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Abstract

The potential equation provides a natural mathematical basis for all the illumination
computation methods based on the strategy of shooting light. The particle tracing
technique which physically simulates the particle model of light, can also be considered
as a general, random walk based solution to the potential equation. As the complexity
of the environment increases, the straight forward particle tracing method becomes
inefficient. In this paper we discuss different biasing methods that could be used
to increase the efficiency of the particle tracing process. In particular we present an
importance driven scheme in which we use an approximate potential value as the biasing
function for directing a majority of the random walks through regions of importance in
the environment, thus efficiently estimating the light flux in these regions. A straight
forward simple implementation of this scheme has been carried out and the results that
we have obtained show that the scheme is very promising.

1 Introduction

There are two basic strategies used for carrying out global illumination computation — the
gathering strategy in which light reaching a point from all directions is simulated and the
shooting strategy in which light emitted from a point in all directions is simulated. Based
on the strategy used, all the existing methods can be classified into two broad categories,
namely gathering methods and shooting methods. The radiance equation, better known
as rendering equation[l], provides the mathematical basis for the gathering methods and
an adjoint equation termed as the potential equation provides the mathematical basis for
the shooting methods. Though the shooting strategy methods are highly intuitive their
mathematical basis, the potential equation, has only been recently introduced[2]. In this
paper we shall briefly derive the potential equation and present the particle tracing technique,
a general solution method by Monte Carlo and random walk. Then we discuss the efficiency
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issues involved and the different biasing techniques that can be used to improve the efficiency
of particle tracing. We discuss the implementation of a particular biasing scheme in which
an approximate potential value defined over each patch of the environment is used as the
biasing function.

2 The Potential Equation

We know that the illumination of any point of a surface in a complex 3D environment is due
to the emission of light from that point (if any) and/or due to the reflection from that point
of the light received through all the incoming hemispherical directions around that point.
To simplify our discussion, we shall restrict our attention to environments containing only
opaque solid objects'. Because of the optical properties of surfaces, which for the present
discussion is primarily reflection, the light emitted from any surface in any direction can illu-
minate many other surfaces of an environment. This phenomenon can be elegantly captured
by the notion of a potential associated with every point and direction in the environment.

The potential equation provides an expression for the potential capability, W, of any
(x,0,) towards the illumination of S, a set of points and directions around those points.
Emission from a point x along O, can directly and/or indirectly illuminate S. The emitted
radiance from (z,0,) can directly account for the illumination of the set S if (x,9,) itself
belongs to the set. So to represent the direct component we shall use a function g defined
over all the surface points and all the directions around those points such that g(z,©,) is 1
if (z,0,) € S, and 0 otherwise.

The quantity of emitted light from (z, ©,) responsible for the outgoing component at S
due to one or more reflections may be expressed recursively as follows. The emission from
any (z, ©,) will reach the nearest surface point y and then possibly be reflected. The fraction
of the incident flux getting reflected in any one of the hemispherical directions ©, around y
is f,(y, ©,, ©,)cosb,dw,. Then this fraction times the potential of the point y along ©, inte-
grated over the outgoing hemisphere around y, i.e. [ fr(y, Oy, ©2)W (y, Oy)costydw,, will
represent the indirect component. Thus the complete expression for the potential function
is given by:

W(z,0,) =g(x,0,) —i—/ﬂ [r(y,0y,0,)W(y, ©,)cosb,dw, (1)

3 Illumination using Potential Equation

Most often in illumination computation one is interested in computing flux from a small
region in a small spread of directions. For example: in rendering an image of a scene the
colour of a pixel is assigned by computing the radiance from all the surface points visible to
the eye through that pixel and in a spread of directions made by each such point with the
aperture of the eye. Similarly in the computation of view independent global illumination of
a diffuse environment by radiosity based methods one is computing flux from a small surface
patch in the hemispherical direction.

!The potential equation for complex environments with participating volume is derived in [2].



