately, node 3 is in the same situation as node 5, 
further backpressure will be imposed on node 2. In the 
extreme case, the whole network is congested and the 
backpressure will proceed upstream until it reaches the 
source, where the source will quench the traffic. 

Backpressure rerouting is the first choice used by 
SPEED to reduce the congestion inside the network. In 
this case no packet need be sacrificed.  A drop through 
the feedback-closed loop is only necessary when the 
situation is poor and there is no alternative except to 
drop the packet. 

4.7. Last Mile Process 
Since SPEED is targeted at sensor networks where 

the ID of nodes is not necessary, we don’t care about 
the ID’s of individual sensor nodes; instead we only 
care about the location of where the sensor data is 
generated. 

The Last mile process is so called because only 
when the packet enters into the destination area will 
such a function be activated. All previous packet relays 
are controlled by the SNGF routine as mentioned 
before. The nodes inside the destination area comply 
with the last mile rules and will not be constrained by 
the K distance limitation used in SNGF.  

The Last mile process provides two novel services 
that fit the scenario of sensor networks: Area-multicast 
and Area-anycast.  The area here is defined by a center-

point (x,y,z) and a radius, which mean it’s a sphere. In 
general, more complex area definitions can be made 
without jeopardizing the design of the Last mile 
process. 

The current implementation of the last mile process 
is relatively simple. Nodes can differentiate the packet 
type by the PacketType field mentioned in section 4.1. 
If it’s an anycast packet, the nodes inside the 
destination area will deliver the packet to the 
transportation layer without relay. If it’s a multicast 
type, the nodes inside the destination area which first 
receive the packet coming from the outside of the 
destination area will set a TTL. This allows the packet 
to survive the diameter of the destination area and be 
broadcast to the correct radius. Other nodes inside the 
destination area will keep a copy of the packet and re-
broadcast it. The nodes that are outside the destination 
area will just ignore it. The last mile process for unicast 
is nearly the same as multicast, except only the node 
with that global_ID will deliver the packet to the 
transport layer. If the location directory service is 
precise, we can expect the additional flooding overhead 
for the unicast packets to be small. 

5. Experimentation and Evaluation 

5.1. Simulation Environment  
We simulate SPEED on GloMoSim [17], which is a 
scalable discrete-event simulator developed by UCLA. 
This software provides high fidelity simulation for 
wireless communication with detailed propagation, 
radio and MAC layers simulation. Table 1 describes the 
detailed setup for the simulator. The communication 
parameters are chosen from UCB’s TinyOS 
implementation [4] and its mote specification.  

 
Transportation Layer UDP 
Routing AODV, DSR, GF, SPEED 
Network Layer IP 
MAC Layer 802.11 
Radio Layer RADIO-ACCNOISE 
Propagation model TWO-RAY 
Bandwidth 200Kb/s 
Payload size  32 Byte 
TERRAIN (2000m, 2000m)  
Node number 100 
Node placement  Uniform 
Radio Range 377m 

Table 1. Simulation settings 
     

We discovered that using the CSMA/CA protocol 
available in GloMoSim introduces a high packet loss 
ratio due to the hidden terminal problems that are 
common in congested multi-hop sensor networks, 
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where collisions tend to be heavy. So instead we used 
802.11 as an alterative MAC layer protocol. Since our 
protocol stack for the physical motes will not use 
UDP/IP, which has 28 bytes header overhead, to adjust 
for these large overheads, compared to the small 
payload size, another change we made was that the 
bandwidth was chosen to be double the current mote 
capability.   

5.2. Congestion Avoidance  
In a sensor network, where node density is high 

and bandwidth is scarce, traffic hot spots can be easily 
created. In turn, such hot spots may interfere with real-
time guarantees of critical traffic in the network. To 
alleviate this problem, SPEED supports a combination 
of QoS-aware routing and back-pressure congestion 
control suitable for sensor networks. 

To test the aforementioned capabilities, we used a 
cross traffic scenario, where 4 nodes at the upper left 
corner of the terrain send periodic data to a base station 
at the lower right corner and 4 nodes at the lower left 
corner send periodic data to the base station at the upper 
right corner. The average hop count between the node 
and base station is about 10 hops. Each node generates 
1 CBR flow with a rate of 0.5 packet/second. To create 
congestion, at time 40 seconds, one heavy flow is 
created between two randomly chosen nodes in the 
middle of the terrain with a rate of 50 packets/second. 
This flow disappears at time 120 seconds into the run. 
This heavy flow introduces a step change into the 
system, which is an abrupt change that stress-tests 
SPEED adaptation capabilities to reveal its transient-
state response.  

