
 1

 SPEED: A Real-Time Routing Protocol for Sensor Networks1
Tian He John A Stankovic Chenyang Lu Tarek Abdelzaher

Department of Computer Science
University of Virginia

1 1 This work was supported, in part by NSF grants CCR-0098269, the MURI award N00014-01-1-0576 from ONR, and the
DAPRPA ITO office under the NEST project (grant number F336615-01-C-1905).

Abstract
In this paper, we present a real-time

communication protocol, called SPEED, for sensor
networks. The protocol provides three types of real-time
communication services, namely, real-time unicast,
real-time area-multicast and real-time area-anycast.
SPEED is specifically tailored to be a stateless,
localized algorithm with minimal control overhead.
End-to-end real-time communication guarantees are
achieved using a novel combination of feedback control
and non-deterministic QoS-aware geographic
forwarding with a bounded hop count. SPEED is a
highly efficient and scalable protocol for the sensor
networks where node density is high while the
resources of each node are scarce. Theoretical
analysis and simulation experiments are provided to
validate our claims.

1. Introduction
Many exciting results have been recently

developed for large-scale ad hoc sensor networks.
These networks can form the basis for many types of
smart environments such as smart hospitals,
battlefields, earthquake response systems, and learning
environments.

The main function of sensor networks is data
delivery. We distinguish three types of communication
patterns associated with delivery of data in such
networks. First, it is often the case that one part of the
network detects some activity that it needs to report to a
remote base station. This common mode of
communication is called regular unicast. Alternatively,
a base station may issue a command or query for an
area in the ad hoc sensor network. For example, it may
ask all the sensors in the region of a damaged nuclear
plant to report radiation readings, or command all lights
in a given area to turn on. This type of communication
motivates a different routing service where one end-
point of the route may be an area rather than an
individual node. We call it area-multicast. Finally, since
sensors often measure highly redundant information, in

some situations it may be sufficient to have any node in
an area respond. We call a routing service that provides
such capability, area-anycast. SPEED provides the
aforementioned three types of communication services.

In addition, since sensor networks are dealing with
real world processes, it is often necessary that
communication meet real-time constraints. To date, few
results exist for ad hoc sensor networks that adequately
address real-time requirements. In this paper we
develop a protocol that provides real-time guarantees
based on feedback control and stateless algorithms in
large-scale networks. We evaluate SPEED via
simulation using GloMoSim [17] and compare it to
DSR[5], AODV[11] and GF[14]. The performance
results show that SPEED reduces the number of packets
that miss their end-to-end deadlines, reacts to transient
congestion in the most stable manner, and has the least
control packet overhead.

2. State of thea Art
A number of routing protocols (e.g., [2] [5] [8] [11]

[12]) have been developed for ad hoc wireless
networks. Sensor networks can be regarded as a sub-
category of such networks, but with a number of
different requirements.

First, in sensor networks, location is more
important than a specific node ID. For example,
tracking applications only care where the target is
located, not the ID of the reporting node. In sensor
networks, such position-awareness is necessary to make
the sensor data meaningful. Therefore, it is natural to
utilize location-aware routing. A set of location based
routing algorithms have been proposed. For example,
MFR [14] by Takagi et al. forwards a packet to the
node that makes the most progress towards the
destination. Finn [3] proposed a greedy geographic
forwarding protocol with limited flooding to
circumvent the voids inside the network. GPSR [7] by
Karp and Kung used perimeter forwarding to get
around voids. Another location-based routing algorithm
is geographic distance routing (GEDIR) [14] which

 2

guarantees loop-free delivery in a collision-free
network. Basagni, et. al. proposed a distance routing
algorithm for mobility (DREAM)[2], in which each
node periodically updates its location information by
transmitting it to the all other nodes. The updating rate
is set according to a distance effect in order to reduce
the number of control packets. LAR [8] by Young-Bae
Ko improves efficiency of the on-demand routing
algorithm by restricting routing packet flooding in a
certain “request zone.”

SPEED also utilizes geographic location to make
localized routing decisions. The difference is that
SPEED is designed to handle congestion and provide
delay guarantees, which were not the main goals of
previous location-based routing protocols.

Reactive routing algorithms such as AODV[11],
DSR[5] and TORA [10] maintain routing information
for a small subset of possible destinations, namely those
currently in use. If no route is available for a new
destination, a route discovery process is invoked. Route
discovery can lead to significant delays in a sensor
network with a large network diameter (measured in
multiples of radio radius). This limitation makes those
algorithms less suitable for real-time applications.

Several research efforts have addressed providing
quality of service guarantees in traditional wireless
mobile networks. Lin [9] proposed an on-demand QoS
routing scheme for multi-hop mobile networks. The
scheme is based on a hop-by-hop resource reservation.
This scheme works with small-scale mobile networks,
where each node has enough memory to record the flow
information and has high bandwidth to accommodate
control overhead. In sensor networks, such schemes
break due to scarce bandwidth and constrained
memory. To the best of our knowledge, no algorithm
has been specifically designed to provide real-time
guarantees for sensor networks.

