PSFQ: A Reliable Transport Protocol for Wireless Sensor Networks

Chieh-Yih Wan, Andrew T. Campbell Comet Group, Columbia University

Lakshman Krishnamurthy Intel Research and Development Intel Corporation

First ACM International Workshop on Wireless Sensor Networks and Applications (WSNA' 2002), Atlanta, September 28, 2002

Traditional Viewpoint: "Sources-to-Sink Communications"

Occasional loss is OK

New Viewpoint: "Sink-to-Sources" Communications

Occasional loss is disastrous

"Pump Slowly, Fetch Quickly"

- Ensure delivery with min. support from infrastructure ~ non-IP.
- Minimal signaling lost detection, recovery.
- High Error tolerance.

PSFQ Features

- Negative ACK system
- Hop by hop error recovery not e2e
- 1->N reliable delivery
- Fundamental relationship between pump and fetch
- Multi-modal communications operation

Fetch/Pump Relationship

- $\Omega(n) = \Phi(1) + \Phi(2) + \ldots + \Phi(n)$
 - $\Phi(n) = (1-p)^2 \times [1-p \Phi(1) \Phi(2) \dots \Phi(n-1)] \quad \Phi(0) = 0$

Multi-Modal Operations

- "Multihop forwarding" vs. "Store-and-forward".
- Propagation of Loss Event

PSFQ Operations

- Pump
 - Timers T_{min} , T_{max}
- Fetch
 - Timers
 - Tr (<< Tmax)
 - Tmax/Tr ~ Fetch / Pump ratio.
 - Loss Aggregation windows of loss.
- Report

Pump Operation

- Timers T_{min} , T_{max}
- T_{min}
 - Time-buffer for local recovery
 - Suppress rebroadcast [mobicom99]
- T_{max} loose delay bounds $D(n) = T_{max}$ 'n '(Number of hops)

Fetch Operation

- Loss Aggregation windows of loss.
- Timers
 - Tr (<< Tmax)
 - Tmax/Tr ~ Pump/Fetch ratio.
- Proactive Fetch
 - Loss of last segment.
 - Loss of all segment.
 - How long should wait before proactive fetch?

Fetch Operation

- Proactive Fetch
 - Correct choice of T_{pro}
 - $-T_{pro} = a * (S_{max} S_{last}) * T_{max} (a \ge 1).$ (no limitation on cache size)
 - $-T_{pro} = a * n * T_{max}$ ($a \ge 1$). (data cache keeps only n segments)

Report Operation

- Soliciting report.
- Piggybacking report operation on hopby-hop basis.
- Report timers

$$-T_{report} = T_{max} \times TTL + ?$$
.

Performance Evaluation

• Compare with SRM.

- Three control mesg.: session, request and repair.
- Idealized SRM extract out IP multicast substrate, replace with Omniscient multicast.
- Performance Metrics:
 - Average delivery ratio
 - Average latency
 - Average delivery overhead
- Experimental Wireless Sensor Testbed

Performance Evaluation

2Mbps, CSMA/CA channel access.

 T_{max} is 100ms, T_{min} is 50ms and T_r is 20ms

Error Tolerance

Average Latency

Latency vs channel error

Communication Cost for Reliability

Wireless Sensor Testbed

•
$$T_{max} = 0.3s$$
 and $T_r = 0.1s$.

Conclusion

- New reliable delivery scheme showed proof-of-concept on real testbed.
- Large scale testbed experiment needed.
- Component source code release for TinyOS.

