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ABSTRACT 
Many applications in ubiquitous computing rely on knowing 
where people and objects are relative to each other.  By placing 
small wireless sensors on people, at specific locations, and on or 
in a wide variety of everyday objects we can collect these 
proximate relationships and deduce much about a person’s or an 
object’s context.  This paper investigates the practical issues of 
recording these proximity interactions using RF wireless sensors 
and explores the benefits of collecting/mining proximity data and 
how user context and usage habits can be inferred for use by 
proactive applications. We describe some of the issues we faced in 
collecting usable proximity data from RF wireless sensors.  
Specifically, we discuss some of the ranging experiments we 
conducted, our approach to utilizing the limited local data store, 
and how we implemented a low-overhead time synchronization 
scheme. We present initial results from one of the applications we 
are targeting: a proactive reminding system that informs users 
when they leave important items behind. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – wireless communication.  

General Terms 
Experimentation 

Keywords 
wireless sensors, RF proximity, distributed clock synchronization, 
embedded systems, ubiquitous computing. 

1. INTRODUCTION 
Wireless sensors are now small enough that they can be embedded 
in many everyday objects.  They can be used to gather contextual 
information through a variety of sensors including light, 
temperature, acceleration (force), orientation, humidity, etc..  Our 

interest is in using the sensor’s radio itself as a sensor to detect 
when other devices are nearby.  Proximity interactions are likely 
to prove invaluable for a wide variety of applications that focus on 
minimizing user distraction by gathering information about the 
user’s context and exploiting that context to better tailor human-
computer interactions.  Recent work by Lamming [1] with 
infrared proximity sensors further inspired us to better understand 
the technical issues involved in collecting and communicating 
proximity data.  With shrinking size and power requirements, 
wireless sensors are likely to be placed in more and more objects 
further motivating better understanding of the issues of scale in 
proximity readings. 

Many meaningful proactive applications can be created by mining 
proximity data gathered by placing nodes on people, in various 
locations, and on important everyday items. We are exploring 
several applications including: placing wireless sensors at known 
fixed locations so that portable sensors can use them as landmarks 
for determining their dynamic position; attaching sensors to or 
placing them inside of every object that a person wants to make 
sure they take with them when they leave a place (e.g., home or 
office) so that the objects themselves can remind the user when 
one is left behind; and placing sensors on people and equipment 
in an operating room to track workflow and equipment usage.  
This range of uses motivates some of the technical issues 
discussed in the following sections: collecting proximity data in 
environments that interfere with perfect radio-frequency (RF) 
propagation, storing the data efficiently in small memory-limited 
sensors, synchronizing clocks across sensors to make the data 
easier to aggregate and process in a peer-to-peer architecture, and 
optimizing power consumption. 

Many different solutions have been proposed to characterize the 
interactions between people and objects; however, no generally 
accepted method has emerged for recording proximity data. 
Approaches using computer vision [2] require fixed infrastructure 
and video cameras are generally considered intrusive. Solutions 
such as infrared transceivers suffer from being obstructed easily 
and not working at all when inside of objects [1, 3].  RF 
identification (RFID) tags require large and bulky readers that 
have a high infrastructure cost where the size of the reader 
correlates to the range of detection. There has also been a lot of 
work done in the area of precise localization in order to find the 
exact location or the distance between a person and object.  
However, these approaches tend to be costly and infrastructure 
heavy [4]. 
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Our goal is to further our research into proactive applications by 
creating a simple, easily deployable solution that can be used as a 
test bed to record the interactions between people, objects, and 
locations.  We assert that enough information can be mined from 
simple proximity data to provide some useful context without 
requiring a large infrastructure. 

To these ends, we settled upon using RF wireless sensors as a 
simple method of gathering contextual information through RF 
proximity detection because they are a peer-based, ad hoc solution 
that requires little infrastructure. They are also an off-the-shelf 
solution that continues to shrink in size and power requirements. 
In the near future, wireless sensors’ volume is likely to shrink to a 
few cubic millimeters [5]. This tiny form factor will allow sensors 
to be deployed into many environments without adding 
appreciably to usage constraints.  Power harvesting research [6] is 
an emerging area for sensor networks that is likely to produce a 
sustainable energy model for such sensors. 

