

Proximity Interactions between Wireless Sensors
and their Application

Waylon Brunette, Carl Hartung, Ben Nordstrom, Gaetano Borriello
Department of Computer Science and Engineering

University of Washington
Box 352350 Seattle, WA 98195

{wrb, chartung, bennord, gaetano}@cs.washington.edu

ABSTRACT
Many applications in ubiquitous computing rely on knowing
where people and objects are relative to each other. By placing
small wireless sensors on people, at specific locations, and on or
in a wide variety of everyday objects we can collect these
proximate relationships and deduce much about a person’s or an
object’s context. This paper investigates the practical issues of
recording these proximity interactions using RF wireless sensors
and explores the benefits of collecting/mining proximity data and
how user context and usage habits can be inferred for use by
proactive applications. We describe some of the issues we faced in
collecting usable proximity data from RF wireless sensors.
Specifically, we discuss some of the ranging experiments we
conducted, our approach to utilizing the limited local data store,
and how we implemented a low-overhead time synchronization
scheme. We present initial results from one of the applications we
are targeting: a proactive reminding system that informs users
when they leave important items behind.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – wireless communication.

General Terms
Experimentation

Keywords
wireless sensors, RF proximity, distributed clock synchronization,
embedded systems, ubiquitous computing.

1. INTRODUCTION
Wireless sensors are now small enough that they can be embedded
in many everyday objects. They can be used to gather contextual
information through a variety of sensors including light,
temperature, acceleration (force), orientation, humidity, etc.. Our

interest is in using the sensor’s radio itself as a sensor to detect
when other devices are nearby. Proximity interactions are likely
to prove invaluable for a wide variety of applications that focus on
minimizing user distraction by gathering information about the
user’s context and exploiting that context to better tailor human-
computer interactions. Recent work by Lamming [1] with
infrared proximity sensors further inspired us to better understand
the technical issues involved in collecting and communicating
proximity data. With shrinking size and power requirements,
wireless sensors are likely to be placed in more and more objects
further motivating better understanding of the issues of scale in
proximity readings.

Many meaningful proactive applications can be created by mining
proximity data gathered by placing nodes on people, in various
locations, and on important everyday items. We are exploring
several applications including: placing wireless sensors at known
fixed locations so that portable sensors can use them as landmarks
for determining their dynamic position; attaching sensors to or
placing them inside of every object that a person wants to make
sure they take with them when they leave a place (e.g., home or
office) so that the objects themselves can remind the user when
one is left behind; and placing sensors on people and equipment
in an operating room to track workflow and equipment usage.
This range of uses motivates some of the technical issues
discussed in the following sections: collecting proximity data in
environments that interfere with perfect radio-frequency (RF)
propagation, storing the data efficiently in small memory-limited
sensors, synchronizing clocks across sensors to make the data
easier to aggregate and process in a peer-to-peer architecture, and
optimizing power consumption.

Many different solutions have been proposed to characterize the
interactions between people and objects; however, no generally
accepted method has emerged for recording proximity data.
Approaches using computer vision [2] require fixed infrastructure
and video cameras are generally considered intrusive. Solutions
such as infrared transceivers suffer from being obstructed easily
and not working at all when inside of objects [1, 3]. RF
identification (RFID) tags require large and bulky readers that
have a high infrastructure cost where the size of the reader
correlates to the range of detection. There has also been a lot of
work done in the area of precise localization in order to find the
exact location or the distance between a person and object.
However, these approaches tend to be costly and infrastructure
heavy [4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
WSNA’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-764-8/03/0009…$5.00.

30

Our goal is to further our research into proactive applications by
creating a simple, easily deployable solution that can be used as a
test bed to record the interactions between people, objects, and
locations. We assert that enough information can be mined from
simple proximity data to provide some useful context without
requiring a large infrastructure.

To these ends, we settled upon using RF wireless sensors as a
simple method of gathering contextual information through RF
proximity detection because they are a peer-based, ad hoc solution
that requires little infrastructure. They are also an off-the-shelf
solution that continues to shrink in size and power requirements.
In the near future, wireless sensors’ volume is likely to shrink to a
few cubic millimeters [5]. This tiny form factor will allow sensors
to be deployed into many environments without adding
appreciably to usage constraints. Power harvesting research [6] is
an emerging area for sensor networks that is likely to produce a
sustainable energy model for such sensors.