We can derive the expression for the actual flux received by the detector by using the
potential function and the actual emission behaviour of the environment. If we define a
function L, which is zero everywhere except at the positions belonging to emissive surfaces,
then we get the emission radiance at (z,©,) to be L.(z,©,) and hence the emission flux
leaving (z,0,) is L¢(x, ©,) cos §,dw,dz. The potential of (z, ©,) towards the k-th detector is
Wi(x,0,). Then the flux received by the k-th detector due to the actual emission at (x, ©,)
will be Wy (z, 0;) X Le(x, ©,) cos 0 dw,dx. Thus the expression for the total flux received by
the k-th detector will be

o), = /A / Wi, ©,) Le(r, ©;) cos fudusd 2)

4 Monte Carlo Methods and Random Walks for Gen-
eral Solution

Computation of light flux using Eq.2 is a twofold problem. The first one is solving a mul-
tidimensional quadrature, and the second one is solving the potential equation which is an
integral equation of the second kind. The numerical solution of Eq.2 for a diffuse environ-
ment leads to the method of progressive radiosity[3, 4, 5]. A general solution by Monte Carlo
quadrature and random walk leads to particle tracing. In the particle tracing technique the
illumination in any environment is computed by simulating the flow of a large number of
light particles originating at light sources, moving in different directions, getting absorbed,
reflected and scattered depending on the object they hit. Its main advantage stems from
the fact that it is easily extended to handle general environments. Particle tracing and its
implementation has been described in detail earlier[6]. In Fig. 1 we reproduce some of the
results of these implementations. In the rest of the section we will concentrate only on this
method.

The solution of multidimensional integrations are best carried out by Monte Carlo quadra-
ture technique[7, 8]. Monte Carlo quadrature of an integration of the form [ F'(z)dx involves
sampling some probability distribution function?(pdf) f(x) and for each such sample evalu-
ating F(x)/f(x). The average of F(x)/f(x) over a reasonably large number of samples is
the estimate of [ F'(z)dz. In Eq.2 we have an emission function, L., whose values are known.
This function can be converted to some constant times the pdf. Let L.(x,©,) be converted
to £ x S(x,0,) where £ = [, [ Le(x,0,) cosOydw,dr and [, [ S(z,0,)dw,dv = 1. We
can use S as the required pdf and carry out the the quadrature by sampling S. Any standard
sampling technique may be used. For each such sample Wj, is evaluated. As Wy is an integral
equation of the second kind the random walk technique can be used for solving this integral
equation.

A random walk is basically a sequence of steps. In order to formulate it we must define
the set of all possible steps (discrete or continuous) of the system, a starting step and the
transition probability function (7") for transition from one step (s) to another (s’) such that
[T(s — s')ds" < 1. The next step is chosen from the current step by sampling this transition

2f(x) is a probability distribution function or in short pdfif f(z) > 0 for all  in the domain of integration
and [ f(z)dz = 1.



Figure 1: Rendered Views a Few Particle Traced Scenes.



probability function. The transition kernel is said to be normalised if [T(s — s')ds’ = 1,
whereas it is said to be subcritical when [T(s — s')ds’ < 1. In a subcritical situation, the
probability of (1 — [T(s — s')ds’) is taken as the probability of no transition from step s
i.e. absorption at step s. Hence a random walk with a subcritical transition kernel is bound
to terminate in a finite number of steps as every particle has eventually to be absorbed in
some step. Whereas any random walk with a normalised kernel can go on for ever. In the
latter case, the walk has to be terminated by some other external criterion. It is natural
to expect that all environments would include some absorption. Thus the environment for
illumination computation is always subcritical with f,(y, ©,, ©,) cosf, as the the subcritical
transition kernel for solving the potential equation. A straight forward evaluation of Wj
using a random walk results in paths consisting of a finite number of steps. The steps in
our environment are the continuum of surface positions and hemispherical directions around
each such surface position. The starting steps are sampled from the pdf S(z,©,).