3. Design Goals
The goal of the SPEED algorithm is to provide

three types of real-time communication services,
namely, real-time unicast, real-time area-multicast and
real-time area-anycast, for ad hoc sensor networks. In
doing so, we satisfy the following additional design
objectives.
1. Stateless architecture. The physical limitations of ad

hoc sensor networks, such as large scale, high failure
rate, and constrained memory capacity necessitate a
stateless approach in which routers do not maintain
much information about network topology and flow
state. Routing-table based protocols, such as DSDV
[12], are suitable for wireless networks with a
relatively small number of nodes and large memories.
It is hard to imagine, however, that each sensor node
in a sensor network would be able to have thousands

of routing entries that would be needed in state-based
approaches. In contrast, SPEED maintains neither a
routing table nor per-flow state. Thus, its memory
requirements are minimal.

2. Real-time guarantees. Sensor networks are
commonly used to monitor and control the physical
world. To provide a meaningful service such as
disaster and emergency surveillance, meeting real-
time constraints is one of the basic requirements of
such protocols. Algorithms using on-demand routing
[5] [10] [11] are not designed to provide delay
guarantees and may therefore fail to be suitable
candidates for real-time applications. SPEED
provides per-hop delay guarantees through a novel
distributed feedback control scheme. Combining this
feature with a simple scheme that bounds the number
of hops from source to destination, SPEED achieves
an end-to-end delay guarantee with small overhead.

3. QoS routing and congestion management. Most
reactive routing protocols can find routes that avoid
network hot spots during the route acquisition phase.
Such protocols work very well when traffic patterns
don’t fluctuate very quickly during a session. They
are less successful when congestion patterns change
rapidly compared to session lifetime. When a route
becomes congested, such protocols either suffer a
delay or initiate another round of route discovery.
SPEED uses a novel backpressure re-routing scheme
to re-route packets around large-delay links with
minimum control overhead.

4. Traffic load balancing. In sensor networks, the
bandwidth is an extremely scarce resource compared
to a wired network. Because of this, it is valuable to
utilize several simultaneous paths to carry packets
from the source to the destination. Most current
solutions (e.g., [5][10][11]) don’t utilize multiple
paths, which leads to high queuing delays and
unbalanced power consumption. Instead, SPEED
uses non-deterministic forwarding to balance each
single flow among multiple concurrent routes.

5. Localized behavior. Pure localized algorithms are
those in which any action invoked by a node should
not affect the whole system. In this sense, for
algorithms such as AODV, DSR, and TORA this is
not the case. In these protocols a node uses flooding
to discover the new path. In sensor networks where
thousands of nodes communicate with each other,
broadcast storms may result in significant power
consumption and possibly a network meltdown.
Instead, all distributed operations in SPEED are
localized to achieve high scalability.

6. Loop-free routing. Since SPEED is based on greedy
geographic forwarding, it is inherently loop-free [15].

While SPEED does not use routing tables, SPEED

does utilize location information to carry out routing.

 3

This means that we assume that each node is location-
aware. We also assume that the network is dense
enough to allow greedy routing. In other words, at
every hop of the path it is possible to find a next hop
that is closer to the destination. In Appendix A we
present a lower-bound analysis of node density that
permits such greedy routing.

4. SPEED protocol
 The SPEED protocol consists of the following
components:

• The API
• Neighbor beacon exchange.
• Receive delay estimation
• The stateless geographic non-deterministic

forwarding algorithm (SNGF).
• Neighborhood Feedback Loop.
• Backpressure Rerouting.
• Last mile local flooding.

These components are described in the subsequent
sections, respectively.

4.1. Application API and Packet Format

The SPEED protocol provides four application-

level API calls:
• AreaMulticastSend (position, radius, deadline,

packet): This service identifies a destination
area by its center position and radius. It
guarantees that every node inside that area will
receive a copy of the sent packet within the
specified end-to-end deadline.

• AreaAnyCastSend (position, radius, deadline,
packet): This service guarantees that at least
one node inside the destination area receives
the packet before the deadline.

• UincastSend(Global_ID,deadline,packet): In
this service the node identified by Global_ID
will receive the packet before the deadline.

• SpeedReceive(): this primitive permits nodes
to accept packets targeted to them.

There is a single data packet format for the SPEED

protocol. It contains the following major fields:
• PacketType: this field denotes the type of

communication: AreaMulticast , AreaAnyCast
or unicast.

• Global_ID: this field is only used in the
unicast case to identify destination node.

• Destination area: Describes a 3D space with a
center point and radius where the packets are
targeted.

• TTL: Time To Live field is the hop limit used
for last mile processing.

• Payload.

4.2. Neighbor Beacon Exchange
SPEED relies on neighborhood information to

compute per-hop delays. Periodically and
asynchronously, every node broadcasts a beacon packet
to its neighbors. Each beacon packet has three fields:

(ID, Position, node receive delay)

where node receive delay is an average delay
computed as described in the next subsection.

After receiving the beacon, a node saves the
information in a neighborhood table, which will be used
by other parts of the protocol.

In scarce bandwidth environments, the beaconing
rate can’t be too high; otherwise, it will impose
significant overhead. To trade off control overhead for
response time, in addition to periodic beacon
transmissions, SPEED uses on-demand beacons to
quickly identify traffic changes inside the network.
With the help of on-demand beaconing, periodic beacon
rates can be reduced to 1 per minute without degrading
performance. Piggybacking [7] methods can also be
exploited to reduce the beacon overhead. In our
solution, beacon exchange doesn’t introduce much
overhead, but it does provide multiple benefits:

First, a beacon provides a way to detect node
failure. If a neighbor entry is not refreshed after a
certain time, it will be removed from the neighbor table.
In this case packets will not be sent to that neighbor. If
the un-responding neighbor later becomes available, the
node will detect this and it will be added to the table.