We present results obtained from our initial implementation and
experiments. The work to date only focuses on our experiences
collecting and storing the data, leaving the analysis and actuation
as part of planned future work. In Section 2, we provide more
detail on some possible application scenarios to set a context for
our work. Section 3 describes the most relevant parts of a growing
body of related work, and Section 4 provides details of our test
bed implementation. In Section 5, we discuss some of the
challenges we encountered during our implementation such as
time synchronization between sensors and optimizing the range of
the sensor radios. Section 6 shows some of our initial
experimental results. Finally, in Section 7, we present our
conclusions and outline plans for future work.

2. APPLICATIONS
Proactive applications try to anticipate users’ needs and minimize
distraction [7]. To accomplish this, they need to have some
model of the users’ current context to help them make decisions
about what actions to take automatically. When designing our RF
proximity system we decided to target applications where our
approach could be used to gain insight about context by
examining the proximal pairings of people, objects, and locations.

One of our target applications is borrowed from the seminal work
by Lamming and Bohm [1] and seeks to create a proactive
reminder system. For example, an application could generate an
alert on your wristwatch if it sensed that you got into your car to
go to work without some important papers. The code for the
application might be running on a personal server [8] augmented
with a proximity sensor, with another sensor in the car, and others
on the papers you tagged (by attaching a proximity sensor to
them) the previous afternoon when you decided to bring them
home from work. In this case, the important information is that
your papers are within your proximity (i.e., in the car) not their
precise location in the car. Another example might be to help you
find your misplaced PDA. In this case, a nearby display could
show the ‘bedroom’ as the general location for the PDA, since
that is where it was last seen by the other sensors. It chose to
display the PDA’s location because the application has observed
that this is one of the items you consistently spend time near and it
is not currently present. The location was obtained from wireless
sensors placed in each room in your house. This simple hint as to
where the PDA may be significantly narrows the search. Another

reminding example might entail an application reminding you that
you don’t have your house keys as you are leaving work. In this
example, data mining techniques are used to infer that you are
deviating from your past habits by examining the location, time of
day, and the items that were in proximity such as purse (briefcase
or backpack), laptop, and jacket. The system knows from previous
experience that the vast majority of the time this contextual
situation occurs your house keys are also normally within your
proximity. In these examples, the key piece of information is only
the presence of the item, not its precise location (i.e. distance
coordinates).

Another possible application is to use proximity data to track and
improve asset management and logistics. To improve logistics, we
study where people are when they do their work, what tools they
are using, and who else interacts with them. By placing a node on
every person, object, and location of interest, massive amounts of
data could be obtained that include information about how long
people were near that location, who else was there, and/or what
object(s) were in use. Specifically, we are looking at a scenario set
in a hospital operating room where equipment is shared between
busy people who are constantly moving. The proximity data
allows doctors and hospital administrators to track and organize
equipment more efficiently. It could also show patterns in
workflow and identify ways to simplify or expedite procedures by
identifying repetitive movement patterns.

3. RELATED WORK
Using proximity to gain contextual information is not a new idea.
Lamming’s Specs project [1] uses low-power infrared to gauge
proximity between two transceivers. This work inspired us to
look at the issues in using RF-based proximity. RF has benefits
over infrared because it does not require a line-of-sight between
sensors and allows sensors to be inside of objects (e.g., a purse or
teddy-bear). By using RF, a PDA in your backpack can still be
seen as being with you, whereas the backpack would certainly
block infrared emissions from an object within it. The ParcTab
system [3] also used infrared beacons to create location-based
context-aware applications and suffered from the same problems.
However, the ParcTab was a PDA that was likely to be visible
while in use in a user’s hand.

Smart-Its Friends [9] use a combination of both RF proximity
sensors and accelerometers to create associations between devices
based on proximity and similar movement (as in shaking two
objects together). The Smart-Its project focuses on helping users
make deliberate associations between trusted devices. Our
approach differs in that we are concerned with recording all
proximity relations including those with objects in the
environment that will let us gather as much context as possible for
data mining. An early version of Smart-Its was used in a project
called MediaCup that sought to enhance everyday objects with
sensing capability [10]. Although, this work did use some
proximity data to detect meetings in progress, its focus was on
sensing different properties of the objects such as the temperature
of the coffee cup to infer how long a user may have left it
unattended.