The evaluation of Eq.2 may be carried out by drawing n samples (z;,, ©,, ) from the
source function, S(x,©,) and carrying out the random walk. A random walk may terminate
at the step (z;,, @%) with probability

O(wiy,00;,) = 1— /Q fr(y, 0y, Oy, ) cos b dw, (3)
Yy
or proceed to the next step (z;,,,, Gwik+1) chosen with probability

fr(®@iy,,, Oy, s Oy, ) cOSH

Tip g1

and so on. For each such sample Wy is estimated from the random walk by the formula
given below:

< Wi(wi, ©;) >= gi(2i5, Os, ) + > k(@i 9%) (4)
k=1

Then &, can be estimated from n such walks as follows:
o, = / / Wiz, ©) Le(, ©,) cos O, dw,da
A T

- Sx/A/mWk(x,@x)S(x,@x)cosﬁxdwxdx

1 n my;
= € x ﬁ Z [gk(xioa Gwio) + Z gk(xik7 @l‘zk) (5)
i=1 k=1
1 m

= SX Ezzgk(ajlk’gwlk)

1=1 k=0

This method of evaluating ®; by first sampling the source function is the essence of particle
tracing[2].

Particle tracing resembles the physical illumination process. Sampling of the source
for a start step may be thought of as the emission of a photon from the source and the
transition for simulation of random walks may be thought of as the wandering of the photon



in the environment as it gets reflected and scattered by the objects in the environment until
it is absorbed. One aspect which makes particle tracing an attractive method for global
illumination purposes is that the simulation proceeds by sampling the source function. If
we partition the space into a finite number of subregions sry, sry, s, .. ., then we can locate
detectors focused over each of these i.e. formulate equal number of g functions ¢, g9, 93, - - -,
such that g; is nonzero in the respective subregion sr; and zero otherwise. Then each random
walk originating from the source contributes towards the estimation of ®; for each of the
subregions. At the end of the simulation we have the estimates for ®; for all the subregions.

However, the method is not without its disadvantages. The number of particles that need
to be traced for computing the illumination accurately in a complex environment can be
prohibitively large. A primary reason for this is that many particle traces are not necessarily
effective when it comes to computing illumination within a reasonable but limited accuracy
and could actually be wasteful tracing of the particles. A naive simulation of the physical
model of light using light particles results in particle paths which are solely determined by the
probability distribution functions that are used in various sampling steps of the simulation
process. Many of these particle emissions and the paths traced may not in any way make
a significant difference to illumination computations. For example during the course of
simulation many particles may interact with an object even after the object’s illumination
has reasonably stabilised. Similarly many particles may be interacting with objects which
are not very relevant to the illumination computation. For example surfaces which are never
visible and/or do not illuminate other visible surfaces in any significant manner.

It is clear that if we have to reduce wasted particle emissions and wasteful particle tracings
then we have to change the pdfs used in the solution method so that all particles originate
and get distributed in the most useful manner. In Monte Carlo parlance this is known as
biasing.

5 Biasing

All the methods discussed under this topic transform the mathematical description of the
stochastic process with an appropriately modified estimator for ® in order to make the
random walk process converge faster. The illumination process as described in Section 2
and 3 is completely described by the source function and the surface brdfs. If we replace
them by suitably biased functions then when estimating ® correctly we must remove the
bias by properly compensating for the change. In particle tracing the compensation required
is derived below:
Let S’(x,©,) be the biased normalised source function.
70, =0, = f(y,0,,0,)cosb, is used to denote the transition function then

let T'(©, — ©,) be the biased transition function.

d, = Sx// S(z,0,)W(z, 0,) cos O, dw,dx

= £x / /m S'(x <§’((x (2) ))> Wi (x,©,) cos b dw,dz



Wi, 0,) = 0.0+ [ 11,0, 0.)Wi(y, 0,) cosbyd,

T(©, — 06,)