We repeated the experiments with the same traffic 
load settings but different routing algorithms to 
compare SPEED to DSR, AODV, and GF. For each 
routing algorithm we report the average performance of 
16 runs with different random seeds. Figures 5.A, 5.B 
5.C and 5.D plot the end-to-end (E2E) delay profiles for 
the four different routing algorithms. At each point in 
time, we average the E2E delays of all the packets from 
the 128 flows (16 runs with 8 flows each). For 
legibility, any average E2E delay larger than 300 
milliseconds is drawn as 300 milliseconds in the 
figures. Separately, Figure 6 uses statistical 
comparative boxplots to show the number of packets 
lost during the congestion. In these boxplots, the line in 
the middle of the box denotes the median value of the 
data set. The bottom and top of the box are the 25th and 
75th percentiles. T-shaped lines here denote the 
maximum and minimum value of the data set.  
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Figure 5.A.  E2E delay profile of DSR 
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Figure 5.B. E2E delay profile of AODV 
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Figure 5.C.  E2E delay profile of GF 
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Figure 5.D E2E delay profile of SPEED 
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Figure 6.  Number of packets lost during congestion 

 
When DSR and AODV begin, they need to 

perform route acquisition to discover a path to the 
destination, causing a large delay (Figures 5.A and 5.B) 
for the first packet (10 ~ 20 times longer than the delay 
of the following packets). On the other hand GF and 
SPEED don’t suffer from this feature. In these 
protocols, the first packet has same delay as the 
following packets. Without an initial delay cost, GF and 
SPEED are more suitable for real-time applications like 
acoustic tracking where the base station sends the 
actuation commands to the sensor group, which is 
dynamically changing as the target moves. In such a 
scenario, DSR and AODV need to perform route 
acquisition repeatedly in order to track the target. 

In general, both GF and SPEED tend to forward 
the packet at each step as close to the destination as 
possible, which leads to less overall E2E delay than for 
DSR and AODV  (See Figures 5.C and 5.D) 

At time 40 sec when the heavy flow appears, the 
system enters into a transient state of congestion. Each 
routing algorithm responds differently. The key reasons 
for the performance profiles in the graphs of Figure 5 
are 1) DSR, AODV and GF only respond to severe 
congestion that leads to link failures (i.e., when 
multiple retransmission fails at the MAC layer). They 
are insensitive to long delay as long as no link failures 
occur. 2) Their routing decisions are not based on the 
delays on the link, and therefore may congest a 
particular receiver even though it has long delays. 3) 
DSR and AODV flood the network when the network is 
already congested. This causes many packets to be 
dropped during the transient state. Below, we elaborate 
on details obtained from the simulation traces that 
describe the simulated behavior of each protocol under 
very heavy load. It should be noted that DSR, AODV, 
and GF (much like IP) were not designed with 
congestion control in mind. They delegate this function 
to a transport layer protocol. In contrast, SPEED 
integrates QoS routing with back pressure congestion 

control to modulate the traffic injected into the network 
and routes that traffic around the network hot spots.  

DSR detects the congestion via the MAC layer 
notification of failure. It doesn’t invoke another round 
of route acquisition immediately; instead it salvages the 
packet that the MAC failed to send and tries another 
known route. Since the policy DSR uses to choose a 
new route doesn’t explicitly consider load information, 
this new route can also be congested, which means that 
it’s difficult for DSR to find a good route. If congestion 
makes all attempted routes appear to have failed and if 
route acquisition is invoked, the network is flooded, 
which is not good for an already congested network.   

AODV reacts to the congestion more aggressively. 
Upon receiving notification of a MAC failure, a node 
drops the packet that leads to the MAC layer failure and 
notifies all upstream nodes about the failure including 
the source node. The source initiates a new round of 
route acquisition. Hence, the AODV frequently repeats 
the route acquisition process (seen by the large number 
of control packets) when the network is severely 
congested. Most packets are dropped during that phase 
as shown in Figure 6. 

GF responds to congestion by deleting the neighbor 
node that failed to receive the packet and by choosing 
another node that is the second nearest to the 
destination. The routing decision is based solely on 
distance and does not consider delay. Thus, it does not 
fully avoid the congestion problem as shown in the 
figure 5.C. 

SPEED reacts differently in face of congestion. 
Through neighborhood feedback loops and back 
pressure rerouting, SPEED is sensitive to traffic 
changes. As shown in figure 5.D, at time 40, SPEED 
has longer E2E delays (overshoot) for several packets 
due to the backpressure rerouting. This is because at 
time 40 several packets suddenly enter the congested 
area and suffer a long delay; this long delay is detected 
by the receiving node and that information is fed back 
to the sender via the on-demand beacon. After that, 
SPEED finds un-congested routes to the destination. 
Since the new route has more hops to the destination, 
the E2E delay is longer than the initial path. At time 
120, when congestion disappears, SPEED switches 
back to the initial paths with shorter delay. 