Other RF research such as SpotON has focused on using RF
signal strength to determine locations of objects [11]. However,
RF signal strength is unreliable in dynamic environments and is
not necessarily needed to gain the basic level of context that can

31

be ascertained by proximity. Another focus has been on
deploying ad hoc RF beacons to determine location [12] by using
them as landmarks. An RF transmitter can be used to broadcast
its coordinates (or more semantically meaningful location, e.g.,
‘kitchen’ or ‘northwest corner of the building’) to any other
receivers that happen to come within range.

In support of our approach, Guibas’ work focuses on applying
mathematical techniques to track relations and reason about them.
He points out that it is less expensive for a sensor to sense a
relation (such as proximity) than to do expensive localization
computations to yield a precise 3-D position [13]. Moreover,
simpler relations are likely to be more numerous and more
accurate than detailed measurements.

4. IMPLEMENTATION
We chose to implement our proximity system using a Crossbow
sensor platform derived from the UC Berkeley sensor ‘motes’
[14]. The Mica2dots, pictured in Figure 1, are the smallest form-
factor platform available and can be easily attached to or inserted
into objects. Motes contain an 8-bit microcontroller, radio
transceiver, and flash memory for storing data. The code for the
motes was written within the TinyOS run-time environment. Once
deployed, the motes continually track the presence of other motes
within proximity range through radio messages. Our motes are
programmed to continually send out identification messages at
spaced time intervals to inform the other motes in the area of their
presence. There are no false positives with this approach; no mote
will hear another that is not actually present. However, because
RF reception changes with the details of the environment, two
nodes that are near each other may not always receive each other’s
messages or receive them asymmetrically. An important issue
with RF proximity is how much power to put into the radio
transmission. Lower power requires nodes to be closer to hear
each other, and their signals may be easily attenuated by
obstructions (including people) in the environment. Higher power
may make the signal propagate too far, thus, making for too large
a proximity range and decrease battery life.

We deployed motes as RF proximity detectors to “see” and
“remember” who or what was nearby and for how long. Each
mote is responsible for keeping a log of all other motes it has
‘heard’. The log includes the mote ID, the time the other mote is
first heard, and how long it stays within range. Motes log the
event to their non-volatile flash storage once the other mote
leaves. Each mote sends out a message approximately every
300ms. We chose such a fast update rate to ensure we caught all
proximity interactions on a human scale. Several tests were
preformed to ensure that a person who came within 3-5 feet of a
location would be detected. The motes showed an acceptable rate
of detection with a 300ms refresh rate. Because of network
interference and lost messages, a timeout was used to make the
mote wait before assuming a signal was lost. This helps to
smooth the data and reduce the amount of storage space needed
for the log. Since every mote broadcasts regular identification
messages, received messages do not elicit a response.

With each mote keeping its own log of time intervals and the
possibility of asymmetric reception, some form of time
synchronization was necessary to make the logs easy to align and
compare. This is especially the case if we want to do so on the
motes themselves rather than a centralized infrastructure that can

keep track of the drift of each node. However, due to the nature
of human-scale proximity interactions, we do not need a high-
precision method that would only consume valuable resources
(communication bandwidth and power). Instead, we decided that
for most data mining applications, knowing if an object was
present any time during a particular one second time window is
sufficient. Therefore, our synchronization scheme can be loose –
to within one second resolution. This allows us to keep power
consumption at a minimum by simply sending a local timestamp
in each radio message. The receiving mote adjusts its clock ticks
to bring its own clock in line with the time it receives. If it is
behind, then it runs its update increments slightly faster until it
catches up. If the received time is less than the local time, then
the device does not set its clock backwards to ensure that the
internal logs stay in temporal order. Instead, it temporarily slows
its update increments. This leads to an averaging affect among the
communicating motes and keeps their clocks synchronized to
within the required resolution. The loose time synchronization
method is discussed in further detail in section 5.3.

Initial mote setup and data downloading was done using serial
communication with a PC application. We did not assume that all
of the devices start with the correct time. All devices start with
time zero until they receive their first proximity message. This
way a mote can have its timer explicitly set by a PC, which in turn
will cause the time to be propagated out to other active motes via
the radio. This causes a cascade as the other motes come into
contact with any mote that has a local time.