Second, through beaconing, each node obtains the
location information of its neighbors and this is used by
SNGF to do geographic forwarding.

Third, the node receive delay, explained in the next
section, is a metric that denotes the load of a neighbor.
It is exchanged with beacons and used by the
neighborhood feedback loop component of the protocol
to provide real-time, single hop delay guarantees.

4.3. Receive Delay Estimation
We decided to use delay to approximate the load of

a node. Nodes will transmit their delay to neighbors via
a beacon packet. To do this each node keeps a neighbor
table. Each entry inside the neighbor table has the
following fields: (NeighborID, Position,
ReceiveFromDelay, SendToDelay, ExpireTime). Since
wireless channels are asymmetric, we separate the delay
into two directions. The SendToDelay is the delay
value received from the beacon message coming from
neighbors and used to make routing decision by SNGF
as discussed later. ReceiveFromDelay is estimated by
measuring the real delay experienced by the data packet

 4

in the MAC layer of the sender plus a propagation
delay. This measurement can be done at the sender side
without clock synchronization. Periodically the
ReceiveFromDelays for each neighbor are averaged to
compute a single node receive delay. If the new node-
receive delay is larger or smaller than the previous node
receive delay by a certain threshold, then an on demand
beacon will be issued, otherwise there is no beacon.

The benefit of choosing an averaged node receive
delay as the metric to denote load of a node is to reduce
the channel capture effect [1] at the routing layer. The
neighbor node that captures the channel will be notified
of a longer delay through the beacon data than it
actually experiences. As we can see in section 5.6, then
it will re-route a fraction of packets to other forwarding
nodes to reduce the load in this node. By using a single
delay feedback, a node can indicate to all its neighbors
to react cooperatively, such that the congestion can be
reduced more fairly without starving any neighbor
nodes.

4.4. Stateless Non-deterministic Geographic
Forwarding (SNGF)

Before elaborating on SGNF, we introduce two
definitions:
• The Neighbor Set of node i: This is the set of nodes

that are inside the radio range R of node i and also
at least K distance away from node i. Formally, NSi

(K) = {node | K ≤ distance(node , node i) ≤ R }.
• The Forwarding Candidate Set of node i: A set of

nodes that belong to NSi(K) and are at least K
distance closer to the destination. Formally, FSi

(Destination) = {node ∈ NSi (K) | L – L_next ≥ K }
where L is the distance from node i to the
destination and L_next is the distance from the next
hop forwarding candidate to the destination. These
nodes are inside the cross-hatched shaded area as
shown in Figure 1. We can easily obtain FSi

(Destination) by scanning the NS set of nodes once.

D

����

�

F������

��������
��������

S

Figure 1. NS and FS definitions

It is worth noticing that the membership of the
neighbor set only depends on the radio range R and
distance K, but the membership of the forwarding set
also depends on the position of destination nodes.

Since SPEED nodes only keep the Neighbor Set
(NS), not the routing table, the memory requirement is
only proportional to the number of neighbors, which
can be ignored compared to the vast size of a sensor
network.

Based on the destination of the packet and the
current FS, the Stateless Non-deterministic geographic
forwarding (SNGF) part of our protocol routes the
packet according to following rules:

1. Packets are forwarded only to the nodes that

belong to the FSi (Destination). If there is no node
inside the FSi (Destination), packets are dropped.
To reduce the chance of such a drop, we deduce a
lower bound on node density that can virtually
eliminate such drops from happening (appendix A).

2. SPEED divides the neighbor nodes inside FSi

(Destination) into two groups. One group is the
nodes that have SendToDelay less than a certain
single hop delay D. The others are the nodes that
have SendToDelay longer than a certain single hop
delay D.

3. The forwarding candidate is chosen from the first
group, and the neighbor node with highest relay
SPEED (|L – L_next | / SendToDelay) has a
higher probability to be chosen as the forwarding
node. In our approach, we use a discrete
exponential distribution to trade off between load
balancing and optimal path length.

4. If there are no nodes belonging to the first group, a
relay ratio is calculated based on the neighborhood
Feedback Closed Loop, which we will discuss in
more detail later. Whether a packet drop will really
happen depends on whether a randomly generated
number between (0,1) is bigger than the relay ratio.
In SPEED a packet is dropped only when no
downstream node can guarantee the single hop
delay and an action must be taken to reduce the
congestion. SPEED also provides back-pressure to
the upper stream node which leads to automatic
rerouting as we show in section 5.6.

SNGF provides two nice properties to meet our

design goals. First, since it only sends packets to a node
that is K nearer to the destination, it gives an upper
bound on the number of hops the packet will travel to
the destination (L/K+1). This, together with a single
hop delay guarantee provided by the Neighborhood
Closed Loop Feedback routine and back-pressure
rerouting (discussed later), can provide a steady state

 5

end-to-end delay real-time guarantee for ad hoc sensor
networks. Second, SNGF can balance the traffic and
reduce congestion by dispersing the packet into a large
relay area. (An analysis on load balance performance is
provided in appendix B). This load balancing is
valuable in a sensor network where the density of nodes
is high and the communication bandwidth is scarce and
shared. Also load balancing can balance the power
consumption inside the sensor network to prevent some
nodes from dying faster than others.

