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Abstract

In this paper we introduce the potential equation which along with the rendering
equation forms an adjoint system of equations and provides the mathematical frame-
work for all known approaches to illumination computation. The potential equation is
more natural for illumination computations which simulate light propagation starting
from the light sources, such as, progressive radiosity and particle tracing. Using the
mathematical handles provided by the adjoint system of equations and the random walk
model, we present a number of biasing schemes for improving the computation of ux
estimation. Of particular signi�cance is the scheme to use an approximate potential
value as the biasing function for directing a majority of the random walks through re-
gions of importance in the environment thus reducing the variance in the estimates of
ux in these regions. Finally results from a simple implementation of this scheme is
presented.

1 Introduction

There are basically two approaches used for the computation of global illumination. In one
the luminous ux reaching a surface or eye point is estimated by sampling its surround-
ings. Ray tracing, path tracing and full matrix radiosity solution are extensively researched
methods[1, 2, 3, 4] based on this approach. The other approach is based on simulating
the propagation of light starting from the light sources of which progressive radiosity and
particle tracing[5, 6, 7] are representative methods. So far Kajiya's rendering equation[3]
has provided the mathematical basis for these computations. The essence of the rendering
equation is the balancing of point to point light transport through the use of a Transport

Intensity function which is closely related to the Luminance function. In this paper we
introduce an adjoint formulation which we shall call as the Potential function. This func-
tion captures the potential that any point of the environment has towards the illumination
of another point. The luminous ux at any point of a surface in the environment can be
expressed using either the luminance (transport intensity) or the potential function. To-
gether they form an adjoint system of equations which provides the mathematical basis
for any illumination computation. While illumination computation methods for computing
the ux reaching the surface or the eye are primarily based on the rendering equation, we
believe that the potential equation is more natural for describing methods which simulate
light propagation starting from the light sources. Just as Kajiya has shown[3] full radiosity
to be an approximate analytical solution of the rendering equation, analogously we have
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also shown progressive radiosity[5] to be an approximate analytical solution of the potential
equation. The particle tracing[7] (or light ray tracing method[6]) mathematically speaking
is in fact a random walk based solution of the potential equation. Similarly the biasing
scheme of absorption suppression[8, 7] found useful in particle tracing automatically falls
within the mathematical framework of the random walk.

In this paper we introduce the notion of the potential function intuitively with the help of
a simple hypothetical experiment placing light detectors in an environment and then proceed
with its mathematical formulation. We then discuss the adjoint system of equations for
illumination computation and their corresponding approximate analytic solutions. Monte
Carlo quadrature and random walk techniques are then proposed for obtaining solutions
to the general equations. Using the mathematical handles provided by the adjoint system
of equations and the random walk model, we present a number of biasing schemes for
improving the computation of ux estimation. Of particular signi�cance is the scheme to
use an approximate potential value as the biasing function for directing a majority of the
random walks through regions of importance in the environment thus reducing the variance
in the estimates of ux in these regions. Finally performance improvements resulting from
a simple straight forward implementation of this biasing scheme are presented.

2 Adjoint System of Illumination Equations

The illumination of any point of a surface in a complex 3D environment is due to the
emission of light from that point (if any) and/or due to the reection from that point of the
light received from incoming hemispherical directions around that point. This fundamental
concept forms the basis for the derivation of the adjoint system of illumination equations.
To simplify our discussion, we have restricted our attention to environments containing
only opaque solid objects. However, in no way should this assumption be considered as a
limitation of the discussed framework. Illumination of environments containing transmitting
surfaces can also be easily explained within the given framework.

2.1 Luminance Equation

The luminance equation is basically Kajiya's rendering equation. We have preferred to use
its original form with integration over a hemisphere mainly to retain its similarity with the
potential equation which we are introducing immediately after this. From the de�nition of
surface bidirectional reectance function [9, page 64], the outgoing luminance (L) at any
point x of a surface in the environment in any direction �out, due to the luminance incident
at x from direction �in can be given by

Lout(x;�out) = �x(�out;�in)Lin(x;�in)cos�ind!in

where �in and d!in are as shown in the Fig 1. Taking into account incoming luminance from
all the directions in the incoming hemisphere around the point x, the outgoing luminance
can be expressed as

Lout(x;�out) =

Z

x

�x(�out;�in)Lin(x;�in)cos�ind!in

where the integration range 
x represents the hemisphere around x. If we include emitting
surfaces also in the general expression for the outgoing luminance then it takes the form:

Lout(x;�out) = �out(x;�out) +

Z

x

�x(�out;�in)Lin(x;�in)cos�ind!in
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Figure 1: Hemispherical Directions for the Incoming illumination.

For the kind of environment under discussion the luminance in any incoming direction at x
must be due to the outgoing luminance from some surface point y in an outgoing direction
�y where �y is de�ned by the vector joining the point x to y. If we now wish to rewrite
the luminance equation in terms of outgoing luminance and outgoing directions only, then
by representing the outgoing directions at x and y as �x and �y we get:

L(x;�x) = �(x;�x) +

Z

x

�x(�x;�y)L(y;�y)cos�xd!x (1)

Note that there is an implicit assumption in this equation that y represents a surface
point visible to x and �y is the direction from y to x. For ease of understanding, Kajiya
introduced the concept of two point transport intensity, I(x; x0), which is the luminous ux
density coming from a di�erential area dx0 around x0 and received by the di�erential area
dx around x and reformulated equation 1 as the rendering equation shown below: [3]

I(x; x0) = v(x; x0)

�
�(x; x0) +

Z
A
�(x; x0; x00)I(x0; x00)dx00

�

where the integration range is de�ned as all the surfaces (A) in the environment. In this
equation all the illumination terms are from one point to another point of the environment.
He introduced the additional term v(x; x0) to denote visibility which was not so explicit in
the earlier equation. In his paper he has also clearly stated the relationship of each of the
multipoint terms with the standard photometric terms used in the equation 1. As long as
the similarity between these two forms of the illumination equations is understood, either
form of the equation can form the mathematical basis for the illumination computation.