5. CHALLENGES
In this section, we discuss some of the issues that must be
addressed in building RF proximity sensors. Specifically, we
discuss some of the ranging experiments we conducted, how we
implemented a low-overhead time synchronization scheme, and
our approach to utilizing the limited local data store on board the
sensors.

5.1 Radio Range
For radio proximity detection to be interpreted in a meaningful
way, the radio transmission range must be limited to a known
distance. Unfortunately, the wireless sensors we use are designed
to have a large radio range so that they can easily form ad hoc
networks. In our tests, the Mica2dots using 433 MHz Chipcon
radios showed very large radio range even at the lowest transmit
power settings. Using the quarter wave whip antenna that is

FIGURE 1: Picture of Mica2dot

32

supplied with the motes and the transmit power set to the lowest
we still obtained reasonable reception 80 ft away. To compensate
for this very large radio range, we cut the antenna length to 1/6 of
the wavelength to reduce the transmission distance. Results from
experiments with the short antenna is shown in Figure 2 – the
shorter antenna yielded an unobstructed transmission distances of
about 18ft for good packet reception continuing out to about 30ft
before tailing off. Figure 2 shows the percentage of successful
packets for three configurations. In the first case, the antennas
between the two motes are arranged to be parallel to each other.
The second case has the mote antennas perpendicular. The final
case shows the effects of a mote being in a front pocket while the
person is facing the other mote. For this last case, the reliable
range dropped to 10ft. A large number of people in the vicinity of
the experiment disrupt the transmission and make the effective
transmission radius much smaller. As Figure 2 illustrates RF is
noisy and is affected by many conditions. It is hard to obtain
precise models of distance measurements as people, objects, and
locations have effects on the distance a radio can transmit. To
compensate for this, the power levels can be raised on the mote’s
radios. However, too much power will result in inaccurate results
as motes can transmit much further with nothing blocking their
line of sight. We also plan to experiment with attaching
attenuators to the antenna to limit the power while maintaining
good reception at the lower range. For each RF technology one
must find the right balance between antenna length, radio power
setting, and the desired proximity range. One approach we plan to
investigate is the dynamic variance of RF power on a platform
that has a wider range of power settings. Proximity data will then
need to be tagged with power setting as well as local time.
However, this may generate enough data for an algorithm to be
able to detect variance in reception success to different motes and
thus compensate for some of the obstructions in the environment.

5.2 Time Synchronization
For partial proximity data to be useful there needs to be a global
time that will allow temporal synchronization of data from
different devices. However, in our proximity applications, nodes
can be separated from the network for extended periods of time
making it difficult to keep a single synchronized global time.
According to Elson and Römer [15] wireless sensor networks do
not fit traditional network assumptions and therefore neither have

the resources nor infrastructure required for most traditional
synchronization algorithms. They claim the best solution is for
each node to keep its own local time rather than have a global
clock. One method they suggest for synchronization is to have
each node build up a conversion table of parameters that relate the
local clock to other nodes’ clocks.

Our implementation uses a loose synchronization scheme to
establish a consensus time for data analysis. Each node keeps its
own internal time that is continually being updated by its
neighbors towards an overall network wide consensus time. When
a new proximity message arrives from another device with a
different global time each device assumes they are only partially
right. The devices then average their local time with the other
device’s time to produce a revised local time. Note that individual
devices do not need to be aware of the actual world time as long
as they all use identical and uniform time divisions and can agree
on a global consensus time. A typical user moves slowly enough
that a coarse time scale with resolution of one second is adequate
to record interactions with a person’s surroundings. Therefore, it
did not seem necessary to use a tight synchronization technique to
keep the local times of the devices within milliseconds of each
other. These more typical synchronization methods would have
only shortened the life of the sensors by unnecessarily wasting
valuable communication and computation resources to implement
the synchronization algorithms with much higher resolution than
required.

There are two main concerns about devices that are only loosely
synchronized. First, radio traffic could vary the send-receive
delay of time-stamped messages. This shouldn’t be too large of a
factor as the motes are located only a short distance away from
each other and the time of flight should be negligible. In addition,
messages are sent and processed in milliseconds. Since we are
only concerned with synchronization at the level of a second, we
assume this delay is not significant. Second, the devices’ drift
rates might not permit convergence to a synchronized time. If
devices do not converge within a few seconds then reconstructing
the temporal ordering of events across all the devices will be made
much more difficult. We decided to conduct a simple test using
three motes to see whether the devices drift significantly. We
found that for a given 12 hour period, the devices did not drift
more than 1 second. According to Elson and Römer, typical
sensors will drift about 0.6 ms after 60 seconds [15]. Since the
devices do not have a significant drift rate they should be able to
stay synchronized with an occasional correction via the radio.

