
1 Introduction

Illumination in an environment is, in general, a complex function over space and directions. In an ILLu-
mination computation method one attempts to evaluate this function as accurately as possible. Many of
these illumination computation methods reconstruct the complex illumination function by computing a large
number of piece-wise constant functions over the environment. The choice of piece-wise constant function
comes from the fact that the solution methods using them are relatively simpler. Much recently we come
across methods which attempt to reconstruct the illumination function by computing higher order piece-
wise polynomials [1, 2, 3, 4, 5] over the environment. Computation of higher order functions are preferable
because they make good approximations with lesser discretisation. However, the methods using them are
highly complex for an implementation. Here, in this paper, we provide a much simpler algorithm for com-
putation of higher order functions. The method is based on Monte Carlo/Random walk and may be seen as
an extension to the existing particle tracing method [6, 7].

Monte Carlo based methods can be classi�ed into a ray-tracing class and into a particle tracing class. Ray-
tracing class of methods compute view dependent illumination by tracing rays from the eye point towards
the environment. These methods are basically the extensions of distribution ray tracing [8] and/or path
tracing [9]. The particle tracing class of methods compute view-independent illumination of the environment
by tracing rays from the light source. The main implementations so far compute this view-independent
illumination by estimating piecewise constant functions over meshed surfaces and reconstruct the illumination
function of the environment from them.

Among the view-independent illumination computation methods, particle tracing is very simple both by
concept and by implementation. This method may be seen as the simulation of the particle model of light.
Light particles are emitted from the emitter surface and propagated in the environment. The illumination of
any surface in the environment is estimated as the total number of particles leaving that surface as a result
of a large number of particle propagations.

In spite of the inherent simplicity this method is not very widely used. It is because of the statistical noise
arising in the estimates. At times the noise is so much that it made the images generated from the estimated
illumination completely unacceptable. The early particle tracing method did not provide any mechanism to
rectify this problem. Furthermore, as the method restricted itself to evaluate constant functions, to capture
any non-constant illumination function one was forced to use very �ne discretisation. The �neness of the
discretisation gave rise to very �ne surface patches and ampli�ed the problem much more because of the
increased uncertainty of any particle hitting these �ne patches. Thus in order to make the particle tracing
more acceptable one has to provide the capability of estimating higher order functions and some mechanism
to reduce the noise.

In this paper we propose an improved particle tracing method which follows a two step approach :

1. Global Illumination Step which carries out particle tracing and directly estimates piecewise higher
order llumination function over the surfaces.

2. Post-Processing Step which tries to reduce the statistical noise from the estimated result, so as to
be able to reconstruct visually acceptable illumination functions over the surface.

In addition we propose an improved random walk estimator to improve the statistical performance of the
general particle tracing method.
The most interesting part of most of the improvements is that they come with very little modi�cation to the
original particle tracing algorithm.

The organisation of this article is as follows. First we discuss the function approximation problem in
general, then that of illumination function in particular. Then we introduce the potential equation which is
an adjoint formulation of radiance equation. Because of the adjointness, it is possible to compute anything
related to illumination either solving an equation involving radiance equation or involving potential equation.
Using this potential equation we formulate a dual to the illumination function approximation. Then we
formulate its Monte Carlo/Random Walk solution and draw its connection to the existing particle tracing
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method. Then we propose the use of next event estimator which improves the e�ciency of the random walk
estimator. We show some of the results obtained by the modi�ed particle tracing algorithm. Finally we
discuss a reprojection technique to reduce the statistical noise in the estimates.

2 Illumination Function Approximation

Any continuous function g can be approximated by using a set of trial functions fNm; m = 1; 2; : : :g as
follows [10] :

g(x) � ĝ(x) =

MX
m=1

amNm(x)

where am are coe�cients of approximation which are computed in a manner such that the approximation
is accurate. The trial function is also known as shape function (in CAD) or basis function (in functional
analysis). The basic requirement of choosing the trial function set is that the approximation must improve
as the number M of the trial functions increases. At the limit when M ! 1, the approximation is an
equality for any g.