We present results obtained from our initial implementation and 
experiments. The work to date only focuses on our experiences 
collecting and storing the data, leaving the analysis and actuation 
as part of planned future work. In Section 2, we provide more 
detail on some possible application scenarios to set a context for 
our work. Section 3 describes the most relevant parts of a growing 
body of related work, and Section 4 provides details of our test 
bed implementation. In Section 5, we discuss some of the 
challenges we encountered during our implementation such as 
time synchronization between sensors and optimizing the range of 
the sensor radios.  Section 6 shows some of our initial 
experimental results.  Finally, in Section 7, we present our 
conclusions and outline plans for future work. 

2. APPLICATIONS 
Proactive applications try to anticipate users’ needs and minimize 
distraction [7].  To accomplish this, they need to have some 
model of the users’ current context to help them make decisions 
about what actions to take automatically.  When designing our RF 
proximity system we decided to target applications where our 
approach could be used to gain insight about context by 
examining the proximal pairings of people, objects, and locations. 

One of our target applications is borrowed from the seminal work 
by Lamming and Bohm [1] and seeks to create a proactive 
reminder system. For example, an application could generate an 
alert on your wristwatch if it sensed that you got into your car to 
go to work without some important papers.  The code for the 
application might be running on a personal server [8] augmented 
with a proximity sensor, with another sensor in the car, and others 
on the papers you tagged (by attaching a proximity sensor to 
them) the previous afternoon when you decided to bring them 
home from work.  In this case, the important information is that 
your papers are within your proximity (i.e., in the car) not their 
precise location in the car. Another example might be to help you 
find your misplaced PDA. In this case, a nearby display could 
show the ‘bedroom’ as the general location for the PDA, since 
that is where it was last seen by the other sensors.  It chose to 
display the PDA’s location because the application has observed 
that this is one of the items you consistently spend time near and it 
is not currently present.  The location was obtained from wireless 
sensors placed in each room in your house.  This simple hint as to 
where the PDA may be significantly narrows the search. Another 

reminding example might entail an application reminding you that 
you don’t have your house keys as you are leaving work. In this 
example, data mining techniques are used to infer that you are 
deviating from your past habits by examining the location, time of 
day, and the items that were in proximity such as purse (briefcase 
or backpack), laptop, and jacket. The system knows from previous 
experience that the vast majority of the time this contextual 
situation occurs your house keys are also normally within your 
proximity. In these examples, the key piece of information is only 
the presence of the item, not its precise location (i.e. distance 
coordinates). 

Another possible application is to use proximity data to track and 
improve asset management and logistics. To improve logistics, we 
study where people are when they do their work, what tools they 
are using, and who else interacts with them. By placing a node on 
every person, object, and location of interest, massive amounts of 
data could be obtained that include information about how long 
people were near that location, who else was there, and/or what 
object(s) were in use. Specifically, we are looking at a scenario set 
in a hospital operating room where equipment is shared between 
busy people who are constantly moving. The proximity data 
allows doctors and hospital administrators to track and organize 
equipment more efficiently. It could also show patterns in 
workflow and identify ways to simplify or expedite procedures by 
identifying repetitive movement patterns. 

3. RELATED WORK 
Using proximity to gain contextual information is not a new idea. 
Lamming’s Specs project [1] uses low-power infrared to gauge 
proximity between two transceivers.  This work inspired us to 
look at the issues in using RF-based proximity. RF has benefits 
over infrared because it does not require a line-of-sight between 
sensors and allows sensors to be inside of objects (e.g., a purse or 
teddy-bear).  By using RF, a PDA in your backpack can still be 
seen as being with you, whereas the backpack would certainly 
block infrared emissions from an object within it. The ParcTab 
system [3] also used infrared beacons to create location-based 
context-aware applications and suffered from the same problems.  
However, the ParcTab was a PDA that was likely to be visible 
while in use in a user’s hand. 