5.2.1 Evaluation
We ran several simulations to verify that our averaging method
would keep our proximity devices synchronized. The simulator
was a discrete event driven simulation where units of time were
simulated at 0.1ms. Three separate simulations were run at
“extreme”, “high”, and “normal” (or typical) drift rates. Each
sensor was assigned a randomly chosen drift rate within the
bounds specified in Table 1. Our simulation results showed that
global time averaging yielded tighter synchronization than was
required, namely, better than one second in all cases.

Packet Success Rate vs Distance

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Distance (ft)

Pa
ck

et
 S

uc
ce

ss
 R

at
e

(%
)

Parallel
Perpendicular
Pocket

FIGURE 2: Distance of Radio Packet Reception

33

5.2.1.1 Simple Averaging
To see the effect of drift rates on the device’s local time, we
simulated 100 devices that sent messages to each other over a
one-week period. These 100 devices were mostly isolated and
could only occasionally communicate. The goal of the simulation
was to see if separated devices that only occasionally saw another
node could still all converge to a single global time. Each device
was set with a random drift rate (either faster or slower) bounded
by a maximum and minimum. In this simulation, the sensor sends
a proximity message every 0.5 seconds. However, the sensor is
only able to successfully communicate with another node 1/120 of
the time. Overall, this means that a sensor will actually
communicate with another node approximately once per minute.
Three ranges of drift rates were simulated and are listed in Table
1. The drift rate indicates how much extra time a device thinks has
passed per minute. Table 1 also shows the results of the
experiment including the largest difference in internal time
between any two devices that occurred during the week. Note that
the maximum difference is approximately an order of magnitude
greater than the maximum drift per minute. This is as expected
with an average of one communication per minute. There is likely
to be at least one node that is unfortunate enough to not
communicate for 10 consecutive minutes.

TABLE 1: Time difference between any two nodes (simple averaging)

 Drift Rates
(ms/min)

Max. Diff
(ms)

Mean Diff
(ms)

Std. Dev.

Extreme 20 – 80 886.5 100.0 76.0
High 2 – 8 93.5 10.1 7.7
Normal 0.2 – 0.8 8.3 0.9 0.7

We also used the simulator to see the effects of nodes trying to
converge while having very different internal times. To test this
we gave each node a random start time of less than a minute.
Figure 3 shows the rate of convergence under the different drift
rates. The simulation indicates that if each device adjusts its idea
of the global time by averaging its local time with that of other
devices in the network, there is a trend for the devices in the
network to agree upon a global time within a few minutes, even
with different local starting times and extreme drift rates.

5.2.1.2 Averaging with Groups
Applications of proximity devices will likely involve several
devices that are in constant contact with each other forming a
well-connected cluster. For example, this might be the case for
the devices a person carries in their pockets or bag. These groups
of devices will generally have agreement on a global time but will
occasionally be exposed to other devices that may or may not
agree as they have been separated for a long period of time. For
example, this might be the case with sensors that were left at work
over the weekend. These network partitions allow groups of
sensors to be isolated and to drift away from the consensus time.
We simulated the effects of this situation by clustering devices
together into several groups to see if our loose synchronization
scheme would work with isolated clusters. For the loose
synchronization method to work the network of isolated clusters
would eventually have to agree upon a global time. To test this we
simulated 100 sensors that were randomly assigned to 20 different
clusters of sensors where the number of sensors varied per cluster.
In the simulation 2/3’s of the clusters were stationary and never

communicate with each other, while the remaining 1/3 were
mobile clusters that could move within range of any cluster.
Mobile clusters moved to another cluster after some random
interval between 5-20 minutes. The mobile cluster was then
isolated for 5 minutes before moving to another cluster. The idea
was to mimic typical behavior of a user moving from room to
room at home or work. The results in Table 2 show that group
averaging will only work with reasonable drift rates. The
maximum difference between any two nodes only remained below
1 sec in the case of normal drift rates. Figure 4 shows how the
isolated groups cause local time to drift and then quickly move
closer to global consensus time when a mobile group arrives.