2.2 Potential Equation

Because of the optical properties of surfaces, in our case primarily reection, the light emit-
ted from any surface in any direction can illuminate many other surfaces of an environment.
Alternatively we can say that a surface can be illuminated by lights placed anywhere in the
environment. The placement of the lights will of course determine how brightly or how
dimly lit that surface is. This phenomenon can be elegantly captured by the notion of a
potential associated with every point and direction in the environment. We shall describe
a simple experiment to make the concept of potential easier to understand.
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Figure 2: Hypothetical Detector Focused on the Surface Points of the Environment.

For the purpose of illumination computation an environment is generally described in
terms of the geometry of its surfaces and their optical properties such as reection, trans-
mission and emission. To start with, consider an environment completely speci�ed except
that its emission characteristics are omitted. Position some hypothetical light detectors in
this environment such that outgoing illumination from any surface point and direction gets
registered in one and only one detector. In other words each detector exclusively sees some
directional emission of some surface region (Fig.2). The detectors are hypothetical and in
no way a�ect the ow of light. Next take a hypothetical point source with highly directional
emission, emitting unit amount of luminous ux in any particular direction. If we position
this light source at a surface point in some orientation, it is clear that some or all of the
hypothetical detectors will register some amount of luminous ux passing through them.
Let us concentrate only on one of these, say the k-th detector and note the ux received by
that detector because of the placement of the hypothetical emitter. Carry out this exercise
for all possible orientations of the hypothetical emitter at that point and at all other surface
points of the environments. In the process we will have collected data as a function of all
the points and directions of the environment. We will call this as the illumination potential
function as this function captures the potential capability of every point and every direction
around that point, in illuminating the region on which the k-th detector is focused. Let us
denote this function as Wk. Other detectors would similarly de�ne potential functions, say
Wi.

Next we shall derive an expression for such a function. Let Hk denote the set of all
points x over which the k-th detector is focused. Similarly let Dk denote the set of all
directions made by these point with the aperture of the k-th detector. Then we de�ne a
function gk as follows:

gk(x;�x) =

8><
>:

1 i� (x 2 Hk and �x 2 Dk)

0 otherwise.
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Figure 3: Hemispherical Directions for the Outgoing illumination.

Recall that the potential function Wk is the value of light detected by placing hypothetical
unit light sources at every surface point and direction in the environment. Then the imme-
diate contribution of the unit light source placed at (x;�x) in the environment is captured
by the function gk(x;�x) as the detector would register an immediate unit amount of emis-
sion ux only from those emitter positions and orientations, (x;�x), such that x 2 Hk and
�x 2 Dk and would register an immediate zero emission ux from any other emitter posi-
tion and orientation. We also have to account for an indirect contribution which is the ux
received by the detector due to any number of reections of the light emitted form this unit
light source. For this component we will provide a recursive expression. The emission from
the hypothetical emitter at x along direction �x will reach the nearest surface point y and
then possibly reected. If we take the probability of the whole amount of ux getting re-
ected in any one of the hemispherical directions �y around y as �y(�y;�x)cos�yd!y, where
the symbols used are as in Fig 3, then its contribution to the indirect component will be this
probability times the potential of the point y along �y, i.e. �y(�y;�x)cos�yd!yWk(y;�y).
The indirect component is then the cumulative result of this expression obtained over the
outgoing hemisphere around y, i.e.

R

y

�y(�y;�x)Wk(y;�y)cos�yd!y. The complete ex-
pression for the potential function is therefore given by:

Wk(x;�x) = gk(x;�x) +

Z

y

�y(�y;�x)Wk(y;�y)cos�yd!y (2)

If we look back at the equation 1 for the luminance equation, we �nd a striking similarity
in the form of this equation with that of the other. However it must be noted that in
equation 1 the integration is over the incoming hemisphere around x whereas in equation
2 the integration is over the outgoing hemisphere around y, where y is the surface point
visible to x in the direction �x. We now proceed to �nd the relationship between these two
equations.

2.3 Duality

Here we show that the equations 1 and 2 are duals of each other for the purpose of compu-
tation of ux. Duality means that either equation may be used.

In most of the illumination computations one is interested in computing ux from a
small region in a small spread of directions. For example: in image rendering the color of a
pixel is assigned by computing the luminance from all the surface points visible to the eye
through that pixel and in a spread of directions made by each such point with the aperture
of the eye. Similarly in the computation of view independent global illumination of a di�use
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environment by radiosity based methods one is computing ux from a small surface patch
in the hemispherical direction.