A standard method of computing the approximation coe�cients is the weighted minimisation method.
This method generates a set of M linear equations with unknowns, am, by the following minimisation
technique.Z

Wl(x) (g(x)� ĝ(x)) dx = 0 where l = 1 : : :M and Wl(x) is some weight function:

The resulting linear equation set is Ka = f , where

a = (a1; a2; : : : ; aM )
T
; Kl;m =

Z
Wl(x)Nm(x)dx; fl =

Z
Wl(x)g(x)dx

Thus the computation of the coe�cients require the evaluations of K's and f 's and solving the linear
system. The evaluation of the coe�cients Kl;m is independent of the function to be approximated. So these
coe�cients can be precomputed. The only quantities that are needed to be evaluated are the coe�cients
fl's.

Among the various weight functions used, the choice of the trial function itself as the weight function
(i.e. W = N ), is most popular and is widely known as Galerkin method. Particularly, if the trial function
are orthonormal or we use the biorthogonal complement, N̂l(x), of the trial function as the weight function
then we have a very simple expression for the coe�cients as:

al = fl =

Z
Wl(x)g(x)dx =

Z
N̂l(x)g(x)dx:

In this latter case the need to solve the linear equation set to compute the coe�cients is avoided. The various
deterministic methods used for illumination function evaluation make use of Galerkin methods [2, 3, 4].
However, for the purpose of discussion in this article, we shall keep the generality and shall not make any
assumption about the use of either Galerkin method or normalised basis function set and concentrate on the
evaluation of fl values.

We can extend the function approximation discussion given above to higher dimensional problems, par-
ticularly, to a function of positions �x de�ned over a surface as:

g(�x) �
MX

m=1

amNm(�x)

For the evaluation of the coe�cients am we will need Klm and fm which are now de�ned as:

Kl;m =

Z
surface

Wl(�x)Nm(�x)dA�x and fm =

Z
surface

g(�x)Wm(�x)dA�x
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where dA�x is the di�erential area around the surface point �x.
Similarly we can write an approximation to a function of directions, �, de�ned over a hemisphere as

g(�) �
MX

m=1

amNm(�) where Kl;m =

Z



Wl(�)Nm(�)d! and fm =

Z



g(�)Wm(�)d!

The domain of integration, 
, in this latter case represents the hemisphere.
Applying these formulations to the fundamental illumination function, L, de�ned over the surfaces of the
environment, we can write the approximation of the illumination function over a surface k as follows:

Lk(�x;��x) �
MX
m=1

akmNm(�x;��x) (1)

where ��x is the outgoing direction over the point �x on the surface k, and

Kk
l;m =

Z
surfacek

Z

�x

Wl(�x;��x)Nm(�x;��x)d!dA�x

and fkm =

Z
surfacek

Z

�x

Lk(�x;��x)Wm(�x;��x)d!dA�x (2)

As said earlier, Kk
l;m is independent of the illumination function and hence its evaluation does not pose a

problem. The main problem now remains in the evaluation of fkm.
In the discussion above, all the functions and domain of surface integration were over the surface k. We

can however generalise and extend the domain of integration to the whole environment simply by assuming
that the weight functions and the basis functions are sets of global functions having compact support and the
extents of these functions are at best limited to the surface k. This modi�cation makes the basis functions
and weight functions di�erent for di�erent surfaces, and to distinguish them we add the superscript k to
each of them i.e. Wk

m and N k
m. The expression of fkm now takes the following form.

fkm =

Z
Env

Z

�x

L(�x;��x)W
k
m(�x;��x)d!dA�x (3)

Note that L is no more restricted to the surface k, and this has been indicated in this latter formulation by
removing the superscript k from Lk.

It is possible to develop path tracing like Monte Carlo solution for evaluating fkm. However, it may not be
advisable to do that because, in general there are large number of surfaces in the environment and each surface
is likely to have a large number of basis function. So the large number of such individual fkm evaluations will
make the process formidable. For this reason, we look for a dual formulation of equation 3 which can lead
to a particle tracing like e�cient Monte Carlo method [11]. Before we give the dual formulation, we discuss
briey about the adjointness which is the necessary mathematical tool for such formulation.