TABLE 2: Time difference between any two nodes (group averaging)

 Drift Rates
(ms/min)

Max. Diff
(ms)

Mean Diff
(ms)

Std. Dev.

Extreme 20 – 80 8615.4 1214.2 1197.4
High 2 – 8 1593.0 180.4 183.0
Normal 0.2 – 0.8 105.9 14.6 13.7

A consensus time can only be reached with nodes having small
enough drift rates. Of course, if we increase mobility and make
network partitions more short-lived, then consensus can be
reached more easily. These are the two key parameters for loose
synchronization to work well: the mobility of the moving clusters
needs to be high enough to distribute the consensus time
frequently enough and the drift rate needs to be minimized.

Largest Difference Between any Two Nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (h)

La
rg

es
t D

iff
er

en
ce

 (m
s)

Normal Drift
High Drift
Extreme Drift

FIGURE 4: Largest difference in local time between nodes

Largest Difference between Any Two Nodes

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200
Time (s)

La
rg

es
t D

iff
er

en
ce

 (m
s)

Normal Drift

High Drift

Extreme Drift

FIGURE 3: Convergence of time between nodes

34

5.3 Limited Storage & Power
The major factors that determine the useful lifetime of a node in
our system are storage size and battery life. These are two of the
current limitations that plague sensor network research in general.
We believe both issues can only be solved with new technology.
Storage density is continuing to rapidly increase making it soon
possible to have megabytes of storage on even the smallest,
lowest-power sensors. However, the same rate of improvement is
not true for power. Power harvesting methods are in the earliest
stages of research and battery life is only slowly increasing
(approximately doubling every 10-20 years for a given
technology).

Today, however, storage size does limit the length of time a mote
can gather data before needing to offload it. The motes we use
have limited storage capabilities. In our implementation, several
methods were used to decrease the amount of data that needed to
be stored thereby increasing application lifetime. To save log
space only the minimum amount of information was stored in
each log entry: mote ID, the time when the mote was first heard,
and how long the mote remained in proximity range. We also
implemented a smoothing operation that waited four consecutive
updates before considering the mote gone to compensate for radio
unreliability. The smoothing operation significantly decreased the
number of log entries and created cleaner data.

Currently motes only have 4Mbits of space for non-volatile data
storage which is not enough for large deployments. The number
of devices present and the amount of movement increases the
number of log entries needed dramatically. As the devices that are
in proximity increases, the number of possible log entries grows
quickly with an upper bound of O(N2) where N is the number of
devices. As the movement in the system increases the number of
times log entries must be made for items entering and leaving
range also increases. If this system is to be used on a large scale
with hundreds of devices over long periods of time more storage
space is required. Compounding the problem is the fact that the
TinyOS log component moves data in and out of permanent
storage in 16 byte blocks causing bytes to be wasted within every

log entry. We plan to rewrite this portion of TinyOS in the future
to solve this underutilization problem.

We have only scratched the surface of the power issue in that we
believe it can only fundamentally be solved with new technology.
Some methods we use to reduce power consumption are to
increase the amount of time the mote is in sleep mode, limit the
number of log writes, turn off as many components as possible,
and implement a time synchronization system that added no extra
radio messages.

Another benefit of our time synchronization is it allows us to
create listening windows to reduce the duty cycle even further.
However, with only loose synchronization the listening windows
need to be larger than what would be possible with perfect
synchronization but they still reduce the radio listening time
significantly.

One major problem we encountered is the very limited battery life
of the new Mica2dots. The Mica2dots are powered by coin cells
that have approximately 220mAh (yielding 4-5 hours of
operation) compared to the AA’s of the larger and more flexible
Mica motes which have approximately 2600mAh (for 2-3 days of
operation). To compensate for the smaller coin cell batteries of the
Mica2dots, we are looking into ways to decrease the duty cycle
even further after we have gained more experience in mining the
proximity data.

6. EXPERIMENTS
In our experiments we were only concerned with collecting data
from people who were interacting with other tagged items and
then being able to transfer the data to a central location for further
data analysis. We used both Micas and Mica2dots as platforms.

