An Introduction on Machine Learning and Its Applications in Networking

Lecturer: Siavash Khodadadeh
Slides: Sharare Zehtabian & Siavash Khodadadeh

Fall 2021
Outline

● Machine learning
● Machine learning applications
● Types of machine learning
 ○ Supervised learning setup
 ■ classification
 ■ regression
 ○ Unsupervised learning
 ○ Reinforcement learning
● Neural networks and deep learning
● Tools for machine-learning
Machine learning definition

Definition by Tom Mitchell (1997): Machine Learning is the study of algorithms that

- Improve their performance P
- At some tasks T
- With experience E

A well-defined learning task is given by \(<P, T, E>\).
Why machine learning?

For many problems, it’s difficult to program the correct behavior by hand

- Recognizing people and objects
- Understanding human speech

Source: https://mc.ai/machine-learning-1100101b-lets-learn-about-learning/
Applications in networking

- Out of 39 papers for this class, how many do you think use ML?

- Pattern recognition:
 - Identifying patterns in networks traffic (e.g. during a day or a week)

- Anomaly detection:
 - Using AI to detect anomalies in the way applications are being accessed (e.g. outlier detection at Netflix using a clustering algorithm)

- Network optimization
 - DeepMind AI reduced Google data centre cooling bill by 40% (PUE: Power Usage Effectiveness)
 - Cooling Bill by 40%
Applications in networking (cont’d)

- Forwarding path simplification
 - Could ML find a better way CRUD (Create/Read/Update/Delete) operations in networking?

- Coordinating ML across edge and cloud
 - Predictive caching
 - Federate Learning

- Intent based networking: Intelligent automation and assurance
 - Let’s watch this video:
Types of machine learning

- **Supervised learning**: have labeled examples of the correct behavior
- **Unsupervised learning**: no labeled examples – instead, looking for interesting patterns in the data
- **Reinforcement learning**: learning system receives a reward signal, tries to learn to maximize the reward signal
Supervised learning setup

- We have a bunch of \((x, y)\), where \(x \in \mathbb{R}^d\) is the input instance and \(y\) is label.
- Training dataset \(D = \{(x_1, y_1), \ldots, (x_n, y_n)\} \subseteq \mathbb{R}^d \times \mathbb{C}\).
- Try to predict properties of unseen data:
 - Given a new sample, can we predict its properties?
- Learning problem:
 - Learn function \(h\) such that
 - for a new pair \((x, y) \sim P\), we have \(h(x) \approx y\).
- Example:
 - You are given the data of 900 passengers on Titanic. \((n = 900)\).
 - For each passenger, we know some information like name, age, ticket number, cabin, etc.
 - We want to learn from this data if there is a correlation between these features \((x)\) and whether the passenger survived the disaster \((\text{labels})\).
 - Now we are given a new passenger’s data (not in those 900) and we want to predict whether he/she survives.
 - Label space? \{survived, not survived\}.
Classification vs regression

- What can be our labels?
 - Classification (discrete value)
 - Binary classification (e.g. spam or not spam)
 - Multi-class classification (e.g. dog or cat or horse or ..)
 - Regression (continuous value e.g. price of a house)

ref: https://scorecardstreet.wordpress.com/2015/12/09/is-machine-learning-the-new-epm-black/
Classification vs regression (examples)

- **Classification example:**
 - Handwritten digit recognition

- **Regression example:**
 - Prediction of the length of a salmon as a function of its age and weight.
Other classification tasks

Classification: given inputs x, predict labels (classes) y

Examples:
- Spam detection (input: document, classes: spam / ham)
- OCR (input: images, classes: characters)
- Medical diagnosis (input: symptoms, classes: diseases)
- Automatic essay grading (input: document, classes: grades)
- Fraud detection (input: account activity, classes: fraud / no fraud)
- Customer service email routing
- … many more

Classification is an important commercial technology!
Training held-out and test data

- How can we **evaluate** our machine learning algorithm?
 - Machine learning is about learning some properties of a data set (train) and then testing those properties against another data set (test).
 - The test data set is used **only** for evaluation and you should not use it except for that. (Do not use this data set for making any decision about the model).

[This image is adapted from the ones created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley, available at http://ai.berkeley.edu.]
Supervised learning vs unsupervised learning

- **Supervised learning**: in which the data comes with additional attributes that we want to predict.
 - classification
 - regression

- **Unsupervised learning**: in which the training data consists of a set of input vectors x without any corresponding target values.
 - clustering
 - density estimation
More about unsupervised learning

● Why unsupervised learning is important?
 ○ Labeling data costs time and resources
 ■ 300 hours of video are uploaded to YouTube every minute

● What are different approaches for it?
 ○ Auto encoders
 ■ Encode input to a latent space and reconstruct it from there
 ○ Generative models
 ■ Two agents (neural networks) play a min-max game against each other
 ○ Contrastive learning
 ○ ...
Reinforcement learning

Basic idea:
- Receive feedback in the form of rewards
- Agent’s utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!
Artificial neural networks

- **History**
 - 1952 Samuel’s checker player (minimax algorithm)
 - 1957 Perceptron (Frank Rosenblatt) (AI)
 - 1969 Minsky & Papert (Perceptron book) (AI research collapsed)
 - 1980s Machine learning emerges (Find patterns in data, bottom-up, statistics)
 - 1980s Conferences for neural networks emerged
 - 1994 Backgammon, 1997 Blue chess wins against Kasparov
 - 1997 (SVM) (No paper was accepted by conferences)
 - 2006 (Geoffrey Hinton, Yunn LeCun, Yoshua Bengio)
 - Rephrase neural networks to deep learning
 - 2012 Imagenet-competition (Industry-wide artificial intelligence boom)

- **Deep learning success**
 - Computational power: Data, GPUs
 - Research: ReLU activations, Batch normalization, SGD

- **Deep learning example**
 - https://playground.tensorflow.org/
Recurrent Neural Networks

- Neural networks process constant size inputs
- How to process not fixed input:
 - Comment classification
Recurrent Neural Networks

Optional
LSTMs

- Clouds are in the <?> sky
- I grew up in Iran, I used to play soccer with my friends ... and I also speak fluent <?>
LSTMs

- Long Short Term Memory (LSTMs) (1997)
- Gated Recurrent Units (2014)
- Transformers (2017)
- GPT-3 (2020)
 - The quality of the text generated by GPT-3 is so high that it is difficult to distinguish from that written by a human, which has both benefits and risks.
 - GPT2 1.5 Billion parameters
 - NVIDIA megatron 8 Billion parameters
 - Microsoft Turing NLG: 17 Billion parameters
 - GPT3: 175 Billion parameters
Deep reinforcement learning

- Atari games
- Robot locomotion
Tools for machine learning

Scikit-learn

```
pip install scikit-learn

from sklearn import datasets
import ... NearestNeighbor

x, y = ...

model = NearestNeighbor(k=3, ...)

model.fit(x, y)

model.predict(x^)
```

Deep Learning

TensorFlow and Keras

PyTorch and PyTorchLightning

LSTMs, Convolutions, ...

Tensorboard

Visualization tool developed by TF and is used by both TF and PT
Conclusion

● **No free lunch theorem**
 ○ We can use different functions for our learning algorithm
 ■ Decision tree
 ■ Perceptron
 ■ SVM
 ■ Neural network
 ■ etc
 ○ We have to make assumption about the function which we use
 ○ There is no single solution for all ML problems

● **Deep learning is used in many different domains**
 ○ A function
 ○ Hard to find the rules
 ○ Can have a good amount of data