T Y

Qy

> Wk(y7 @y)dwy

The above equation can be written in a more compact form by defining a multiplication

factor F where G o,)
_ A8 = By)
Flov) = 7o, o,

The transformed potential equation can now be written as

Wi(2,02) = gi(2,0z) + | T'(O = 0,)F(z,y)Wi(y, Oy)dw, (6)

2y

With compensation the flux is now estimated by using the following equation:

> g [l 0+ X (11 70 (o2, @)

k=1 \[=0

Below we first consider two special cases of this general biasing mechanism. The first is
absorption suppression in which only the transition function is biased and not the source.
The second is source biasing in which transitions are not biased. Later in Section 5.3 we
discuss a more general method for biasing using the potential associated with surfaces.

5.1 Survival Biasing or Absorption Suppression

As the name implies, in this method the absorption probability at the transition points is
reduced (may even be made zero) and as a consequence the random walk stretches to longer
distances and the probability of each random walk making a nonzero contribution to the
estimation of ®;s is increased. The absorption probability ¢ at any step is given by Eq.3.
Any reduction in this probability can be achieved by appropriate increases in the reflection
probabilities. A very convenient method is to scale the reflection probabilities simply by the
factor ﬁ, consequently making the absorption probability at every step to zero. Thus the
compensated estimate can be derived from Eq.7 as shown below:

P =E x %i 9k (Tig, Ou,,) + i (lﬁlu — amim)) gr (i, 9%)] (8)

=1 k=1 \[=0

A word of caution is needed here; if the transition probability is changed such that there is
no absorption at all then every single random walk will go on for ever without terminating.
In practice the walk is terminated when the product term in the above equations falls below
some minimum threshold. However this termination process introduces a bias into the esti-
mation. An unbiased termination technique like Russian Roulette may be used to overcome
this[9, 2].



5.2 Source Biasing

In particle tracing, the emission function, S(x, ©,), plays an important role as every random
walk originates at the light source. Any biasing of this function while still keeping the
normalisation condition satisfied and the transition probability unaltered will change the
form of flux estimation equation from Eq.7 to the one shown below:

1 n xlo) IZO) m;
EZ S'(xi0, Oy ) gk(xio,@mo)+I;gk(xik,®xik) (9)

where S'(z, ©) is the biased source function for sampling.
As we shall see later source biasing provides a simple and convenient mechanism for improv-
ing the efficiency of particle tracing.

5.3 The Use of Approximate Potential for Biasing

Suppose we wish to bias our random walk process to improve the estimate of some specified
region in the environment, say, the region of importance. This region of importance could
be predefined. For example, in rendering a view of a 3D environment, the set of all visible
surfaces could form the region of importance. Alternatively the region of importance could
be adaptively defined as the solution progresses. This would imply that the importance of
regions would change depending on the values computed from a partial simulation. Biasing
of particle tracing must be such that the resulting emissions and transitions must lead most
of the the random walks directly or indirectly to the region of importance. Further the
computations required by the biasing scheme must be simple and straight forward. One
possible scheme is to suitably weight the emission function and the transition probability
functions.

The potential towards the region of importance provides an excellent basis for this weight-
ing. Let S(x,0,) > 0. Then we can bias the source function to S’(z,©,) such that the
S'(x,0,) is much greater than S(z,©,) for those points, (z,©,), whose potential is higher
and S’(z,©,) is much lower than S(z, ©,) for those points whose potential is lower. We can
similarly bias the transition probability i.e. in our case the reflection probability as follows:
Consider two directions ©; and ©, in the outgoing hemisphere at point z. Let S; and S
be the two surfaces nearest to point x along directions ©; and ©, respectively. Denote their
potential towards the region of importance by W; and Ws respectively. Without loss of
generality assume that W, > W,. Then the transition function 7" at x must be biased such
that T'(z, ©1) is much greater than 7'(z, ©,).