4.5. Neighborhood Feedback Loop (NFL)
The Neighborhood Closed Feedback Loop is the

key component that guarantees the single hop delay.
The Neighborhood Closed loop is an effective approach
to maintaining system performance at a desired value.
This has been shown in [13], where a low, targeted miss
ratio of real-time tasks and a high utilization of the
computational nodes are simultaneously achieved. Here
we want to maintain a single hop delay below a certain
value D, a performance goal the system builder desires.

Since SNGF give us an upper bound on the number
of hops from the source to the destination, once a single
hop delay D guarantee is provided, formally we can
provide the following end-to-end real-time guarantee in
SPEED:

• In steady state, P{ A packet misses its E2E

deadline} ≤��������������������	
����
��������������
��
theoretically zero)

where the E2E deadline is given as
D × (Distance/K +1).

We deem it a miss when a packet arrives at a node

with a single hop delay longer than D, or if there is a
loss due to collision, or a forced-drop. The percentage
of such misses for the entire node is called the miss
ratio. The responsibility of the neighborhood closed
feedback loop is to force such a miss ratio to converge
to the set point, namely zero.

- Relay Ratio
Controller

SNGF
Neighbor

Nodes

������������������������

��������	
�
����

���	�

Neighborhood Table

��������	�
����

��	�

��	�

��	�

��	�

������������������������

��������������	
�����������������	
�����������������	
�����������������	
���

��

Figure 2. Neighborhood Feedback Loop (NFL)

As shown in Figure 2, the feedback loop is

naturally established through the neighbor beacon
exchange we mention in section 5.2. The Relay Ratio

controller calculates the relay ratio and feeds that back
into SNGF where a drop or relay action is made. The
Relay ratio controller currently implemented is a simple
multiple inputs single output (MISO) proportional
controller that takes the miss ratios of all next-hop
neighbors as inputs and proportionally calculates the
relay ratio as output to the SNGF.

The Relay Ratio controller will be activated only
when all nodes inside the forwarding set have a
SendToDelay delay larger than the desired single hop
delay D, which means that the neighborhood closed
feedback loop will not be invoked unless there is no
way to forward the packet to a non-busy node and a
drop is absolutely necessary to guarantee the single hop
delay. As we will see later in the backpressure
rerouting, such a scheme enforces that re-routing has a
higher priority than dropping. In other words, SPEED
will not drop a packet as long as there is another path
that can meet the delay requirements.

4.6. Back-Pressure Rerouting
Back-pressure re-routing is naturally generated

from collaboration of neighbor feedback loop (NFL)
routines as well as the stateless non-deterministic
geographic forwarding (SNGF) part of SPEED without
any additional control packets required. To be more
explicit, we introduce this scheme with an example
(Figure 3).

2
3

5

9

10

7

�����

11
������������

�����	
	��	
����

�����	
���	
�����

��	��	
	��	
�����

�����	
���	
�����

Boo

����������	����������	����������	����������	

�

Figure 3. Back-pressure rerouting case one

Suppose in the lower-right area, some heavy traffic

appears, which leads to high delay in nodes 9 and 10.
Through beacon exchange node 5 will detect that nodes
9 and 10 have a higher delay. Since SNGF will reduce
the probability of selecting nodes 9 and 10 as
forwarding candidates, it will reduce the congestion
around nodes 9 and 10. Since all neighbors of 9 and 10
will react the same as node 5, eventually nodes 9 and 10
will adjust their delay below the single hop deadline
through Back-pressure re-routing.

 6

Things are not always as simple as in previous
case. A more severe case could happen when all the
forwarding neighbors of node 5 are also congested as
shown in figure 4.

2
3

5

9

10

7
������������

������	
��	
�����

������	
��	
������

������	
��	
������

�����

Boo

����������	����������	����������	����������	

�������
����
�������
����
�������
����
�������
����

4
12

Figure 4. Back-pressure rerouting case 2

In this case, the neighborhood feedback loop is
activated to assist backpressure re-routing. In node 5 a
certain percent of packets will be dropped and when
dropped they count as a packet with delay D in terms of
computing the delay at this node. The increased average
delay will be detected by upstream nodes, here node 3,
which will react in the same way as above. If,
unfortunately, node 3 is in the same situation as node 5,
further backpressure will be imposed on node 2. In the
extreme case, the whole network is congested and the
backpressure will proceed upstream until it reaches the
source, where the source will quench the traffic.

Backpressure rerouting is the first choice used by
SPEED to reduce the congestion inside the network. In
this case no packet need be sacrificed. A drop through
the feedback-closed loop is only necessary when the
situation is poor and there is no alternative except to
drop the packet.

4.7. Last Mile Process
Since SPEED is targeted at sensor networks where

the ID of nodes is not necessary, we don’t care about
the ID’s of individual sensor nodes; instead we only
care about the location of where the sensor data is
generated.

The Last mile process is so called because only
when the packet enters into the destination area will
such a function be activated. All previous packet relays
are controlled by the SNGF routine as mentioned
before. The nodes inside the destination area comply
with the last mile rules and will not be constrained by
the K distance limitation used in SNGF.

The Last mile process provides two novel services
that fit the scenario of sensor networks: Area-multicast
and Area-anycast. The area here is defined by a center-

point (x,y,z) and a radius, which mean it’s a sphere. In
general, more complex area definitions can be made
without jeopardizing the design of the Last mile
process.