Expression of this ux using the Luminance equation will therefore be an integral of the
form:

�k =

Z
position spread

Z
direction Spread

L(x;�x)cos�xd!xdx

If we assume that this ux represent the ux received by the k-th hypothetical detector
then we can use the earlier de�ned function gk(x;�x) which evaluates to 1 in the limits of
the integration and 0 everywhere else, and rewrite the above equation as follows:

�k =

Z
A

Z

x

L(x;�x)gk(x;�x)cos�xd!xdx (3)

To get an expression for the above discussed ux using the potential function we will
remove the hypothetical source and complete the environment description by adding the
actual emissive characteristics to some of the surface points thus de�ning a function � which
is zero everywhere except at the positions belonging to emissive surfaces. By introducing
� we get the emission luminance at (x;�x) to be �(x;�x) and hence the emission ux
leaving (x;�x) is �(x;�x)cos�xd!xdx. The potential of (x;�x) towards the k-th detector is
Wk(x;�x). Then the ux received by the k-th detector due to the actual emission at (x;�x)
will be Wk(x;�x)� �(x;�x)cos�xd!xdx. Thus the expression for the total ux received by
the k-th detector will be

�k =

Z
A

Z

x

Wk(x;�x)�(x;�x)cos�xd!xdx (4)

To sum up

� We have given two di�erent equations, equations 3 and 4, to express the same quantity
�k using two di�erent functions L and Wk.

� The equations 3 and 4 are similar in form and so also are the equation 1 and 2 for L
and Wk.

� Equations 1, 2, 3 and 4 together form a closed system.

We will write again all these four equations together to highlight the above mentioned
points.Z
A

Z

x

L(x;�x)gk(x;�x)cos�xd!xdx = �k =

Z
A

Z

x

Wk(x;�x)�(x;�x)cos�xd!xdx

L(x;�x) = �(x;�x) +

Z

x

�x(�x;�y)L(y;�y)cos�xd!x

Wk(x;�x) = gk(x;�x) +

Z

y

�y(�y;�x)Wk(y;�y)cos�yd!y

The equations satisfying above mentioned properties are said to form an adjoint system.
One may wish to solve equation 3 or 4 to compute �k. In the subsequent chapters we

will discuss solution methods for computing this ux using either of the equations.
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3 Analytical Solution for a Di�use Environment

Because of their inherently complex nature it is not possible to analytically solve equations
3 and 4. However, simpli�ed forms of these may be amenable to analytical solutions. We
will derive the simpli�ed equations by making the following assumptions1:

1. The environment is a collection of a �nite number, say N , of small uniformly di�use
patches.

2. As the luminance from any point of any such uniformly di�use patch is 1=� times the
ux per unit area we shall compute this total ux from any patch leaving that patch
in all the hemispherical direction.

3. The solution is carried out in an enclosure, i.e. the hemispherical direction around
any point in the environment is assumed to be covered by one or more of the patches
of that environment and every patch, j, may be assumed to occupy a solid angle, !j
(which may be zero) in the hemisphere over any surface point.

Because of the di�use nature of the surfaces the luminance functions, �(x;�x) and L(x;�x)
become independent of �x and because of the uniformity of the patch they are also inde-
pendent of the position x on any patch. Thus they may be denoted as �i and Li respectively
for all the x belonging to the patch i. Similarly �x(�x;�y) is independent of directions �x

and �y and is independent of the position x on any patch i and hence may be denoted as
�i.

Under these assumptions equation 1 for the luminance function will simplify to:

Li = �i + �i

Z

i

Ljcos�id!i = �i + �i

NX
j=1

Lj

Z
!ij

cos�id!i = �i + �i

NX
j=1

LjFij (5)

where Lj is the luminance of any point y belonging to the j-th patch; !ij is the solid angle
occupied by the j-th patch in the visible hemisphere around the point x of the small patch
i, and Fij is the geometric factor between patch i and j. It may be recalled that Fij is
similar to the formfactor used in the radiosity computation[4] with the only di�erence that
the summation of this factor over all the patches, i.e.

PN
j=1 Fij , is equal to �.

As we are computing the ux leaving a surface patch in the hemispherical directions
and the surface patch has uniform illumination properties, again by the above assumptions,
gk(x;�x) is independent both of the direction �x and x on any patch i and hence may also
be denoted as gk;i. Further by the original de�nition of the g function, gk;i would evaluate
to 1 for i = k and 0 otherwise. Using these relations we derive the new expression for the
ux leaving the k-th patch or equivalently the ux reaching the k-th detector which sees
the total outgoing ux from the k-th patch, as follows:

�k =

Z
A

Z

x

L(x;�x)gk(x;�x)cos�xd!xdx =
NX
i=1

Z
Ai

Z

x

L(x;�x)gk(x;�x)cos�xd!xdx

=
NX
i=1

Ligk;i

Z
Ai

Z

x

cos�xd!xdx =
NX
i=1

Ligk;i�Ai = LkAk�

1These assumptions are typical of radiosity based solutions[4].
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= Ak�

0
@�k + �k

NX
j=1

LjFkj

1
A = Ek +Ak��k

NX
j=1

LjFkj

= Ek +Ak�k

NX
j=1

�j

Aj

Fkj (6)

where Ek is the total emission ux leaving the k-th patch. We can see that this equation
forms the basis of well established radiosity method[4].