Smart-Its Friends [9] use a combination of both RF proximity 
sensors and accelerometers to create associations between devices 
based on proximity and similar movement (as in shaking two 
objects together). The Smart-Its project focuses on helping users 
make deliberate associations between trusted devices.  Our 
approach differs in that we are concerned with recording all 
proximity relations including those with objects in the 
environment that will let us gather as much context as possible for 
data mining.  An early version of Smart-Its was used in a project 
called MediaCup that sought to enhance everyday objects with 
sensing capability [10].  Although, this work did use some 
proximity data to detect meetings in progress, its focus was on 
sensing different properties of the objects such as the temperature 
of the coffee cup to infer how long a user may have left it 
unattended. 

Other RF research such as SpotON has focused on using RF 
signal strength to determine locations of objects [11]. However, 
RF signal strength is unreliable in dynamic environments and is 
not necessarily needed to gain the basic level of context that can 
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be ascertained by proximity.  Another focus has been on 
deploying ad hoc RF beacons to determine location [12] by using 
them as landmarks.  An RF transmitter can be used to broadcast 
its coordinates (or more semantically meaningful location, e.g., 
‘kitchen’ or ‘northwest corner of the building’) to any other 
receivers that happen to come within range. 

In support of our approach, Guibas’ work focuses on applying 
mathematical techniques to track relations and reason about them. 
He points out that it is less expensive for a sensor to sense a 
relation (such as proximity) than to do expensive localization 
computations to yield a precise 3-D position [13].  Moreover, 
simpler relations are likely to be more numerous and more 
accurate than detailed measurements. 

4. IMPLEMENTATION 
We chose to implement our proximity system using a Crossbow 
sensor platform derived from the UC Berkeley sensor ‘motes’ 
[14]. The Mica2dots, pictured in Figure 1, are the smallest form-
factor platform available and can be easily attached to or inserted 
into objects. Motes contain an 8-bit microcontroller, radio 
transceiver, and flash memory for storing data. The code for the 
motes was written within the TinyOS run-time environment. Once 
deployed, the motes continually track the presence of other motes 
within proximity range through radio messages. Our motes are 
programmed to continually send out identification messages at 
spaced time intervals to inform the other motes in the area of their 
presence. There are no false positives with this approach; no mote 
will hear another that is not actually present. However, because 
RF reception changes with the details of the environment, two 
nodes that are near each other may not always receive each other’s 
messages or receive them asymmetrically.  An important issue 
with RF proximity is how much power to put into the radio 
transmission.  Lower power requires nodes to be closer to hear 
each other, and their signals may be easily attenuated by 
obstructions (including people) in the environment.  Higher power 
may make the signal propagate too far, thus, making for too large 
a proximity range and decrease battery life. 

We deployed motes as RF proximity detectors to “see” and 
“remember” who or what was nearby and for how long. Each 
mote is responsible for keeping a log of all other motes it has 
‘heard’. The log includes the mote ID, the time the other mote is 
first heard, and how long it stays within range. Motes log the 
event to their non-volatile flash storage once the other mote 
leaves. Each mote sends out a message approximately every 
300ms. We chose such a fast update rate to ensure we caught all 
proximity interactions on a human scale. Several tests were 
preformed to ensure that a person who came within 3-5 feet of a 
location would be detected. The motes showed an acceptable rate 
of detection with a 300ms refresh rate. Because of network 
interference and lost messages, a timeout was used to make the 
mote wait before assuming a signal was lost.  This helps to 
smooth the data and reduce the amount of storage space needed 
for the log. Since every mote broadcasts regular identification 
messages, received messages do not elicit a response.  