The current implementation of the last mile process
is relatively simple. Nodes can differentiate the packet
type by the PacketType field mentioned in section 4.1.
If it’s an anycast packet, the nodes inside the
destination area will deliver the packet to the
transportation layer without relay. If it’s a multicast
type, the nodes inside the destination area which first
receive the packet coming from the outside of the
destination area will set a TTL. This allows the packet
to survive the diameter of the destination area and be
broadcast to the correct radius. Other nodes inside the
destination area will keep a copy of the packet and re-
broadcast it. The nodes that are outside the destination
area will just ignore it. The last mile process for unicast
is nearly the same as multicast, except only the node
with that global_ID will deliver the packet to the
transport layer. If the location directory service is
precise, we can expect the additional flooding overhead
for the unicast packets to be small.

5. Experimentation and Evaluation

5.1. Simulation Environment
We simulate SPEED on GloMoSim [17], which is a
scalable discrete-event simulator developed by UCLA.
This software provides high fidelity simulation for
wireless communication with detailed propagation,
radio and MAC layers simulation. Table 1 describes the
detailed setup for the simulator. The communication
parameters are chosen from UCB’s TinyOS
implementation [4] and its mote specification.

Transportation Layer UDP
Routing AODV, DSR, GF, SPEED
Network Layer IP
MAC Layer 802.11
Radio Layer RADIO-ACCNOISE
Propagation model TWO-RAY
Bandwidth 200Kb/s
Payload size 32 Byte
TERRAIN (2000m, 2000m)
Node number 100
Node placement Uniform
Radio Range 377m

Table 1. Simulation settings

We discovered that using the CSMA/CA protocol
available in GloMoSim introduces a high packet loss
ratio due to the hidden terminal problems that are
common in congested multi-hop sensor networks,

 7

where collisions tend to be heavy. So instead we used
802.11 as an alterative MAC layer protocol. Since our
protocol stack for the physical motes will not use
UDP/IP, which has 28 bytes header overhead, to adjust
for these large overheads, compared to the small
payload size, another change we made was that the
bandwidth was chosen to be double the current mote
capability.

5.2. Congestion Avoidance
In a sensor network, where node density is high

and bandwidth is scarce, traffic hot spots can be easily
created. In turn, such hot spots may interfere with real-
time guarantees of critical traffic in the network. To
alleviate this problem, SPEED supports a combination
of QoS-aware routing and back-pressure congestion
control suitable for sensor networks.

To test the aforementioned capabilities, we used a
cross traffic scenario, where 4 nodes at the upper left
corner of the terrain send periodic data to a base station
at the lower right corner and 4 nodes at the lower left
corner send periodic data to the base station at the upper
right corner. The average hop count between the node
and base station is about 10 hops. Each node generates
1 CBR flow with a rate of 0.5 packet/second. To create
congestion, at time 40 seconds, one heavy flow is
created between two randomly chosen nodes in the
middle of the terrain with a rate of 50 packets/second.
This flow disappears at time 120 seconds into the run.
This heavy flow introduces a step change into the
system, which is an abrupt change that stress-tests
SPEED adaptation capabilities to reveal its transient-
state response.

We repeated the experiments with the same traffic
load settings but different routing algorithms to
compare SPEED to DSR, AODV, and GF. For each
routing algorithm we report the average performance of
16 runs with different random seeds. Figures 5.A, 5.B
5.C and 5.D plot the end-to-end (E2E) delay profiles for
the four different routing algorithms. At each point in
time, we average the E2E delays of all the packets from
the 128 flows (16 runs with 8 flows each). For
legibility, any average E2E delay larger than 300
milliseconds is drawn as 300 milliseconds in the
figures. Separately, Figure 6 uses statistical
comparative boxplots to show the number of packets
lost during the congestion. In these boxplots, the line in
the middle of the box denotes the median value of the
data set. The bottom and top of the box are the 25th and
75th percentiles. T-shaped lines here denote the
maximum and minimum value of the data set.

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

E
2E

 D
el

ay
 (

M
S

)

time(S)
Figure 5.A. E2E delay profile of DSR

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

E
2E

 D
el

ay
 (

M
S

)

time(S)
Figure 5.B. E2E delay profile of AODV

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

E
2E

 D
el

ay
 (

M
S

)

time(S)
Figure 5.C. E2E delay profile of GF

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

E
2E

 D
el

ay
 (

M
S

)

time(S)
Figure 5.D E2E delay profile of SPEED

 8

0

20

40

60

80

100

DSR AODV GF SPEED

#P
ac

ke
ts

 L
os

t

Figure 6. Number of packets lost during congestion

When DSR and AODV begin, they need to

perform route acquisition to discover a path to the
destination, causing a large delay (Figures 5.A and 5.B)
for the first packet (10 ~ 20 times longer than the delay
of the following packets). On the other hand GF and
SPEED don’t suffer from this feature. In these
protocols, the first packet has same delay as the
following packets. Without an initial delay cost, GF and
SPEED are more suitable for real-time applications like
acoustic tracking where the base station sends the
actuation commands to the sensor group, which is
dynamically changing as the target moves. In such a
scenario, DSR and AODV need to perform route
acquisition repeatedly in order to track the target.