The first experiment we report lasted a total of 21 hours using
Micas. For this test we deployed approximately 6 motes to be
‘senders’, and 1 mote to be a ‘receiver’. Recording proximity
data asymmetrically is appropriate for our reminder application.
The receiver was placed in the subject’s pocket so it could be
carried around throughout the day. The senders were either

FIGURE 5: Day-in-the-life interactions of a subject and his belongings

35

attached to specific items, or placed strategically in different
locations. Figure 5 represents the data that the receiving mote
recorded throughout our day test. The experiment began at 10pm
and finished at approximately 7pm the next day.

The experiment started with the subject in the research lab at
10pm. Shortly afterwards, the subject went home with his tagged
objects (i.e. backpack, coat, and keys). After arriving at home the
subject ventured out again to meet some friends. When the
subject returned home, he slept for the next 7 hours as
corresponds to long solid period 1:30am to 8:30am in Figure 5. In
the morning the subject took a short bus ride to work and arrived
just before 9am. The figure shows when the subject took a lunch
break and was separated from all the motes for a short time. At
about 5pm, the subject left work and took a longer bus ride back
to the lab to conclude the experiment.

A few days after the experiment was complete the subject was
given Figure 5 to verify the data. The subject was able to recreate
most of his day and explain why sensors would not have been
detected by each other at certain times. For example when he
went out at night to meet his friends he left his backpack at home.
Another example is he told us that he put his keys down around
midnight when he arrived at his friend’s house explaining the
breaks in the graph of him being by his keys only sporadically.

We set up a second experiment to test our system by tagging 3
locations and 4 people working within the lab. This experiment
ran for 7 hours. The motes gathered proximity data symmetrically
by logging each time a person came in contact with another
person as well as the time they lost contact. The graphs of two of
the people tagged show times and duration of when each was
within proximity of other tagged objects. The data gathered
showed some interesting trends in terms of proximity, without
having the need to calculate exact locations. For instance, the
graphs show that Person2 frequented Location1, indicating that
that is where most of their work was done. The data also indicates

that there was a zone in between Location1 and Location2 in
which a person could stand and be within proximity of both
sensors. Person1 and Person2 were together for extended lengths
of time between times 5-60 and 200-230, indicating a meeting or
conversation between the two.

This experiment also showed that Person2’s mote missed
recording Person1 a few times. This most likely occurred because
someone was probably walking at a distance that was on the
fringe of the radio range and only remained in range for a short
time. Verification of data is difficult since we did not have a
reference to compare to and sensors occasionally miss messages.
It is difficult to track loss in an actual application deployment
since the motes are always beaconing and you don’t know exactly
what is within range at certain times.

These initial experiments show that our method of collecting
proximity data seems to be feasible. Our initial experiments show
that useful data can be gathered through RF proximity
interactions. Future experiments are needed in other real-life
environments and for longer durations. We plan to expand our
work to apply machine learning techniques to larger volumes of
data so that we can experiment with detecting anomalous patterns
that may lead an application to ask for user intervention. We are
also searching for methods to verify mote interactions while they
are in constantly changing environments – typical of applications
such as the personal reminder system where the environment can
be changing between a house, bus, mall, or a car.

7. CONCLUSION & FUTURE WORK
Collecting proximity data with wireless sensors is a simple
method of obtaining large amounts of context information.
However, further work needs to be done on exploring how this
data can be used in real time, how difficult it is to extract
meaningful data, and how well patterns can be learned from
proximity interactions. We plan to continue our work evaluating

FIGURE 6: Interactions of Person1(top), Person2 (bottom), and the surrounding environment

36

the collection of proximity data as a method of obtaining context
information by doing much more extensive testing that will
include multiple day experiments of common situations using
between 50 to 100 motes. This will allow us to further verify our
loose time synchronization scheme and start to examine ways to
deal with noise in our data. Our initial implementation will
continue to be refined and used in the design of future
experiments and in the development of applications such as an
object reminder system and workflow analysis. Further work also
remains in the area of power and storage management. Power
management is one of the critical areas needing work as it is one
of the largest hurdles to building a deployable system that will last
several days.

The next major step will be to design and implement an
application based on the analysis of the proximity data. The
application we implement may be a reminder system that tracks
various objects and generates a reminder when an expected object
is not present. This will present many challenges such as finding
methods to dynamically offload the data from logs as they fill up.
Once offloaded the logs need to have some distributed algorithm
that allows all the data to be reassembled for analysis. Once the
reminding pattern is learned it needs to be stored in some way that
is easily accessible by the sensors to determine if a reminder is
needed.