To derive the analytical approximation of �x using the potential function we introduce
a hemispherical potential function over any point of patch i, Wk, as the average potential
of the surface points in any hemispherical direction. If the patches are su�ciently small
this hemispherical potential function may be assumed to be independent of the position on
each patch. The expression for this hemispherical potential function will be:

Wk;i =
1

�

Z

xi

Wk(xi;�xi)cos�xid!xi

=
1

�

Z

xi

"
gk(x;�x) +

Z

y

�y(�y;�x)Wy(y;�y)cos�yd!y

#
cos�xid!xi

=
1

�

Z

xi

[gk;i + ��jWk;j ] cos�xid!xi =
1

�
gk;i

Z

xi

cos�xid!xi +

Z

xi

�jWk;jcos�xid!xi

= gk;i +

NX
j=1

�j

Z
!ij

Wk;jcos�xid!xi = gk;i +

NX
j=1

�jWk;j

Z
!ij

cos�xid!xi

= gk;i +

NX
j=1

�jWk;jFij = gk;i +

NX
j=1

�jFij

"
gk;j +

NX
l=1

�lWk;lFjl

#

= gk;i +

NX
j=1

�jFijgk;j +

NX
j=1

�jFij

NX
l=1

�lWk;lFjl

= gk;i + �kFik +

NX
j=1

�jFij�kFjk + : : : (7)

Using this hemispherical potential function we can derive the simpli�ed expression for
the ux over the k-th patch as follows:

�k =

Z
A

Z

x

Wk(x;�x)�(x;�x)cos�xd!xdx =
nsX
i=1

Z
Ai

Z

x

Wk(x;�x)�(x;�x)cos�xd!xdx

= �
nsX
i=1

�iWk;i

Z
Ai

dx = �
nsX
i=1

�iAiWk;i

= �
nsX
i=1

�iAi

2
4gk;i + �kFik +

NX
j=1

�jFij�kFjk + : : :

3
5 (8)

where ns is the total number of source patches in the environment. And this is how the com-
putation proceeds in the progressive re�nement approach for the radiosity computation[5].
Thus just as the full matrix radiosity solution is an approximate solution to the render-
ing equation, progressive radiosity solution is analogously an approximate solution to the
potential equation.
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4 Monte Carlo and Random Walk for General Solution

We now attempt to provide a general solution method for computing ux using equation 3
and 4. Given equation 3 or 4, basically we have to carry out a multidimensional integration.
The integration is further complicated by the fact that a component of integral in turn has
a form of an integral equation of the second kind.

It is by now well known that solution of multidimensional integrations are best carried
out by Monte Carlo quadrature techniques. The main principle behind a Monte Carlo
quadrature technique for computing the integral

R
F (x)dx is as follows[10]:

1. Write F(x) as a product f1(x)f2(x) such that
R
f1(x) = 1, i.e. f1(x) is a pdf.

2. Sample f1 for a xi.

3. For each such sample xi evaluate f2(xi).

4. Carry out the steps (2) and (3) for some n times. The average, 1
n

Pn
i=1 f2(xi), is the

estimate of the integral. Larger the n better is the estimation.

We will follow similar steps to evaluate equations 3 and 4. We have to �nd a pdf for
the purpose. In both of the equations we have a prede�ned known function each, � and
gk respectively. We can convert these functions to constant times a normalised func-
tion. That means emission function �(x;�x) may be converted to E � S(x;�x) where
E =

R
A

R

x

�(x;�x)cos�xd!xdx and gk(x;�x) may be converted into Gk �Gk(x;�x) where
Gk =

R
A

R

x

gk(x;�x)cos�xd!xdx. Then the quadrature process will start by sampling S

and Gk using any standard sampling technique. For each such sample the next task will be
to evaluate Wk and L. As said earlier the L and Wk are integral equations of the second
kind. Random walk, a versatile mathematical method, is known to be useful in solving
such integral equations[11]. We shall discuss below in detail its use for the evaluation of
luminance(L) and potential(Wk) values.

A random walk or a Markov chain is basically a sequence of states. Its formulation
requires the de�nition of all possible states (discrete or continuous) of the system, a starting
state and the transition probability function (T ) for transition from one state (s) to another
(s0) such that

R
T (s ! s0)ds0 � 1. From a current state the next state is chosen by

sampling this transition probability function. The transition kernel is said to be normalised
if
R
T (s ! s0)ds0 = 1, whereas it is said to be subcritical when

R
T (s ! s0)ds0 < 1. In

a subcritical situation, the probability of (1 �
R
T (s ! s0)ds0) is taken as the probability

of no transition (absorption) from in any state s. Hence random walk with a subcritical
transition kernel is bound to terminate in �nite number of steps on undergoing absorption
at some state, whereas any random walk with a normalised kernel can go on for ever. So in
the latter cases, the walk has to be terminated by some external criterion. Any interaction
of the light with the medium or the surface is always associated with some absorption. Thus
the environment for illumination computation is always subcritical with �y(�y;�x)cos�y as
the transition kernel for potential equation solution and �x(�x;�y)cos�x as the transition
kernel for luminance equation solution. Thus straight forward evaluation of L orWk using a
random walk leads to paths consisting of �nite number of steps and hence are computable.
The states in our environment are the continuum of surface positions and hemispherical
directions around each such surface position. The starting states are sampled from the
respective pdfs i.e. S(x;�x) or Gk(x;�x).
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The evaluation of equation 3 may be carried out by drawing n samples from the pdf ,
Gk(x;�x), and evaluating L by the random walk for each sample (xi;�xi). If the i-th
random walk starting from the state (xi0 ;�xi0

) covers mi steps, (xi1 ;�xi1
),. . . (ximi

;�ximi
),

then the luminance estimate from this walk will be given by

< L(xi;�i) >= �(xi0 ;�xi0
) +

miX
k=1

�(xik ;�xik
) (9)

From this, the estimate of �k will be arrived by averaging over n such random walks.