In general, both GF and SPEED tend to forward
the packet at each step as close to the destination as
possible, which leads to less overall E2E delay than for
DSR and AODV (See Figures 5.C and 5.D)

At time 40 sec when the heavy flow appears, the
system enters into a transient state of congestion. Each
routing algorithm responds differently. The key reasons
for the performance profiles in the graphs of Figure 5
are 1) DSR, AODV and GF only respond to severe
congestion that leads to link failures (i.e., when
multiple retransmission fails at the MAC layer). They
are insensitive to long delay as long as no link failures
occur. 2) Their routing decisions are not based on the
delays on the link, and therefore may congest a
particular receiver even though it has long delays. 3)
DSR and AODV flood the network when the network is
already congested. This causes many packets to be
dropped during the transient state. Below, we elaborate
on details obtained from the simulation traces that
describe the simulated behavior of each protocol under
very heavy load. It should be noted that DSR, AODV,
and GF (much like IP) were not designed with
congestion control in mind. They delegate this function
to a transport layer protocol. In contrast, SPEED
integrates QoS routing with back pressure congestion

control to modulate the traffic injected into the network
and routes that traffic around the network hot spots.

DSR detects the congestion via the MAC layer
notification of failure. It doesn’t invoke another round
of route acquisition immediately; instead it salvages the
packet that the MAC failed to send and tries another
known route. Since the policy DSR uses to choose a
new route doesn’t explicitly consider load information,
this new route can also be congested, which means that
it’s difficult for DSR to find a good route. If congestion
makes all attempted routes appear to have failed and if
route acquisition is invoked, the network is flooded,
which is not good for an already congested network.

AODV reacts to the congestion more aggressively.
Upon receiving notification of a MAC failure, a node
drops the packet that leads to the MAC layer failure and
notifies all upstream nodes about the failure including
the source node. The source initiates a new round of
route acquisition. Hence, the AODV frequently repeats
the route acquisition process (seen by the large number
of control packets) when the network is severely
congested. Most packets are dropped during that phase
as shown in Figure 6.

GF responds to congestion by deleting the neighbor
node that failed to receive the packet and by choosing
another node that is the second nearest to the
destination. The routing decision is based solely on
distance and does not consider delay. Thus, it does not
fully avoid the congestion problem as shown in the
figure 5.C.

SPEED reacts differently in face of congestion.
Through neighborhood feedback loops and back
pressure rerouting, SPEED is sensitive to traffic
changes. As shown in figure 5.D, at time 40, SPEED
has longer E2E delays (overshoot) for several packets
due to the backpressure rerouting. This is because at
time 40 several packets suddenly enter the congested
area and suffer a long delay; this long delay is detected
by the receiving node and that information is fed back
to the sender via the on-demand beacon. After that,
SPEED finds un-congested routes to the destination.
Since the new route has more hops to the destination,
the E2E delay is longer than the initial path. At time
120, when congestion disappears, SPEED switches
back to the initial paths with shorter delay.

5.3. E2E Deadline Miss Ratio
The deadline miss ratio is the most important

metric in soft real-time systems. We set the E2E
deadline equal 200 milliseconds, which is 10 times the
delay of a single hop deadline. The results shown in
Figure 7 are the summary of 16 runs with different
seeds. AODV and DSR don’t perform well in the face
of congestion mainly because both algorithms flood the
network in order to discover a new path when

 9

congestion leads to a link failure, which makes the
situation even worse. GF and SPEED treat congestion
differently from AODV and DSR. GF deletes the failed
neighbor from the table and chooses another forwarding
node without considering the delay. This leads to about
a 9% miss ratio (Figure 7). SPEED takes deadlines into
account, and this leads to a very small miss-ratio (about
2%). A key observation here is that purely localized
algorithms without flooding win when traffic
congestion gets worse.

0.0

0.1

0.3

0.4

DSR AODV GF SPEED

M
is

s
R

at
io

Figure 7. MissRatios during the congestion

5.4. Control Packet Comparison

0

1000

2000

3000

4000

5000

DSR AODV GF SPEED

of

 c
on

tr
ol

 p
ac

ke
ts

Figure 8. Control packet overhead comparison

All four routing algorithms studied use a relatively

low number of control packets. Most control packets in
DSR and AODV are used in route acquisition. Because
AODV performs several rounds of route acquisition
before settling down to a better route, it requires the
most control packets. DSR uses a route cache
extensively, so it can do route discovery and
maintenance at a much lower cost than AODV. The
only control packets used in GF and SPEED are beacon
exchange packets. In addition to periodically sending

beacons, SPEED uses on-demand beacons to notify
neighbors of the congestion situation, which costs
SPEED more control packets than GF (see Figure 8).
Another observation is that the number of control
packets in DSR and AODV vary a lot in different runs,
while GF and SPEED use nearly constant number of
control packet during each run. The key reason for this
is the way DSR and AODV treat severe congestion as
link failures and react by flooding the network.

6. Conclusion
Many excellent protocols have been developed for

ad hoc networks. However, ad hoc sensor networks
have additional requirements that were not specifically
addressed. These include real-time requirements and
nodes which are severely constrained in computing
power, bandwidth, and memory. SPEED uses local
feedback control to guarantee a per node delay in
steady state and a combination of geographic
forwarding and backpressure to bound the number of
hops and react to changing loads and congestion. This
improves the end-to-end delay and provides good
response to congestion. Our simulations on GloMoSim
demonstrate SPEED’s improved performance compared
to DSR, AODV and GF. Since these protocols were not
originally developed for real-time sensor networks, it is
not surprising that they don’t work well in such
situations. We were able to develop a new protocol that
does meet the requirements of ad hoc sensor networks
in real-time situations.