3 Adjoint Illumination Equation and Dual Formulation

3.1 Adjointness

In the above formulations we are dealing with radiance function. Radiance function in a non-participating
environment is given by the following equation:

L(�x;��x) = Le(�x;��x) +

Z

�x;in

fr(�x;��y;��x) cos ��x;inL(�y;��y)d!in (4)

where L(�x;��x) and L
e(�x;��x), are respectively the total outgoing radiance and the emittance at x along the

direction ��x. �y is a point visible to �x in its incoming hemisphere 
�x;in, ��y is the outgoing direction at �y
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Figure 1: Consequence of Adjointness.

leading to point �x, fr(�x;��y;��x) is the bidirectional reectance function (brdf) of the surface at point �x and
��x;in is the angle that the line joining �y and �x makes with the surface normal at �x.
This above equation can be abstracted into the form of integral equation of the second kind, i.e.

f(x) = a(x) +

Z b

a

K(x; y)f(y)dy = a(x) + �(f)(x) (5)

where �(f) is the integral operator used as a compact notation of
R b
a
K(x; y)f(y)dy.

For every such operator � there exists another operator ��, such that they are adjoint to each other. By
adjoint one means that the operators, � and ��, satisfy the condition h�(f); f�i = h��(f�); fi. Here the
symbol ha; bi implies the inner product

R
a(x)b(x)dx. One can write an integral equation corresponding to

the operator �� as

f�(x) = b(x) + ��(f�)(x) = b(x) +

Z b

a

K�(x; y)f�(y)dy (6)

The equations 5 and 6 are said to be an adjoint pair of equations.
An important consequence to the adjointness [12] as shown in �gure (1) is :Z b

a

f(x)b(x)dx =

Z b

a

f�(x)a(x)dx = F (7)

This consequence tells us that F in equation 7 can be computed either by evaluating
R b
a
f(x)b(x)dx or by

evaluating
R b
a
f�(x)a(x)dx. The possibility of having two di�erent ways of solving a single problem involving

integral equation makes the concept of adjointness popular in many complex transport processes.
It must be emphasised here that the adjointness is in the operator. Keeping the operator same we can

write many di�erent integral equations. So strictly speaking, the adjoint pair of equations is not unique.
If one of the integral equations is kept constant, then we can �nd an in�nity number of integral equations
which can form adjoint pair with it, each one di�ering from the other in the shape of the function b(x).

3.2 Potential Equations

For the radiance equation one can derive an adjoint equation. Potential equation is one such adjoint formu-
lation. It is given as follows:

P(�x;��x) = g(�x;��x) + cos ��x

Z

�y

fr(�y;��x;��y)P(�y;��y)d! (8)

where P is the potential function. One must note the di�erence between the equations 4 and 8. Here the �y is
the point visible to �x along an outgoing direction from �x and the integration is over the outgoing hemisphere
around �x. Whereas in the radiance equation (equation 4) �y is the point visible to �x along an incoming
direction at �x, and the integration is over the incoming hemisphere around �x.
For the derivation of this equation, see appendix A and also [7, 11, 13]. Potential is a general concept and
was introduced in [7, 11] to denote the potential characteristic of any (�x;��x) towards the illumination of
some other point or some region. The function g(�x;��x) provides the exact meaning to the potential.
For example, when g(�x;��x) is a delta function and given as

g(�x;��x) =

8<
:

1
dA�xd!�x

i� (�x;��x) = (�z;��z),

0 otherwise,
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then P(�x;��x) de�nes the potential capacity of (�x;��x) to contribute towards the radiance at (�z;��z). This
can be veri�ed using the consequence of adjointness (equation 7) :

L(�z;��z) =

Z
Env

Z

�x

L(�x;��x)g(�x;��x)d!dA�x =

Z
Env

Z

�x

P(�x;��x)L
e(�x;��x)d!dA�x (9)

In another example: when g(:; :) de�ned as follows:

g(�x;��x) =

8<
:

cos ��x i� �x 2 Surfacek,

0 otherwise,

then P(�x;��x) de�nes the potential capacity of (�x;��x) to contribute towards the total outgoing ux of the
surface k in the environment. This can be veri�ed from the equation below.Z

Env

Z

�x

L(�x;��x)g(�x;��x)d!dA�x = �k =

Z
Env

Z

�x

P(�x;��x)L
e(�x;��x)d!dA�x

Note that this expression above is exactly same as that in equation 9. Only the integration result is di�er-
ent. It is because, the function g(:; :) is di�erent in both cases. That changes the meaning of P(:; :) and
consequently the integration result changes.
We can sum up the discussion in this section by saying that :
� one can express any illumination related quantity using not only the radiance equation but also using
potential equation which is adjoint to the radiance equation;
� though the concept potential is not unique, it is still given by the unique expression, equation 8, with the
appropriate de�nition of g(; ).