�k =

Z
A

Z

x

L(x;�x)gk(x;�x)cos�xd!xdx

= G

Z
A

Z

x

L(x;�x)Gk(x;�x)cos�xd!xdx

= G �
1

n

nX
i=1

"
�(xi0 ;�xi0

) +
miX
k=1

�(xik ;�xik
)

#
(10)

= G �
1

n

nX
i=1

miX
k=0

�(xik ;�xik
)

This method of evaluating �k by �rst sampling the Gk function is the essence of Kajiya's
path tracing method.

Similarly the evaluation of equation 4 may be carried out by drawing samples (xi0 ;�xi0
)

from the source function, S(x;�x) and carrying out the random walk. A random walk may
terminate at the state (xik ;�xik

) with probability

�(xik ;�xik
) = 1�

Z

y

�y(�y;�xik
)cos�yd!y (11)

or proceed to the next state (xik+1 ;�xik+1
) chosen with probability �xik+1 (�xik+1

;�xik
)cos�xik+1

and so on. For each such sample Wk can be evaluated by carrying out the random walk.
The potential estimate from this walk will be given by

< Wk(xi;�i) >= gk(xi0 ;�xi0
) +

miX
k=1

gk(xik ;�xik
) (12)

Thus �k will be estimated from n such walks as:

�k =

Z
A

Z

x

Wk(x;�x)�(x;�x)cos�xd!xdx

= E �

Z
A

Z

x

Wk(x;�x)S(x;�x)cos�xd!xdx

= E �
1

n

nX
i=1

"
gk(xi0 ;�xi0

) +
miX
k=1

gk(xik ;�xik
)

#
(13)

= E �
1

n

nX
i=1

miX
k=0

gk(xik ;�xik
)

This method of evaluating �k by �rst sampling the source function is the essence of the
particle tracing or light ray tracing.
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Of the two solution methods, particle tracing is highly intuitive as it resembles the
physical illumination process [7]. Sampling of the source for a start state may be thought of
as the emission of a photon from the source and the transition for simulation of random walks
may be thought of as the wandering of the photon in the environment as it gets reected at
the surface boundaries until it is absorbed. Path tracing though not directly related to the
physical process is by now well known to the computer graphics community. The eye point,
peye, and a random point on the pixel, ppixel, de�ne the direction, �out = peye� ppixel. This
direction along with the nearest surface position along ��out de�ne the starting state for
the random walk. At that nearest surface the ray is absorbed and the walk terminates or is
reected along one of the incoming hemispherical directions, �in, by sampling the brdf and
the walk continues.

What is more important in the discussion so far is that both the random walk processes
attempt to solve the same problem and are subjected to similar statistical errors which in
montecarlo studies is known as variance. But one thing which makes the particle tracing

more attractive is that the simulation proceeds by sampling the source function. If we
partition the space into a �nite number of subregions sr1; sr2; sr3; : : :, then we can locate
detectors focused over each of these i.e. formulate equal number of g functions g1; g2; g3; : : :,
such that gi is nonzero in the respective subregion sri and zero otherwise. Then each
random walk originating from the source contributes towards the estimation of the �i for
each of the subregions. At the end of the simulation we have the estimates for �i for all
the subregions. Whereas in path tracing the random walk starts by sampling a particular
gi, for example: directions through a particular pixel. So each random walk contributes
towards the estimation of only the �i for that region for which gi is de�ned to be nonzero.
This is not meant to be understood as saying that the computational e�orts required to
compute the brightness of a pixel by path tracing and to compute the illumination of all
the subregions visible through a pixel by particle tracing are of equal magnitude. One may
arrive at a low variance in the brightness estimate of the pixel by tracing a small number of
paths whereas it is possible that even after a large number of particle tracings the brightness
estimates of a few of the subregions continue to show high variance. However, the di�erence
is worth repeating:

In particle tracing a single random walk contributes towards the estimation of
many �is as against many random walks contributing to the single �i in path
tracing.

There have been a number of e�orts to combine these approaches and thus derive bene�ts
of both. These have typically come to be known as two pass methods or more generally
multi pass methods[12, 13, 14, 7]. In the initial passes simulation proceeds starting from the
light sources and estimates are obtained for the ux in di�erent subregions. For example,
radiosity[13, 14] or particle tracing[7] is used in the �rst pass to estimate the ux over
di�use surfaces. Chen et al[14] have an additional pass in which rays are traced from the
light sources through non-di�use surfaces to estimate caustics. In the case of multiple
initial passes, care is taken to ensure that the ux computations are non-intrusive. The
�nal rendering pass is always from the eye which is based on the random walk solution
for equation 1 with slight di�erence from path tracing in that the walks are absorption
suppressed2 and the walk terminates at a di�use surface whose illumination computation
has already been carried out in the earlier passes.

2See section 5.2.1 for Absorption Suppression.
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Knowing the basic solution processes now we shall discuss some strategies for reduction
in variance. Most of our discussions will be based on the particle tracing method. However,
it must be emphasised that both the solution methods shall be equally bene�ted by these
strategies.