With each mote keeping its own log of time intervals and the 
possibility of asymmetric reception, some form of time 
synchronization was necessary to make the logs easy to align and 
compare.  This is especially the case if we want to do so on the 
motes themselves rather than a centralized infrastructure that can 

keep track of the drift of each node.  However, due to the nature 
of human-scale proximity interactions, we do not need a high-
precision method that would only consume valuable resources 
(communication bandwidth and power). Instead, we decided that 
for most data mining applications, knowing if an object was 
present any time during a particular one second time window is 
sufficient. Therefore, our synchronization scheme can be loose – 
to within one second resolution.  This allows us to keep power 
consumption at a minimum by simply sending a local timestamp 
in each radio message.  The receiving mote adjusts its clock ticks 
to bring its own clock in line with the time it receives. If it is 
behind, then it runs its update increments slightly faster until it 
catches up.  If the received time is less than the local time, then 
the device does not set its clock backwards to ensure that the 
internal logs stay in temporal order. Instead, it temporarily slows 
its update increments. This leads to an averaging affect among the 
communicating motes and keeps their clocks synchronized to 
within the required resolution. The loose time synchronization 
method is discussed in further detail in section 5.3.  

Initial mote setup and data downloading was done using serial 
communication with a PC application. We did not assume that all 
of the devices start with the correct time.  All devices start with 
time zero until they receive their first proximity message. This 
way a mote can have its timer explicitly set by a PC, which in turn 
will cause the time to be propagated out to other active motes via 
the radio. This causes a cascade as the other motes come into 
contact with any mote that has a local time.  

5. CHALLENGES 
In this section, we discuss some of the issues that must be 
addressed in building RF proximity sensors. Specifically, we 
discuss some of the ranging experiments we conducted, how we 
implemented a low-overhead time synchronization scheme, and 
our approach to utilizing the limited local data store on board the 
sensors.   

5.1 Radio Range 
For radio proximity detection to be interpreted in a meaningful 
way, the radio transmission range must be limited to a known 
distance. Unfortunately, the wireless sensors we use are designed 
to have a large radio range so that they can easily form ad hoc 
networks. In our tests, the Mica2dots using 433 MHz Chipcon 
radios showed very large radio range even at  the lowest transmit 
power settings. Using the quarter wave whip antenna that is 

 
FIGURE 1: Picture of Mica2dot 
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supplied with the motes and the transmit power set to the lowest 
we still obtained reasonable reception 80 ft away. To compensate 
for this very large radio range, we cut the antenna length to 1/6 of 
the wavelength to reduce the transmission distance. Results from 
experiments with the short antenna is shown in Figure 2 – the 
shorter antenna yielded an unobstructed transmission distances of 
about 18ft for good packet reception continuing out to about 30ft 
before tailing off. Figure 2 shows the percentage of successful 
packets for three configurations. In the first case, the antennas 
between the two motes are arranged to be parallel to each other. 
The second case has the mote antennas perpendicular. The final 
case shows the effects of a mote being in a front pocket while the 
person is facing the other mote. For this last case, the reliable 
range dropped to 10ft.  A large number of people in the vicinity of 
the experiment disrupt the transmission and make the effective 
transmission radius much smaller.  As Figure 2 illustrates RF is 
noisy and is affected by many conditions. It is hard to obtain 
precise models of distance measurements as people, objects, and 
locations have effects on the distance a radio can transmit. To 
compensate for this, the power levels can be raised on the mote’s 
radios.  However, too much power will result in inaccurate results 
as motes can transmit much further with nothing blocking their 
line of sight.  We also plan to experiment with attaching 
attenuators to the antenna to limit the power while maintaining 
good reception at the lower range. For each RF technology one 
must find the right balance between antenna length, radio power 
setting, and the desired proximity range.  One approach we plan to 
investigate is the dynamic variance of RF power on a platform 
that has a wider range of power settings.  Proximity data will then 
need to be tagged with power setting as well as local time.  
However, this may generate enough data for an algorithm to be 
able to detect variance in reception success to different motes and 
thus compensate for some of the obstructions in the environment. 