5.3. E2E Deadline Miss Ratio 
The deadline miss ratio is the most important 

metric in soft real-time systems. We set the E2E 
deadline equal 200 milliseconds, which is 10 times the 
delay of a single hop deadline. The results shown in 
Figure 7 are the summary of  16 runs with different 
seeds. AODV and DSR don’t perform well in the face 
of congestion mainly because both algorithms flood the 
network in order to discover a new path when 
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congestion leads to a link failure, which makes the 
situation even worse. GF and SPEED treat congestion 
differently from AODV and DSR. GF deletes the failed 
neighbor from the table and chooses another forwarding 
node without considering the delay. This leads to about 
a 9% miss ratio (Figure 7). SPEED takes deadlines into 
account, and this leads to a very small miss-ratio (about 
2%).  A key observation here is that purely localized 
algorithms without flooding win when traffic 
congestion gets worse. 
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Figure 7.  MissRatios during the congestion 

5.4. Control Packet Comparison 
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Figure 8. Control packet overhead comparison 

 
All four routing algorithms studied use a relatively 

low number of control packets. Most control packets in 
DSR and AODV are used in route acquisition. Because 
AODV performs several rounds of route acquisition 
before settling down to a better route, it requires the 
most control packets. DSR uses a route cache 
extensively, so it can do route discovery and 
maintenance at a much lower cost than AODV. The 
only control packets used in GF and SPEED are beacon 
exchange packets. In addition to periodically sending 

beacons, SPEED uses on-demand beacons to notify 
neighbors of the congestion situation, which costs 
SPEED more control packets than GF (see Figure 8). 
Another observation is that the number of control 
packets in DSR and AODV vary a lot in different runs, 
while GF and SPEED use nearly constant number of 
control packet during each run. The key reason for this 
is the way DSR and AODV treat severe congestion as 
link failures and react by flooding the network. 

6. Conclusion 
Many excellent protocols have been developed for 

ad hoc networks. However, ad hoc sensor networks 
have additional requirements that were not specifically 
addressed. These include real-time requirements and 
nodes which are severely constrained in computing 
power, bandwidth, and memory. SPEED uses local 
feedback control to guarantee a per node delay in 
steady state and a combination of geographic 
forwarding and backpressure to bound the number of 
hops and react to changing loads and congestion. This 
improves the end-to-end delay and provides good 
response to congestion. Our simulations on GloMoSim 
demonstrate SPEED’s improved performance compared 
to DSR, AODV and GF. Since these protocols were not 
originally developed for real-time sensor networks, it is 
not surprising that they don’t work well in such 
situations. We were able to develop a new protocol that 
does meet the requirements of ad hoc sensor networks 
in real-time situations.  
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Appendix A: LowerBound of Node Density 
 
One basic assumption of sensor networks is their 

high node density. It is an interesting research issue to 
determine the impact of node density on routing 
performance. Specifically, in the SPEED algorithm, we 
want to find the lower bound of node density that can 
guarantee that there is no void space that can prevent a 
greedy geographic forwarding step from happening. 

In the SPEED algorithm, a node only sends packets 
to nodes that at least K distance nearer to the 
destination. The area where such qualified nodes reside 
is called the forwarding area. Assume the nodes are 
uniformly distributed inside the system, the larger the 
size of the forwarding area, the higher is the probability 
that there will be a candidate to be chosen.  In SPEED 
such a forwarding area size is not constant; it is depends 
on how far away the sending node is from the 
destination node.  
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Figure 9.  Forwarding Areas 

 
When the destination node is infinitely far away 

from the sending node, the forwarding area will be the 
largest (Best Case Forwarding Size) and when the 
destination node is exactly R away from sending node 
(Figure 9), the available forwarding size is the worst 
case forwarding size (WCFS). For guaranteeing 
purposes, we only consider the worst case, even though 
most of the time the forwarding size is nearer to the 
best case.  In the worst case, the forwarding size is 
calculated by following formula (1):  
 
WCFS = 

22
2

2
1212 )(4)(

2

1

2

)(
1cos

2
cos)( KRRKR

R

KR
R

R

KR
KR −−−−







 −−+−− −−

 
which depends on the radio range R and the single step 
bound K.   Now, we consider the worst case forwarding 
area. We desire to know the lower bound of node 
density that satisfies the following condition:  
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  P (At least one node resides in the forwarding area for 
given parameter R and K) >= 1-������������������������������������ 
 