5 Improved Estimation Strategies

We discuss a few methods based on the observations that each random walk contributes
either zero or nonzero values to the estimation of a �i. In most of the situations of interest,
more speci�cally in the problem of illumination computation of a reasonably complex en-
vironment the fraction of random walks contributing nonzero values towards the estimate
of any single �i is small3. The basic principle of any computation based on random sam-
pling is that larger the number of samples better is the con�dence on the estimated result.
A similar principle applied to particle tracing would mean that larger the number of ran-
dom walk visits to any subregion better could be the con�dence in the estimated ux. A
simple minded approach of improving the estimated result will be to increase the number
of random walks. Each random walk requires some amount of computational e�ort for {
sampling the initial state, sampling the transition probability function for moving to the
next state and computing the nearest surface along a given direction. So any increase in
the number of random walks involves proportionate increase in computation and must be
contained. It can be seen that many random walks may in fact never visit the subregion(s)
of interest or may visit subregions in which there have already been an adequate number of
visits and hence not contributing further to the ux estimates of those subregions. So an
ideal strategy would be either to transform the basic underlying random walk process or to
change the estimator or to do both such that each random walk almost always contributes
towards any subregion of our interest.

5.1 Next Event Estimation

This technique[15] leaves the stochastic process under study unaltered but modi�es the form
of the estimator. The modi�cation involves the use of

gk(xi0 ;�xi0
) +

miX
k=0

W 1
k (xik ;�xik

)

as the estimator of Wk(xi;�xi) and thus uses

�k = E �
1

n

nX
i=1

"
gk(xi0 ;�xi0

) +
miX
k=0

W 1
k (xik ;�xik

)

#
(14)

instead of the eqn.13 for the estimation of �k using particle tracing where

W 1
k (x;�x) =

Z

y

�y(�y;�x)gk(y;�y)cos�yd!y

and the use of

�(xi0 ;�xi0
) +

miX
k=0

L1(xik ;�xik
)

3In particle tracing it rarely happens that every subregion of the space is visited in a single walk. Similarly

in the path tracing it is also equally rare that every random walk starting from the eye will at all visit the

light source during its walk.
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as the estimator of L(xi;�xi) and thus uses

�k = G �
1

n

nX
i=1

"
�(xi0 ;�xi0

) +
miX
k=0

L1(xik ;�xik
)

#
(15)

instead of the eqn.10 for the estimation using path tracing where

L1(x;�x) =

Z

x

�x(�x;�y)�(y;�y)cos�xd!x

The choice of this estimator is based on the intuition that replacing the contribution
gk(x;�x) of an event byW

1
k (x;�x), the expected direct potential contribution averaged over

all possible next events, and replacing the contribution �(x;�x) of an event by L1(x;�x),
the expected direct source contribution averaged over all possible sampling over the source
may lead to faster convergence to the actual result. The next event estimation in the path

tracing would mean computing the local model at the points of ray-hit. Though not explic-
itly mentioned we believe that Kajiya used this estimator in path tracing as he writes in
[3, page 146] \Calculating emitted . . . factors is simply a matter of consulting the . . . light

models". We also would like to point out that Chen et al[14, page 167] used a variant of the
next event estimation principle in computing the �nal luminance I(x;�x) by computing
Il;s(x;�x), a part of I(x;�x), by Monte Carlo sampling only the source contribution at x.

5.2 Biasing

All the methods discussed under this section attempt to transform the mathematical de-
scription of the stochastic process such that the modi�ed form also gives the estimation of
� and is likely to converge faster than the the original process. The illumination process as
described in section(2) is completely described by the source function and the surface brdfs.
If we replace them by biased functions satisfying some requirement and if we still wish to
use them to estimate � then we must make the compensation for the change. For such a
biasing in particle tracing the compensation required for the estimation may be derived as
follows:

�k = E �

Z
A

Z

x

S(x;�x)Wk(x;�x)cos�xd!xdx

= E �

Z
A

Z

x

S0(x;�x)

�
S(x;�x)

S0(x;�x)

�
Wk(x;�x)cos�xd!xdx

Wk(x;�x) = gk(x;�x) +

Z

y

�y(�y;�x)Wk(y;�y)cos�yd!y

= gk(x;�x) +

Z

y

T 0(�x ! �y)

 
T (�x ! �y)

T 0(�x ! �y)

!
Wk(y;�y)d!y

where S0 is the biased normalised source function, T (�x ! �y) is the transition function
introduced only for notational convenience and is nothing but �y(�y;�x)cos�y and T 0 is
the biased transition function. In order to make the equation more compact we will de�ne
a multiplication factor f such that

f(x; y) =
T (�x ! �y)

T 0(�x ! �y)
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Then the transformed potential equation can simply be written as

Wk(x;�x) = gk(x;�x) +

Z

y

T 0(�x ! �y)f(x; y)Wk(y;�y)d!y (16)

The estimation equation with compensation will be:

�k = E �
1

n

nX
i=1

S(xi0 ;�xi0
)

S0(xi0 ;�xi0
)

"
gk(xi0 ;�xi0

) +
miX
k=1

 
k�1Y
l=0

f(xil ; xil+1)

!
gk(xik ;�xik

)

#
(17)

We can see below two special cases of this general biasing mechanism.

5.2.1 Survival Biasing or Absorption Suppression

As the name implies, in this method the absorption probability at the transition points
is reduced (may even be made zero) and as a consequence the random walk stretches
to longer distances and the probability of nonzero contribution of each random walk to
the estimation of �is is increased. The absorption probability � at any state is given by
equation 11. Any reduction in this probability can be achieved by appropriate increase in
the reection probabilities. A very convenient method is to scale the reection probabilities
simply by the factor 1

1�� , consequently making the absorption probability at every state to
zero. Thus the compensated estimate can be derived from eqn.17 to be

�k = E �
1

n

nX
i=1

"
gk(xi0 ;�xi0

) +
miX
k=1

 
k�1Y
l=0

(1� �xil+1 )

!
gk(xik ;�xik

)

#
(18)

A word of caution is needed here; if the transition probability is changed such that there is no
absorption at any state then any single random walk will go on for ever without terminating.
In practice the walk is terminated when the product term in the above equations falls
below some minimum threshold. However this termination process introduces a bias into
the estimation. Unbiased termination technique like Russian Roulette may be used to
overcome this[8, 7].