Another possible application may be to track the people and
equipment in an operating room. In this scenario, motes would be
attached to items that are continually being moved between
operating rooms as well as on the doctors or nurses that use them.
This would allow for the study and organization of operating
room equipment and workflow.

Finally, we believe that a wide range of sensors can be used to
gather proximity data. Infrared and RF sensors have gained much
attention for now, but both these technologies require relatively
large devices with high power needs. A more promising approach
may be to utilize passive RFID tags. With a combination of
mobile and fixed readers, it may be possible to gather very similar
proximity data but with completely passive tags in the objects
[16]. Issues that arise in this case are a complete loss of symmetry
in the proximity data collected (making analysis potentially more
difficult and only from certain devices rather than from any), a
potentially more fragile system with the fewer readers being
points of failure, and greater power needs for the mobile readers.
In the end, it is likely that a combination of sensor technologies
will be tailored to particular application domains.

8. ACKNOWLEDGMENTS
We would like to thank Corey Ojima and Tim Underwood for
their help in developing and testing the loose time
synchronization of the sensors. Michael Perkowitz provided
valuable suggestions on the presentation of the material.

9. REFERENCES
[1] M. Lamming and D. Bohm “SPECs: Personal Pervasive

Systems”. IEEE Computer, Vol 36, No 6, pp 109-111, June
2003

[2] R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade,
“Algorithms for cooperative multisensor surveillance,”

Proceedings of the IEEE, Vol. 89, No. 10, pp. 1456-1477,
2001

[3] B. Schilit, N. Adams, and R. Want. “Context-aware
computing applications.” In Proceedings of IEEE Workshop
on Mobile Computing Systems and Applications, pp 85- 90,
1994.

[4] J. Hightower and G. Borriello. “A survey and Taxonomy of
Location Systems for Ubiquitious Computing” UW-CSE
Tech Report #01-08-03, August 2001

[5] J. Kahn, R. Katz, and K. Pister. “Next century challenges:
mobile networking for Smart Dust.” In Proceedings of the
fifth annual ACM/IEEE international conference on Mobile
computing and networking, pp 271-278, 1999

[6] M. Rahimi, H. Shah, G. Sukhatme, J.n Heidemann and D.
Estrin. Project available at http://www.cens.ucla.edu/Project-
Descriptions/Energy_Harvesting/index.html

[7] Tennenhouse, David. “Proactive Computing.”
Communications of the ACM, Vol. 43, No. 5, pages 43-50,
January 2000.

[8] R. Want, T. Pering, G. Danneels, M. Kumar, M.
Sundar and J. Light. “The Personal Server: changing
the way we think about ubiquitous computing.”
Proceedings of UbiComp 2002, pp 194-209.

[9] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M.
Beigl and H.W. Gellersen, “Smart_Its Friends: A Technique
for Users to Easily Establish Connections between Smart
Artefacts”. Proceedings of UbiComp 2001, pp 116-122.

[10] Gellersen, Hans-Werner and Michael Beigl and Holger
Krull. “The Media Cup: Awareness Technology Embedded
in an Everyday Object.” Proceedings of the First
International Symposium on Handheld and Ubiquitous
Computing, No. 1707, pp. 308-310, Springer, September
1999.

[11] J. Hightower, R.Want, and G. Borriello, “SpotON: An
Indoor 3D Location Sensing Technology Based on RF Signal
Strength,” UW CSE 00-02-02, Feb. 2000.

[12] N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heidemann.
“Scalable, Ad Hoc Deployable, RF-Based Localization.“
Proceedings of the Grace Hopper Celebration of Women in
Computing, October, 2002

[13] L. Guibas, “Sensing, tracking, and reasoning with relations.”
IEEE Signal Processing Magazine, Vol 19 No 2: pp 73-85,
March, 2002.

[14] http://www.xbow.com/Products/
Wireless_Sensor_Networks.htm

[15] Elson, Jeremy and Kay Römer. “Wireless Sensor Networks:
A New Regime for Time Synchronization.” Proceedings of
the First Workshop on Hot Topics in Networks (HotNets-I),
28-29 October 2002.

[16] Guide Project Web Page, http://seattleweb.intel-
research.net/projects/guide/index.htm.

37