Assuming a uniform distribution, according to (2) 
the following condition must hold: (the size of the area 
covered by the sensor network is denoted by AreaSize 
>> WCFS) 

    ε≤− ×DensityAreaSize

AreaSize

WCFS
)1(                       (3) 

Since the left hand side of the equation is a 
monotonically increasing function when the AreaSize 
increases and monotonically decreasing when node 
density increases, the lower bound of the node density 
is achieved when AreaSize is infinite: 

ε≤=− ×−× DensityWCFSDensityAreaSize e
AreaSize

WCFS
)1lim(

 
Figure 10 shows the lower bound of node density 

that can probabilistically guarantee that there is no void 
inside a designated forwarding area (size is calculated 
by (1)). For example, from the figure 10, when K = 
1/2R, if the node density is above 30 nodes per Radius-
square, 99.9999% of time, the SPEED algorithm can 
find a forwarding candidate. Accordingly, if the 
diameter of the system is 100 hops, 99.990% of the 
time, the SPEED algorithm can find a 100-hop greedy 
geographic forwarding path to the destination. 
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Figure 10.  Lower bound node densities 

 
 

Appendix B.  Load Balancing in SPEED 
 
SPEED uses non-deterministic geographic 

forwarding to spread out the traffic, in order to avoid 
bottlenecks and balance power consumption. In this 
appendix, we show some theoretical properties of load 
balancing in SPEED. Specifically, we derive the 
maximum flow area (Figure 11). This area is defined as 

the largest area, which may contain nodes that forward 
packets of the same SPEED flow. We show that the 
maximum flow area is a function of the distance L 
between the sender and receiver, the wireless 
transmission radius R, and the step K. 

S D
� 

�

�� 
�

��� 

���������	
�
�� 

���������	
�����

S �
�����
� D ��������
���
�
 

Figure 11.  Maximum Flow Areas 
To simplify the analysis, let us assume that the 

distance L between sender and receiver is much larger 
than the step K and radius R. Let us call the curve that 
envelopes the maximum flow area, V(θ) (expressed in 
polar coordinates). Without loss of generality, let our 
coordinates be centered at the destination, such that any 
point on the envelope is described by the pair (θ , V(θ)) 
specifying its angle and radial distance from the 
destination respectively, as shown in Figure 12.  
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Figure 12.  Forwarding Detail 
 

Consider the point (θ , V(θ)) shown in figure 12. 
Let us call it envelope point P. To derive an expression 
for the envelope, we first show how to derive, given 
point P, the location of the next point on the envelope. 
For this purpose, informally, it is enough to ask the 
following question: assuming a node located at P 
forwards a packet of the flow, what is the furthest that 
the next hop of this packet can be from the line that 
joins the source and destination? The answer is 
obtained by intersecting the locus of all points that are 
one transmission radius away from P with the locus of 
all points that are K units closer to the destination. Note 
that, as long as V >> K, the latter locus can be 
approximated by a line perpendicular to V. The 
corresponding intersection point is labeled Q in Figure 
11. Moving from P to Q, θ changes by dθ and V by dV 
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= -K. We can now derive a relation between dθ and dV. 
Since dV << V, observe from Figure 11 that:  

Vdxd /=θ  

where 1)/( 222 −=−= KRKKRdx  

 
Since dVK −=  we get:  
 

dVKRdx 1)/( 2 −−= , and: 
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The above is the equation of the envelope. The area 

enclosed by the envelope is twice the area between one 
side of the envelope and the horizontal axis. In the polar 
coordinate framework this amounts to: 
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Obviously the above expression is approximate 
since V may eventually become small enough such that 
V >> K no longer holds, thus invalidating the 
assumption we used in the derivation. This part of the 
curve, however, by definition is very close to the 
destination. The area under it is only a small fraction of 
the total area computed. Hence, it need not be 
accurately determined for our overall area estimate to 
remain a good approximation. 

In particular, it is easy to verify (by applying 
L’Opital’s rule) that when K → 0, then Area defined by 
the above equation is Pi*L2 which is the area of a circle 
of radius L. This is intuitively correct, because when K 
→ 0, in the worst case a packet can circle around the 
destination without approaching the destination 
radially. The area of that circle is Pi*L2. Note also that 
when K→R, then Area → 0. This again is intuitively 
correct, since the only way a packet can advance R 
towards the destination on every transmission is if that 

transmission is precisely along the straight line towards 
the destination.  

The derivation of the flow area is important for 
analyzing network load and specifically for analyzing 
interference between different flows. Flows whose area 
boundaries are less than one interference radius apart 
will interfere with each other. Analysis of such 
interference can be used for admission control and 
congestions avoidance in SPEED. These issues will be 
addressed in more detail in later publications.  