5.2.2 Source Biasing

In the particle tracing process, emission function, S(x;�x), plays an important role as every
random walk originates at the light source. From equation 17 it can be shown that any
biasing of this density, still keeping the normalisation condition satis�ed and keeping the
transition probability unaltered will change the form of ux estimation equation from eqn.13
to

�k = E �
1

n

nX
i=1

S(xi0 ;�xi0
)

S0(xi0 ;�xi0
)

"
gk(xi0 ;�xi0

) +
miX
k=1

gk(xik ;�xik
)

#
(19)

Source biasing provides a convenient mechanism for variance reduction using particle trac-
ing. In the next section we have provided the results from its implementation.

14



5.3 The Approximate Potential as A Biasing Function

Any biasing need be carried out only if it results in improvement in the estimation either with
increase in computation speed or in variance reduction. In the case of particle tracing this
means that the minimum criterion based on which the biasing may be carried out must be
such that most of the emissions and transitions, lead the random walk directly or indirectly
to the region of interest, the hypothetical detector(s) of section 2. Further the biasing
computation must be straight forward. So what we need is a biasing function, which can
be easily computed and which can simply be multiplied with the emission function and/or
transition probability function to give us the appropriate biased functions. Suppose we
want to bias our random work process to improve the estimate variance of a some speci�ed
region of interest in the environment. Such region of interest, hence forward will be termed
as the region of importance. The potential function as de�ned in equation 2 for this region of
importance may be seen as one such function. For the source biasing if we know the potential
towards the region of importance of all the source points i.e. where S(x;�x) > 0 then we
can bias the source function to S0(x;�x) such that the S

0(x;�x)� S(x;�x) for those points
whose potential is higher and S0(x;�x)� S(x;�x) for those points for which the potential
is lower. Similarly the transition probability i.e. in our case the reection probability of
the particle from a surface point in the hemispherical directions can be preferentially scaled
up only for those directions the nearest surface points along which have larger potential
towards the region of importance than those along the other directions. However, it is clear
that if we can derive this function exactly then we can as well derive the solution for the
problem at hand and hence we will not require the simulation. However, if we can derive
an approximate value of this function easily, then also this approximate value can be used
to bias the emission and transition probability functions. Obviously such biasing is not
optimal, but in any case is better for the region of importance than no biasing at all. Such
region of importance can be arrived at adaptively in a view dependent global illumination
or can be prede�ned, for example: in rendering one or more views of a scene all those
surface points visible to the eye-point in the view(s) would form the region of importance.
Our observation is that often it is possible to derive an approximate potential function
Wimp(x;�x) with respect to such region of interest. This approximate function or one which
can be easily derived from this will be termed importance function[15], Imp(x;�x). We can
see the usefulness of this importance function in biasing the mathematical description of
the process.

�k = E �

Z
A

Z

x

S(x;�x)Wk(x;�x)cos�xd!xdx

= E �

Z
A

Z

x

(S(x;�x)Imp(x;�x))�
Wk(x;�x)

Imp(x;�x)
cos�xd!xdx

Wk(x;�x)

Imp(x;�x)
=

gk(x;�x)

Imp(x;�x)
+

1

Imp(x;�x)

Z

y

T (�x ! �y)Wk(y;�y)d!y

=
g(x;�x)

Imp(x;�x)
+

Z


T (�x ! �y)

Imp(y;�y)

Imp(x;�x)

Wk(y;�y)

Imp(y;�y)
d!y

If we denote S(x;�x)Imp(x;�x) as a biased function S0(x;�x),
Wk(x;�x)
Imp(x;�x)

asW 0

k(x;�x) and

T (�x ! �y)
Imp(y;�y)
Imp(x;�x)

as T 0(�x ! �y) then we have the following representation of the
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biased potential function and the ux using this biased function:

� = E �

Z
A

Z

x

S0(x;�x)W
0

k(x;�x)cos�xd!xdx

W 0

k(x;�x) =
g(x;�x)

Imp(x;�x)
+

Z

y

T 0(�x ! �y)W
0

k(y;�y)d!y

As earlier we can proceed to solve this quadrature by sampling S0 followed by the simulation
of random walks as discussed in section 4, provided the following conditions are satis�ed.

1. S0(x;�x) is normalised.

2.
R

y

T 0(�x ! �y)d!y � 1.