There is however one catch to the above biasing scheme. It will work provided we know the
value of potential that all surfaces in the environment have towards the region of importance.
It is clear that if we can derive the exact potential values then we can also derive the solution
for the problem at hand and hence we do not require the simulation. Fortunately for biasing
purposes we need not know the exact potential values. It is sufficient to obtain approximate
values of this potential, hopefully, with much reduced computational costs. Provided these
approximate values maintain their relative ordering they can be effectively used to bias the
emission and transition probability functions.



6 Computation of Approximate Potential and Biasing

In its general form the potential function is dependent both on positions and directions in
the corresponding outgoing hemispheres(spheres) of the points of the surfaces(volumes) in
the environment. Similarly the region of importance is defined as a collection of points and
corresponding directions. In order to illustrate the use of the potential for biasing we shall
make the following simplifying assumptions:

1. The environment consists of ideal diffuse reflecting and emitting surfaces.
2. The medium is non-participating.

3. The region of importance is a set of patches with all the corresponding hemispherical
directions included.

4. For biasing we shall only use the direction independent hemispherical potential defined
below.

With the above assumptions the environment can now be defined as being made up of
patches, say, E = {P, P,,..., P,}, such that the region of importance R is a subset of
E and for all P, € E, VW, denotes the hemispherical potential that patch P; has towards
illuminating patches of R.

The approximate potential values are easily computed from a particle tracing simulation
using a much smaller number of particles, say 5-10% of the total required for a complete
unbiased simulation. For the purpose of computing hemispherical potential the following
additional information is kept track of:

e the number of particles leaving a patch P;, i.e. emitted/reflected, say IV;,

e the number of these particles reaching a patch belonging to the region of importance,
say M,;.

The ratio % gives us an estimate of the hemispherical potential of patch P;.

6.1 Hemispherical Potential

Here we introduce the notion of a hemispherical potential of patch ¢ and denote it by W .
Wi is obtained as the average potential of the points of the patch in any hemispherical
direction. If the patches are sufficiently small this hemispherical potential may be assumed
to be independent of the position on each patch. The expression for this hemispherical
potential is derived below:

1
Wi = — Wi (i, Oy,) cos O, dw,,

™ JQs
1
= _/ [gk(x, @m)+/ fr(y, Oy, 0,)Wy(y, ©y) cos 8,dw, | cos O, dw,,
T Ja,, o
1 -
— ;/in [gk.,i + 7 fr(J) Wi,j] cos O, dw,,
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1
= _gk,i/ €08 0, dwy, +/ fr ()W j cos 0, dw,,
™ Qo Qq;

12

N
= Gr;i+t Zfr(j)/__Wk,j o8 O, dws,

7=1 ij

N
= Gk, + Z fT (])Wk,]/ COS Hxldwwl
Jj=1

N
= Gk + Z [r(G)We i Fij (10)
j=1

Using this hemispherical potential we can derive the simplified expression for the total
flux over the k-th patch as follows:

O = /A / Wi (:L‘, @:L‘)Le (:L‘, @m) cos 0, dw,dx
B ; /147, /r Wk(x’ GI)Le(x’ GI) CoS emdwmdx
_ ﬂ;Le(z)WM /A da
= Y Le(i)AiWh,i (11)
i=1

where ns is the total number of source patches in the environment.

6.2 Source Position Biasing using Hemispherical Potential

If W is the hemispherical potential of patch P; then WW(x) is also the hemispherical potential
of point z, where x € P;. Using W(x) we can bias the normalised source function S(x).
Renormalising the biased source function then gives us the following definition:

S(z) x W(z)
S0

Where S0 = [, S(z)W(z)dx ~ >, S;W;A; and ns is the number of source patches.