5.2 Time Synchronization 
For partial proximity data to be useful there needs to be a global 
time that will allow temporal synchronization of data from 
different devices. However, in our proximity applications, nodes 
can be separated from the network for extended periods of time 
making it difficult to keep a single synchronized global time. 
According to Elson and Römer [15] wireless sensor networks do 
not fit traditional network assumptions and therefore neither have 

the resources nor infrastructure required for most traditional 
synchronization algorithms. They claim the best solution is for 
each node to keep its own local time rather than have a global 
clock. One method they suggest for synchronization is to have 
each node build up a conversion table of parameters that relate the 
local clock to other nodes’ clocks. 

Our implementation uses a loose synchronization scheme to 
establish a consensus time for data analysis. Each node keeps its 
own internal time that is continually being updated by its 
neighbors towards an overall network wide consensus time. When 
a new proximity message arrives from another device with a 
different global time each device assumes they are only partially 
right.  The devices then average their local time with the other 
device’s time to produce a revised local time. Note that individual 
devices do not need to be aware of the actual world time as long 
as they all use identical and uniform time divisions and can agree 
on a global consensus time. A typical user moves slowly enough 
that a coarse time scale with resolution of one second is adequate 
to record interactions with a person’s surroundings. Therefore, it 
did not seem necessary to use a tight synchronization technique to 
keep the local times of the devices within milliseconds of each 
other. These more typical synchronization methods would have 
only shortened the life of the sensors by unnecessarily wasting 
valuable communication and computation resources to implement 
the synchronization algorithms with much higher resolution than 
required.  

There are two main concerns about devices that are only loosely 
synchronized.  First, radio traffic could vary the send-receive 
delay of time-stamped messages. This shouldn’t be too large of a 
factor as the motes are located only a short distance away from 
each other and the time of flight should be negligible. In addition, 
messages are sent and processed in milliseconds.  Since we are 
only concerned with synchronization at the level of a second, we 
assume this delay is not significant.  Second, the devices’ drift 
rates might not permit convergence to a synchronized time.  If 
devices do not converge within a few seconds then reconstructing 
the temporal ordering of events across all the devices will be made 
much more difficult. We decided to conduct a simple test using 
three motes to see whether the devices drift significantly. We 
found that for a given 12 hour period, the devices did not drift 
more than 1 second.  According to Elson and Römer, typical 
sensors will drift about 0.6 ms after 60 seconds [15]. Since the 
devices do not have a significant drift rate they should be able to 
stay synchronized with an occasional correction via the radio.  

5.2.1 Evaluation 
We ran several simulations to verify that our averaging method 
would keep our proximity devices synchronized. The simulator 
was a discrete event driven simulation where units of time were 
simulated at 0.1ms. Three separate simulations were run at 
“extreme”, “high”, and “normal” (or typical) drift rates.  Each 
sensor was assigned a randomly chosen drift rate within the 
bounds specified in Table 1.  Our simulation results showed that 
global time averaging yielded tighter synchronization than was 
required, namely, better than one second in all cases. 
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5.2.1.1 Simple Averaging 
To see the effect of drift rates on the device’s local time, we 
simulated 100 devices that sent messages to each other over a 
one-week period.  These 100 devices were mostly isolated and 
could only occasionally communicate. The goal of the simulation 
was to see if separated devices that only occasionally saw another 
node could still all converge to a single global time. Each device 
was set with a random drift rate (either faster or slower) bounded 
by a maximum and minimum.  In this simulation, the sensor sends 
a proximity message every 0.5 seconds. However, the sensor is 
only able to successfully communicate with another node 1/120 of 
the time. Overall, this means that a sensor will actually 
communicate with another node approximately once per minute.  
Three ranges of drift rates were simulated and are listed in Table 
1. The drift rate indicates how much extra time a device thinks has 
passed per minute.  Table 1 also shows the results of the 
experiment including the largest difference in internal time 
between any two devices that occurred during the week.  Note that 
the maximum difference is approximately an order of magnitude 
greater than the maximum drift per minute.  This is as expected 
with an average of one communication per minute.  There is likely 
to be at least one node that is unfortunate enough to not 
communicate for 10 consecutive minutes. 