References

[1] Almes, G. T., Lazowska, E. D., i. The Behavior of
Ethernet-Like Computer Communications Networks
ACM SIGCOMM 1979

[2] S. Basagni and et. al. A Distance Routing Effect
Algorithm for Mobility (DREAM). In ACM/IEEE Int.
Conf. on Mobile Computing and Networking (MobiCom
'98), October 1998

[3] Gregory G. Finn. Routing and Addressing Problems in
Large Metropolitan-scale Internetworks. Technical Re-
port ISI/RR-87-180, USC/ISI, March 1987.

[4] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister, System Architecture Directions for Network
Sensors. ASPLOS 2000.

[5] David B. Johnson and David A. Maltz. Dynamic Source
Routing in Ad Hoc Wireless Networks. In Mobile
Computing, edited by Tomasz Imielinski and Hank
Korth, Chapter 5, pages 153-181, Kluwer Academic
Publishers, 1996.

[6] D. Kandlur, K. G. Shin, and D. Ferrari. Real-time

 10

Communication in Multi-hop Networks, IEEE Trans. on
Parallel and Distributed Systems, October 1994, pp.
1044-1056.

[7] Brad Karp and H. T. Kung. GPSR: Greedy
PerimeterStateless Routing for Wireless Networks. In
Proc. AC Mobicom, Boston, MA, 2000.

[8] Young-Bae Ko and Nitin H. Vaidya. Location-Aided
Routing(LAR) in Mobile Ad Hoc Networks. In
Proceedings of the Fourth Annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom 1998), ACM, Dallas, TX,
October 1998

[9] Lin, C.R. On-Demand QoS Routing in Multihop Mobile
Networks. INFOCOM 2001. Proceedings. IEEE ,
Volume: 3 , 2001 Page(s): 1735 -1744 vol.3

[10] V.D. Park and M.S. Corson. A Highly Adaptive
Distributed Routing Algorithm for Mobile Wireless
Networks In Proceedings of IEEE IN-FOCOM’97,
Kobe, Japan, Apr. 1997, pp. 1405-1413.

[11] C. E. Perkins and E. M. Royer, Ad-hoc On Demand
Distance Vector Routing. In 2nd IEEE Workshop on
Mobile Computing Systems and Applications
(WMCSA'99), New Orleans, Louisiana, February 1999.

[12] Charles E. Perkins and Pravin Bhagwat, Highly dynamic
Destination-Sequenced Distance-Vector routing (DSDV)
for Mobile Computers, in SIGCOMM Symposium on
Communications Architectures and Protocols, (London,
UK), pp. 212-225, Sept. 1994.

[13] J. A. Stankovic, Tian He, T. F. Abdelzaher, M. Marley,
G. Tao, S. Son, and C. Lu. Feedback Control Scheduling
in Distributed Systems, IEEE Real-Time Systems
Symposium, London, UK, December 2001.

[14] H.Takagi and L.Kleinrock. Optimal Transmission
Ranges For Randomly Distributed Packet Radio
Terminals. IEEE Trans. on Communication, 32(3):246-
257, March 1984

[15] I. Stojmenovic and X. Lin. GEDIR: Loop-Free Location
Based Routing in Wireless Networks, IASTED Int. Conf.
on Parallel and Distributed Computing and Systems,
Nov. 3-6, 1999, Boston, MA, USA.

[16] Ya Xu, John Heidemann, and Deborah Estrin.
Geography-informed Energy Conservation for Ad Hoc
Routing, In Proceedings of the Seventh Annual
ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom 2001), Rome,
Italy, July 16-21, 2001

[17] Xiang Zeng, Rajive Bagrodia, and Mario Gerla ,
GloMoSim: a Library for Parallel Simulation of Large-

scale Wireless Networks. In Proceedings of the 12th
Workshop on Parallel and Distributed Simulations --
PADS '98, May 26-29, 1998 in Banff, Alberta

Appendix A: LowerBound of Node Density

One basic assumption of sensor networks is their

high node density. It is an interesting research issue to
determine the impact of node density on routing
performance. Specifically, in the SPEED algorithm, we
want to find the lower bound of node density that can
guarantee that there is no void space that can prevent a
greedy geographic forwarding step from happening.

In the SPEED algorithm, a node only sends packets
to nodes that at least K distance nearer to the
destination. The area where such qualified nodes reside
is called the forwarding area. Assume the nodes are
uniformly distributed inside the system, the larger the
size of the forwarding area, the higher is the probability
that there will be a candidate to be chosen. In SPEED
such a forwarding area size is not constant; it is depends
on how far away the sending node is from the
destination node.

����
SD

��������������������
��������������������

����

Figure 9. Forwarding Areas

When the destination node is infinitely far away

from the sending node, the forwarding area will be the
largest (Best Case Forwarding Size) and when the
destination node is exactly R away from sending node
(Figure 9), the available forwarding size is the worst
case forwarding size (WCFS). For guaranteeing
purposes, we only consider the worst case, even though
most of the time the forwarding size is nearer to the
best case. In the worst case, the forwarding size is
calculated by following formula (1):

WCFS =

22
2

2
1212)(4)(

2

1

2

)(
1cos

2
cos)(KRRKR

R

KR
R

R

KR
KR −−−−

 −−+−− −−

which depends on the radio range R and the single step
bound K. Now, we consider the worst case forwarding
area. We desire to know the lower bound of node
density that satisfies the following condition:

 11

 P (At least one node resides in the forwarding area for
given parameter R and K) >= 1-������������������������������������

Assuming a uniform distribution, according to (2)
the following condition must hold: (the size of the area
covered by the sensor network is denoted by AreaSize
>> WCFS)

 ε≤− ×DensityAreaSize

AreaSize

WCFS
)1((3)

Since the left hand side of the equation is a
monotonically increasing function when the AreaSize
increases and monotonically decreasing when node
density increases, the lower bound of the node density
is achieved when AreaSize is infinite:

ε≤=− ×−× DensityWCFSDensityAreaSize e
AreaSize

WCFS
)1lim(

Figure 10 shows the lower bound of node density

that can probabilistically guarantee that there is no void
inside a designated forwarding area (size is calculated
by (1)). For example, from the figure 10, when K =
1/2R, if the node density is above 30 nodes per Radius-
square, 99.9999% of time, the SPEED algorithm can
find a forwarding candidate. Accordingly, if the
diameter of the system is 100 hops, 99.990% of the
time, the SPEED algorithm can find a 100-hop greedy
geographic forwarding path to the destination.

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6

Lo
w

er
B

ou
nd

 o
f N

od
e

D
en

si
ty

 fo
r

ea
ch

 R
-s

qu
re

 a
re

a

Single Step Bound/Radio Range (KR_Ratio)

LowerBound of Node Density Vs K/R ratio

��������

�������������

���������������

������������

Figure 10. Lower bound node densities

Appendix B. Load Balancing in SPEED

SPEED uses non-deterministic geographic

forwarding to spread out the traffic, in order to avoid
bottlenecks and balance power consumption. In this
appendix, we show some theoretical properties of load
balancing in SPEED. Specifically, we derive the
maximum flow area (Figure 11). This area is defined as

the largest area, which may contain nodes that forward
packets of the same SPEED flow. We show that the
maximum flow area is a function of the distance L
between the sender and receiver, the wireless
transmission radius R, and the step K.

S D
�

�

��
�

���

���������	
�
��

���������	
�����

S �
�����
� D ��������
���
�

Figure 11. Maximum Flow Areas
To simplify the analysis, let us assume that the

distance L between sender and receiver is much larger
than the step K and radius R. Let us call the curve that
envelopes the maximum flow area, V(θ) (expressed in
polar coordinates). Without loss of generality, let our
coordinates be centered at the destination, such that any
point on the envelope is described by the pair (θ , V(θ))
specifying its angle and radial distance from the
destination respectively, as shown in Figure 12.

�

�

�

S D

�

��

������
��

�

�

P

Q

P Q 	
����������
����

Figure 12. Forwarding Detail

Consider the point (θ , V(θ)) shown in figure 12.
Let us call it envelope point P. To derive an expression
for the envelope, we first show how to derive, given
point P, the location of the next point on the envelope.
For this purpose, informally, it is enough to ask the
following question: assuming a node located at P
forwards a packet of the flow, what is the furthest that
the next hop of this packet can be from the line that
joins the source and destination? The answer is
obtained by intersecting the locus of all points that are
one transmission radius away from P with the locus of
all points that are K units closer to the destination. Note
that, as long as V >> K, the latter locus can be
approximated by a line perpendicular to V. The
corresponding intersection point is labeled Q in Figure
11. Moving from P to Q, θ changes by dθ and V by dV

 12

= -K. We can now derive a relation between dθ and dV.
Since dV << V, observe from Figure 11 that:

Vdxd /=θ

where 1)/(222 −=−= KRKKRdx

Since dVK −= we get:

dVKRdx 1)/(2 −−= , and:

dV
V

KR
d

1)/(2 −
−=θ

Integrating

dV
V

KR
d

V

L

1)/(2

0

−
−= ∫∫ θ

θ

Thus,
V

L
KR ln1)/(2 −=θ

Alternatively:
1)/(2 −

−

= KReLV

θ

The above is the equation of the envelope. The area

enclosed by the envelope is twice the area between one
side of the envelope and the horizontal axis. In the polar
coordinate framework this amounts to:

θθ
θππ

deLdVdAreaArea KR 1)/(

2

0

22

0

2

2

1
2 −

−

∫∫∫ ===

Hence:

−−= −

−

1)/(

2

2
2

2

11)(
2

KRe
K

RL
Area

π

Obviously the above expression is approximate
since V may eventually become small enough such that
V >> K no longer holds, thus invalidating the
assumption we used in the derivation. This part of the
curve, however, by definition is very close to the
destination. The area under it is only a small fraction of
the total area computed. Hence, it need not be
accurately determined for our overall area estimate to
remain a good approximation.

In particular, it is easy to verify (by applying
L’Opital’s rule) that when K → 0, then Area defined by
the above equation is Pi*L2 which is the area of a circle
of radius L. This is intuitively correct, because when K
→ 0, in the worst case a packet can circle around the
destination without approaching the destination
radially. The area of that circle is Pi*L2. Note also that
when K→R, then Area → 0. This again is intuitively
correct, since the only way a packet can advance R
towards the destination on every transmission is if that

transmission is precisely along the straight line towards
the destination.

The derivation of the flow area is important for
analyzing network load and specifically for analyzing
interference between different flows. Flows whose area
boundaries are less than one interference radius apart
will interfere with each other. Analysis of such
interference can be used for admission control and
congestions avoidance in SPEED. These issues will be
addressed in more detail in later publications.