This biasing results in an altered distribution of source strength, so that emissions take place
more often on emitter patches from which the particles have a higher probability of reaching
R, the region of importance. To compensate for this biasing for each particle the brightness
contributing strength is multiplied by a factor, f;. The expression for f; is given below:

S'(z) =

fi = =
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6.3 Direction Biasing using Hemispherical Potential

Direction biasing is used both for choosing the direction for emission and for reflection. In
the normal simulation the direction is chosen by sampling the diffuse distribution function.
In the biased case both for emission and reflection, the idea is to look around the environment
and decide on the direction that has a higher probability of leading the random walk to the
region of importance. To understand direction biasing using hemispherical potential it may
be worth while to look at Eq.10 again, which gives a linear expression for the hemispherical
potential, and Eq.11 which gives us an expression for flux using the hemispherical potential:

N
Wi = g+ [r())W;F;
7=1
¢ = WZAB(Z)AzWZ
=1

If we assume that the simulation is being carried out in an enclosure then the outgoing hemi-
sphere around any point is covered by other surface patches of the environment. Associated
with each surface patch is its hemispherical potential. Now using the above equations for
particle tracing, the transition of a particle can be carried out by sampling the Fj; distribu-
tion to choose the patch, say k, and sampling the directions occupied by that patch on the
hemisphere to arrive at the direction of flight. This Fj; times the approximate hemispherical
potential now gives us a measure of the new relative importance, F},, of each patch around
the point p. Now instead of the distribution of Fjj, the distribution of F}, is used for sam-
pling and choosing the appropriate range of directions. Further directions within that range
are sampled to choose at the direction of flight for the particle. The resulting mathematical
change to Eq.10 is as follows:

W; ,
EA— 12
Wj,approx/ wo v ( )

N
j=1
where W0 = 3> W approe Fij and Fj; = (Wj approe/W0) Fij.

There is one major task to be carried out in implementing this idea which is finding
the Fl’] distribution around a point p on patch P;. We have already discussed a simple
method of computing approximate potential earlier in this section. The task that remains
is to determine the Fj; distribution in the outgoing hemisphere of the point p. Though it
is possible to do this by carrying out hemicube projections coupled with depth sorting it is
impractical to use this method for every transition of a particle. Of course the fact that we
need only relative importance of the surrounding patches implies that the exact Fj; values are
not necessary. Once again any suitable approximation which maintains this relative ordering
of Fj; would do. We have devised a simple method of obtaining this information from the
partial simulation used to compute approximate hemispherical potential. This method is
based on the following observation:

If particles are shot diffusely towards the outgoing hemisphere from a point p
of the i-th patch, P;, then the number of particles reaching the j-th patch, P,
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visible to this point is proportional to Fj;. If N is the total number of particles
shot from p of a patch F; and M is the number directly reaching patch P; then
the ratio W% approaches Fj; as IV increases. Obviously if a patch is not visible
to the point p then M would be zero and so would be F;;.

To be able to capture this information from an unbiased particle tracing process we have
used a simple data structure. The data-structure is a 2-D array of size N x N. We shall
name this data structure as Vis. Each row of Vis corresponds to an immediate emitter and
each column corresponds to an immediate receiver. During the process of particle tracing, for
every emission/transition, the array cell corresponding to the row of the source patch and the
column of the target patch is incremented. 7V'is[i][j]/ >°; Viis[i][j] is then used to obtain the
approximation to Fj;. This value multiplied with the computed approximate hemispherical
potential gives us Fj;. The Fj; of all the N patches results in a discrete distribution of
patches for transition, or in other words, directions for emission/reflection. By sampling this
distribution we get a patch for transition and by sampling the surface of the patch we get the
point of transition. The current point and the chosen point of transition define the direction
of flight for the particle. This method however has a problem. A patch may only be partially
visible. Hence the chosen point of transition on the patch may give rise to a direction which
is hidden from the source point. This problem is avoided by rejection sampling. That is
the surface is resampled until we arrive at a proper direction. The biasing algorithm is now
given below, assuming that at the point p on patch P; a direction has to be chosen.