TABLE 1: Time difference between any two nodes (simple averaging)  

 Drift Rates 
(ms/min) 

Max. Diff 
(ms) 

Mean Diff 
(ms) 

Std. Dev. 

Extreme 20 – 80 886.5 100.0 76.0 
High 2 – 8 93.5 10.1 7.7 
Normal 0.2 – 0.8 8.3 0.9 0.7 
 
We also used the simulator to see the effects of nodes trying to 
converge while having very different internal times. To test this 
we gave each node a random start time of less than a minute. 
Figure 3 shows the rate of convergence under the different drift 
rates. The simulation indicates that if each device adjusts its idea 
of the global time by averaging its local time with that of other 
devices in the network, there is a trend for the devices in the 
network to agree upon a global time within a few minutes, even 
with different local starting times and extreme drift rates.  

5.2.1.2 Averaging with Groups 
Applications of proximity devices will likely involve several 
devices that are in constant contact with each other forming a 
well-connected cluster.  For example, this might be the case for 
the devices a person carries in their pockets or bag. These groups 
of devices will generally have agreement on a global time but will 
occasionally be exposed to other devices that may or may not 
agree as they have been separated for a long period of time.  For 
example, this might be the case with sensors that were left at work 
over the weekend.  These network partitions allow groups of 
sensors to be isolated and to drift away from the consensus time.  
We simulated the effects of this situation by clustering devices 
together into several groups to see if our loose synchronization 
scheme would work with isolated clusters. For the loose 
synchronization method to work the network of isolated clusters 
would eventually have to agree upon a global time. To test this we 
simulated 100 sensors that were randomly assigned to 20 different 
clusters of sensors where the number of sensors varied per cluster.  
In the simulation 2/3’s of the clusters were stationary and never 

communicate with each other, while the remaining 1/3 were 
mobile clusters that could move within range of any cluster. 
Mobile clusters moved to another cluster after some random 
interval between 5-20 minutes. The mobile cluster was then 
isolated for 5 minutes before moving to another cluster. The idea 
was to mimic typical behavior of a user moving from room to 
room at home or work.  The results in Table 2 show that group 
averaging will only work with reasonable drift rates. The 
maximum difference between any two nodes only remained below 
1 sec in the case of normal drift rates. Figure 4 shows how the 
isolated groups cause local time to drift and then quickly move 
closer to global consensus time when a mobile group arrives. 

TABLE 2: Time difference between any two nodes (group averaging)  

 Drift Rates 
(ms/min) 

Max. Diff 
(ms) 

Mean Diff 
(ms) 

Std. Dev. 

Extreme 20 – 80 8615.4 1214.2 1197.4 
High 2 – 8 1593.0 180.4 183.0 
Normal 0.2 – 0.8 105.9 14.6 13.7 
 
A consensus time can only be reached with nodes having small 
enough drift rates.  Of course, if we increase mobility and make 
network partitions more short-lived, then consensus can be 
reached more easily. These are the two key parameters for loose 
synchronization to work well: the mobility of the moving clusters 
needs to be high enough to distribute the consensus time 
frequently enough and the drift rate needs to be minimized. 
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5.3  Limited Storage & Power 
The major factors that determine the useful lifetime of a node in 
our system are storage size and battery life.  These are two of the 
current limitations that plague sensor network research in general. 
We believe both issues can only be solved with new technology. 
Storage density is continuing to rapidly increase making it soon 
possible to have megabytes of storage on even the smallest, 
lowest-power sensors.  However, the same rate of improvement is 
not true for power. Power harvesting methods are in the earliest 
stages of research and battery life is only slowly increasing 
(approximately doubling every 10-20 years for a given 
technology). 

Today, however, storage size does limit the length of time a mote 
can gather data before needing to offload it. The motes we use 
have limited storage capabilities. In our implementation, several 
methods were used to decrease the amount of data that needed to 
be stored thereby increasing application lifetime. To save log 
space only the minimum amount of information was stored in 
each log entry: mote ID, the time when the mote was first heard, 
and how long the mote remained in proximity range. We also 
implemented a smoothing operation that waited four consecutive 
updates before considering the mote gone to compensate for radio 
unreliability. The smoothing operation significantly decreased the 
number of log entries and created cleaner data. 