To satisfy the condition (1) we choose
Wimp(x;�x)R

A

R

x

S(x;�x)Wimp(x;�x)cos�xd!xdx
for Imp(x;�x) which

trivially assures the normalisation of S0(x;�x) asZ
A

Z

x

S0(x;�x)cos�xd!xdx =

Z
A

Z

x

S(x;�x)
Wimp(x;�x)R

A

R

x

S(x;�x)Wimp(x;�x)cos�xd!xdx
cos�xd!xdx = 1

With the above de�nition of Imp(x;�x),

T 0(�x ! �y) = T (�x ! �y)
Imp(y;�y)

Imp(x;�x)
= T (�x ! �y)

Wimp(y;�y)

Wimp(x;�x)

Using eqn.2 we can write that

Wk(x;�x) = gk(x;�x) +

Z

y

T (�x ! �y)Wk(y;�y)d!y

Wk(x;�x)� gk(x;�x) =

Z

y

T (�x ! �y)Wk(y;�y)d!y

Thus Z

y

T 0(�x ! �y)d!y =

Z

y

T (�x ! �y)
Wimp(y;�y)

Wimp(x;�x)
d!y

=
Wimp(x;�x)� gimp(x;�x)

Wimp(x;�x)

= 1�
gimp(x;�x)

Wimp(x;�x)
� 1

Thus both the conditions are satis�ed. Further it is established that the transformed tran-
sition probability function is subcritical and the absorption probability at any (x;�x) is
gimp(x;�x)
Wimp(x;�x)

. Thus the estimator with the biased random walk is:

�k = E �
1

n

nX
i=1

miX
k=0

gk(xik ;�xik
)

Imp(xik ;�xik
)

(20)

Having shown the usefulness of an approximate potential function for the biasing of emission
and transition function we proceed to show an implementation of this scheme.
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6 Implementation and Results

Just for the sake of testing out the ideas of biased random walk solutions to the potential
equations we have carried out a simple implementation supporting only source biasing by
computing and using an approximate illumination potential as the biasing function. The
results obtained are quite encouraging.

In the earlier section we have shown that the approximate illumination potential of
every point in the environment towards any region of importance forms an useful biasing
function for biasing the random walks to visit that region of interest more often than usual.
Any computational method may be used to compute this approximate potential. In our
implementation we have used unbiased particle tracing with a small number of samples to
arrive at this approximate potential.

a) In one case we kept track of the total number of random walks leaving each patch (say
n1) and the total number out of these (say n2) visiting the region of importance. Assuming
uniform behaviour over the patch, the fraction n2

n1 actually gives an approximate potential
for the points of the patch averaged over the hemisphere. Because of this averaging the
directional nature is lost.

This approximate value could be used for source biasing. In source biasing the biased
source is computed as S0 = S � Imp. The computation of Imp requires Wimp and another
double integral term which we shall denote as S0. The evaluation of S0 will be carried out
as follows:

S0 =

Z
A

Z

x

S(x;�)Wimp(x;�)cos�xd!xdx

=
NsX
i=1

Z
Ai

S(x;�x)

Z

x

Wimp(x;�)cos�xd!xdx =
NsX
i=1

Si�Wimp;iAi

=
NsX
i=1

�SiWimp;iAi

With this value of S0, strength of each of the patch is computed as: S0

i = Si
Wimp;i

S0 . This
biased emission is again uniformly di�use over the patch as no change in directional distri-
bution of the emission strength has taken place in this biasing. However now the random
walk originates more often than usual from those patches whose average potential is higher
than that of others.

b) In a second case we captured the potential as a function of a range of directions. In
this the direction range over each patch is uniformly discretised into a number of ranges (say
Nd direction ranges). For convenience this discretisation has been carried out by uniform
subdivision of the � and � space. The total number of walks leaving each patch in the j-th
direction range (say n1j) and the total number out of these (say n2j) that visiting patches in

the region of interest is recorded. The fraction
n2j
n1j

gives an approximate average potential

for the points of the patch in the j-th direction range where the averaging has taken place
over the solid angle made by the j-th direction range with the patch. With this directional
capture of potential, S0 may be evaluated as follows:

S0 =

Z
A

Z

x

S(x;�x)W (x;�x)cos�xd!xdx

=
NsX
i=1

Z
Ai

NdX
j=1

Z
!ij

S(x;�x)W (x;�x)cos�xd!xdx
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Figure 4: A Typical Scene for Testing the Biasing Scheme

=
NsX
i=1

Si

Z
Ai

NdX
j=1

Wij

Z
!ij

cos�xd!xdx =
NsX
i=1

Si

Z
Ai

0
@NdX
j=1

WijDij

1
A dx

=
NsX
i=1

Si

0
@NdX
j=1

WijDij

1
AAi

where Dij =
R
!ij

cos�xd!x is independent of the patch and depends only on the � and �

ranges and hence can be precomputed.
We carried out the biasing for a prede�ned region of importance in a typical environment

where the region of importance has been chosen in such a way that no portion of the source
is visible to this region and hence receives indirect illumination only (see �gure 4). In order
to compare the simulation results between biased and unbiased cases we have recorded the
percentage of visits to the region of importance with respect to all walks originating from
the source. Table 1 shows the results of the simulation.

% of Random Walk
Type of Biasing visits to the

Region of Interest

Unbiased Simulation 18

Biased simulation: 30
Position Biasing

Biased simulation:
Position + Direction Biasing 45
8 � 8 hemisphere discretisation

Biased simulation:
Position + Direction Biasing 50
8 � 32 hemisphere discretisation

7 Conclusion

Use of the approximate potential for biasing shows good promises in the computation of
global illumination by random walks. Immediate extension of the current work will be to
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adaptively improve the particle tracing computation results of any environment by start-
ing with the whole scene as the region of importance and then narrowing the region at
intermediate stages to include only those surfaces whose results cannot be said to be free
from error. The major problem in such a case will be �nding a measure of the error in the
estimation at each of the surface patches. Further use of better sampling techniques can
make the method more e�cient by directing more and more random walks to the regions
of interest.
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