1. Compute the discrete distribution of F}, i.e DpapprorFij

. of patches around p.
1y’ Zj Wj,approzFij p p

2. Discrete sample the above distribution and choose a patch say k.
3. dof

Sample the surface of the patch £ and choose the transition point y on the
k-th patch

}while(transition point y on the k-th patch is not visible to point p).

4. Choose the interaction.
If the interaction is not absorption then set p = y, ¢ = k and repeat from step 1.

For the proper computation of flux the compensation factor which appropriately modifies
the brightness contribution of the particle is derived from equation (Eq.12) and is as follows:

WO o Z W',appro:v}?ij

Wj ,aPPTOT Wj ,aPPTOT

fa=

We have implemented the above biasing mechanisms and have applied it to a number
of cases. The resulting improvements in efficiency have been extremely encouraging. Below
we discuss these results in a little more detail. Let us first consider the situation in which
R is predefined. The simulation then proceeds in two distinct phases. In the first phase
the approximate potential values are computed, while in the second phase the computed
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Figure 2: Scene for importance biasing with predefined R.

potentials are used to bias the source and transition functions and a biased simulation is
carried out to obtain global illumination information in the environment. We demonstrate
the improvements due to biasing towards a predefined R by using a simple environment, a
view of which is shown in Fig. 2. The vertical wall on the left extreme has been defined as
the region of importance. The wall has been divided into 32 x 16 patches. Fig.3 shows the
particle incidence map on the wall with a total of 100,000 particles traced in the simulation.
Fig.3(a) is the map for normal simulation and Fig.3(b) is the map for biased simulation.
As one can see visually there is appreciable improvement. The quantitative figures are as
follows: 46,462 incidences in the unbiased simulation and 352,922 incidences in the biased
simulation. The number of samples rejected during the transition biasing is 69,520 giving
an over all improvement factor of 4 with equivalent computation effort.

In the above we have assumed that the region of importance, R, is predefined, and that
R forms a small subset of the entire environment. The basic strategy has been based on the
use of approximate potential values obtained from a small simulation run for biasing and
thus directing most of the random walks to R. This situation is typical of view dependent
illumination computation. On the other hand for view independent illumination compu-
tation clearly the whole environment is the region of importance. Biasing techniques that
direct random walks to a region of importance therefore are not meaningful. However this
biasing mechanism could still be used effectively to improve computational efficiency of the
simulation provided we could devise a strategy like the one stated below:

The region of importance, which to begin with is the entire environment is grad-
ually pruned as the simulation progresses to smaller and smaller subsets of the
environment, and biasing is done for each new subset of important regions.

In our work we have been able to devise one such strategy. This is based on the observation
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Figure 3: The plot of particle incidences on the region of importance.

that, as the simulation progresses, some of the regions of the environment would have received
enough particle incidences so that the illumination estimates due to even more incidences
can be said to be reasonably invariant. That is, as far as these regions are concerned the
simulation need not be continued. We make use of this in order to reduce the set of important
regions, R, by saying that the regions which have received enough incidences are no more of
importance. What we need is then the capability to bias again with this R and carry out a
further simulation.

The simulation starts with the whole environment as R (equivalent to no biasing). After a
reasonable number of particle traces, R is reduced by removing those regions having close to
equilibrium illumination values. The simulation is continued after using the earlier simulation
results to bias towards the new R. The process is continued until R is empty.

The two important tasks in realising the above strategy are:

1. A method of deciding on when a subregion of R has reached near equilibrium illumi-
nation.

2. A method of computing approximate hemispherical potential for all the regions of the
environment for the reduced R.

For the present the first task has been carried out by taking a very simple approach. Regions
receiving particle incidences above some predefined number are assumed to have reached
equilibrium status. Of course in practice this strategy would have to be much more sophisti-
cated and would have to depend on other criteria which enable one to decide that adequate
incidences have been registered over a patch. So after each simulation R is scanned and
pruned. As the simulation progresses R is redefined many times. It is therefore not possible
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to compute the hemispherical potential values only once at the start as was done earlier.
Instead we store the complete history of the particle traces from the initial unbiased run.
Every time R is redefined these traces are scanned and the new hemispherical potential is
computed.