Currently motes only have 4Mbits of space for non-volatile data 
storage which is not enough for large deployments. The number 
of devices present and the amount of movement increases the 
number of log entries needed dramatically. As the devices that are 
in proximity increases, the number of possible log entries grows 
quickly with an upper bound of O(N2) where N is the number of 
devices. As the movement in the system increases the number of 
times log entries must be made for items entering and leaving 
range also increases. If this system is to be used on a large scale 
with hundreds of devices over long periods of time more storage 
space is required. Compounding the problem is the fact that the 
TinyOS log component moves data in and out of permanent 
storage in 16 byte blocks causing bytes to be wasted within every 

log entry. We plan to rewrite this portion of TinyOS in the future 
to solve this underutilization problem.  

We have only scratched the surface of the power issue in that we 
believe it can only fundamentally be solved with new technology. 
Some methods we use to reduce power consumption are to 
increase the amount of time the mote is in sleep mode, limit the 
number of log writes, turn off as many components as possible, 
and implement a time synchronization system that added no extra 
radio messages. 

Another benefit of our time synchronization is it allows us to 
create listening windows to reduce the duty cycle even further. 
However, with only loose synchronization the listening windows 
need to be larger than what would be possible with perfect 
synchronization but they still reduce the radio listening time 
significantly. 

One major problem we encountered is the very limited battery life 
of the new Mica2dots. The Mica2dots are powered by coin cells 
that have approximately 220mAh (yielding 4-5 hours of 
operation) compared to the AA’s of the larger and more flexible 
Mica motes which have approximately 2600mAh (for 2-3 days of 
operation). To compensate for the smaller coin cell batteries of the 
Mica2dots, we are looking into ways to decrease the duty cycle 
even further after we have gained more experience in mining the 
proximity data. 

6. EXPERIMENTS 
In our experiments we were only concerned with collecting data 
from people who were interacting with other tagged items and 
then being able to transfer the data to a central location for further 
data analysis.  We used both Micas and Mica2dots as platforms.  

The first experiment we report lasted a total of 21 hours using 
Micas.  For this test we deployed approximately 6 motes to be 
‘senders’, and 1 mote to be a ‘receiver’.  Recording proximity 
data asymmetrically is appropriate for our reminder application. 
The receiver was placed in the subject’s pocket so it could be 
carried around throughout the day.  The senders were either 

 
FIGURE 5: Day-in-the-life interactions of a subject and his belongings 
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attached to specific items, or placed strategically in different 
locations.  Figure 5 represents the data that the receiving mote 
recorded throughout our day test.  The experiment began at 10pm 
and finished at approximately 7pm the next day. 

The experiment started with the subject in the research lab at 
10pm.  Shortly afterwards, the subject went home with his tagged 
objects (i.e. backpack, coat, and keys).  After arriving at home the 
subject ventured out again to meet some friends.  When the 
subject returned home, he slept for the next 7 hours as 
corresponds to long solid period 1:30am to 8:30am in Figure 5. In 
the morning the subject took a short bus ride to work and arrived 
just before 9am. The figure shows when the subject took a lunch 
break and was separated from all the motes for a short time. At 
about 5pm, the subject left work and took a longer bus ride back 
to the lab to conclude the experiment. 

A few days after the experiment was complete the subject was 
given Figure 5 to verify the data. The subject was able to recreate 
most of his day and explain why sensors would not have been 
detected by each other at certain times.  For example when he 
went out at night to meet his friends he left his backpack at home. 
Another example is he told us that he put his keys down around 
midnight when he arrived at his friend’s house explaining the 
breaks in the graph of him being by his keys only sporadically. 