The expression for the biased transition function Fj; is the same as before. Because we

have successive biasing we shall use Fi(]m

for it below:

instead of Fj; and we get the recursive expression

o _ po-_ Wiapres
K Y Z Fn b Wj,approw

For computation of Fi(f_l)

F(0); (i.e. Fj; of our earlier experiment) and use the Vis data structure computed from the
initial unbiased run. The other approach is to update Vs in every simulation and extract
Fz-(;%l) directly from the updated Vis. This latter approach is what we have used. We believe
it is more efficient due to the fact that the information in Vs is enriched in each simulation.
The compensated strength of the particle at the n-th biasing step then becomes:

one approach is to use the recursive expansion till one reaches

n— 1
f(n) E F j,appro:v
2

W] ,approx

We have used this scheme for computing the illumination in an environment like a maze
similar to the Cornell Labyrinth? (see Fig.4 and Fig.5). It has a total of 523 patches, all of
more or less the same area. We have chosen 100 as the minimum number of particle incidences
on a patch after which we assume that the patch has reached equilibrium illumination. For an
unbiased simulation if each and every patch had to receive at least 100 particle incidences then
the total number of particles that had to be traced in the entire simulation was 27,000,000.
In the case of a biased simulation, 300,000 particles without any bias were first traced. The
results were used to prune R to result in 205 patches. The particle tracing history of all these
300,000 was stored for computing W as and when necessary. The subsequent simulation runs
were carried out in batches of 3000 particles each. After each biasing run R was updated
and a new F(™ computed. Table 1 gives some of the statistics from this experiment. In
the table the column corresponding to “Rejected Samples” indicates the number of times
the position sampling on the patches for choosing a transition direction resulted in hidden
transition points. As can be seen efficiency improvement due to biasing is enormous.

7 Conclusion

The potential equation for illumination is a powerful mathematical tool for illumination com-
putation by what have usually been called forward simulation techniques or light shooting
strategy methods. The most popular of these, progressive radiosity, is an analytic solution

3The name has been chosen because a similar scene was chosen by the Cornell group in a recent SIG-
GRAPH presentation on Importance Driven Radiosity[10].
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Figure 4: Wire frame drawing showing the top view of the Cornell Labyrinth.

Batch Size Region of Importance | Rejected Samples | Hits
Before After
300000(Normal) | 523 205 0 5625
3000(Biased) 205 131 4142 10266
3000(Biased) 131 72 3758 10747
3000(Biased) 72 26 4048 10816
3000(Biased) 26 13 3642 10494
3000(Biased) 13 8 4017 10706
3000 (Biased) 8 6 1224 10247
3000(Biased) 6 1 4324 10513
3000(Biased) 4 0 3888 11083

Table 1: Biasing improvements for Cornell Labyrinth.
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Figure 5: A rendered view of the Cornell Labyrinth.
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to this equation. Monte Carlo quadrature and random walk methods that can be devised
for solving this equation are more general, in the sense that, the simplifying assumptions of
ideal diffuse behaviour made for progressive radiosity are not any more necessary. The idea
of using the potential for biasing and improving the efficiency of the Monte Carlo solution
has been used in other disciplines like Neutron Transport. Its application to illumination
computation is not only interesting but also very beneficial. The use of illumination com-
putation in Computer Graphics is for imaging and this naturally defines visible regions as
being more important. Using the potential for biasing random walks towards these regions
of importance has resulted in very high efficiency improvement factors. Similarly the strat-
egy of successively pruning the region of importance, recomputing the bias and carrying out
continuously biased simulations has also proved to result in very high efficiency. This in
spite of the fact that the biasing scheme that has been devised and implemented is rather
simple and straightforward. Certainly one can expect more sophisticated biasing techniques
resulting in even more efficient Monte Carlo solutions to the potential equation and its use
for illumination flux computation.
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