We set up a second experiment to test our system by tagging 3 
locations and 4 people working within the lab.  This experiment 
ran for 7 hours.  The motes gathered proximity data symmetrically 
by logging each time a person came in contact with another 
person as well as the time they lost contact.  The graphs of two of 
the people tagged show times and duration of when each was 
within proximity of other tagged objects. The data gathered 
showed some interesting trends in terms of proximity, without 
having the need to calculate exact locations.  For instance, the 
graphs show that Person2 frequented Location1, indicating that 
that is where most of their work was done.  The data also indicates 

that there was a zone in between Location1 and Location2 in 
which a person could stand and be within proximity of both 
sensors.  Person1 and Person2 were together for extended lengths 
of time between times 5-60 and 200-230, indicating a meeting or 
conversation between the two. 

This experiment also showed that Person2’s mote missed 
recording Person1 a few times. This most likely occurred because 
someone was probably walking at a distance that was on the 
fringe of the radio range and only remained in range for a short 
time. Verification of data is difficult since we did not have a 
reference to compare to and sensors occasionally miss messages.  
It is difficult to track loss in an actual application deployment 
since the motes are always beaconing and you don’t know exactly 
what is within range at certain times.  

These initial experiments show that our method of collecting 
proximity data seems to be feasible. Our initial experiments show 
that useful data can be gathered through RF proximity 
interactions. Future experiments are needed in other real-life 
environments and for longer durations. We plan to expand our 
work to apply machine learning techniques to larger volumes of 
data so that we can experiment with detecting anomalous patterns 
that may lead an application to ask for user intervention. We are 
also searching for methods to verify mote interactions while they 
are in constantly changing environments – typical of applications 
such as the personal reminder system where the environment can 
be changing between a house, bus, mall, or a car.   

7. CONCLUSION & FUTURE WORK 
Collecting proximity data with wireless sensors is a simple 
method of obtaining large amounts of context information. 
However, further work needs to be done on exploring how this 
data can be used in real time, how difficult it is to extract 
meaningful data, and how well patterns can be learned from 
proximity interactions. We plan to continue our work evaluating 

 

 
FIGURE 6: Interactions of Person1(top),  Person2 (bottom), and the surrounding environment 
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the collection of proximity data as a method of obtaining context 
information by doing much more extensive testing that will 
include multiple day experiments of common situations using 
between 50 to 100 motes. This will allow us to further verify our 
loose time synchronization scheme and start to examine ways to 
deal with noise in our data. Our initial implementation will 
continue to be refined and used in the design of future 
experiments and in the development of applications such as an 
object reminder system and workflow analysis. Further work also 
remains in the area of power and storage management. Power 
management is one of the critical areas needing work as it is one 
of the largest hurdles to building a deployable system that will last 
several days. 

The next major step will be to design and implement an 
application based on the analysis of the proximity data. The 
application we implement may be a reminder system that tracks 
various objects and generates a reminder when an expected object 
is not present. This will present many challenges such as finding 
methods to dynamically offload the data from logs as they fill up. 
Once offloaded the logs need to have some distributed algorithm 
that allows all the data to be reassembled for analysis. Once the 
reminding pattern is learned it needs to be stored in some way that 
is easily accessible by the sensors to determine if a reminder is 
needed.  

Another possible application may be to track the people and 
equipment in an operating room.  In this scenario, motes would be 
attached to items that are continually being moved between 
operating rooms as well as on the doctors or nurses that use them. 
This would allow for the study and organization of operating 
room equipment and workflow. 

Finally, we believe that a wide range of sensors can be used to 
gather proximity data.  Infrared and RF sensors have gained much 
attention for now, but both these technologies require relatively 
large devices with high power needs.  A more promising approach 
may be to utilize passive RFID tags.  With a combination of 
mobile and fixed readers, it may be possible to gather very similar 
proximity data but with completely passive tags in the objects 
[16].  Issues that arise in this case are a complete loss of symmetry 
in the proximity data collected (making analysis potentially more 
difficult and only from certain devices rather than from any), a 
potentially more fragile system with the fewer readers being 
points of failure, and greater power needs for the mobile readers.  
In the end, it is likely that a combination of sensor technologies 
will be tailored to particular application domains. 
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