3.3 Dual Formulation

We shall make use of the concept developed above (equation 7 and �gure 1), to the adjoint equation pair
equations 4 and 8 and give a dual representation of the expression of fkm (given in equation 3) as

fkm =

Z
Env

Z

�x

L(�x;��x)W
k
m(�x;��x)d!dA�x

=

Z
Env

Z

�x

P(k;m)(�x;��x)L
e(�x;��x)d!dA�x (10)

where

P(k;m)(�x;��x) = Wk
m(�x;��x) + cos ��x

Z

�y

fr(�y;��x;��y)P
(k;m)(�y;��y)d! (11)

is the necessary integral equation which is adjoint to the radiance equation given in equation 4, i.e.

L(�x;��x) = Le(�x;��x) +

Z

�x;in

fr(�x;��y;��x) cos ��x;inL(�y;��y)d!in

andWk
m(�x;��x) is the weight function used for the error minimisation in the radiance function approximation.

It must be noted here that the potential function P(k;m) is neither local to surface k nor has any compact
support. The superscript (k;m) in this function indicates that it is a potential of any (�x;��x) towards the
m-th basis function of the k-th surface.
Now we can estimate fkm by solving the equation pair (10,11) and then solve the linear equation setKkak = fk

to derive the approximation to the illumination function given in equation 1.
The complexity of the equations involved indicate that one must resort to some numerical solution

method. As said earlier, we will resort to a Monte Carlo method for the solution. First we shall briey
introduce the general Monte Carlo/Random walk methods for solving the type of equations discussed above.
then we shall proceed to discuss the particular method of estimating fkm.
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4 Monte Carlo Quadrature and Random Walk

The Monte Carlo quadrature for estimating

G =

Z b

a

p(s)g(s)ds where p(s) is a pdf i:e:

Z b

a

p(s)ds = 1 (12)

in its simplest form is : Generate n samples according to the pdf p() and for each sample si evaluate g(si),
then estimate G as

G �
1

n

nX
i=1

g(si)

Here we assume that g(s) is a known function and can be evaluated for a given sample point si. However
g(s) could be an unknown function. In particular g(s) could be the solution of an integral equation like :

g(s) = h(s) +

Z b

a

T (s; t)g(t)dt where

Z b

a

T (s; t)dt < 1: (13)

Then also we can use the above estimate, with the modi�cation that instead of the exact value of g(si) we
shall use its estimated value. One of the methods of getting the estimated value of g(si) is the random walk
method [14], using which the estimating equation is

g(si) = h(si) +

miX
j=1

h(si;j)

where for each value of si we generate ami number of samples si;j by sampling from the distribution function
T (si;j�1; t), the very �rst one of which, i.e. si;1, is drawn by sampling the distribution function T (s; t). Note

that the function T (si;j�1; t) is not a strict probability distribution function, because
R b
a
T (si;j�1; t)dt < 1.

The sampling from such a distribution function is guaranteed to terminate after a �nite number of draws
of samples. It is carried out in two steps. First a binary choice between continuation or termination is

made by sampling a binary probability distribution [�; 1 � �] where � =
R b
a
T (si;j�1; t)dt. If the sampling

indicates continuation then only, one sample, si;j , is generated from the actual probability distribution
function T (si;j�1; t)=�.

Thus to sum up : the estimate of an integration (equation 12) containing a function de�ned by an integral
equation (equation 13) is

G �
1

n

nX
i=1

2
4 miX
j=0

h(si;j)

3
5 : (14)

This estimation is known as random walk estimation and h(si;j)'s are known as random walk estimators.

5 Illumination Function Estimation

We shall now proceed to estimate fkm by applying the technique described above to equation pair 10 and
11. Before doing that we shall rewrite these equations in such a way that the sampling functions satisfy the
requirements dictated by the equations 12 and 13. First we look at the equation 11. Here fr(), the brdf, is
a known function and can be used for sampling directions. From the de�nition of brdf it is known thatZ




fr(y; :; :) cos �d! = �y < 1 where �y is the reection coe�cient at y:
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As we need a cosine term with fr, we can rewrite the equation 11 to bring in the cosine term along with fr()
inside the integral as follows:

P(k;m)(�x;��x)

cos ��x
=

Wk
m(�x;��x)

cos ��x
+

Z

�y

fr(�y;��x;��y) cos ��y
P(k;m)(�y;��y)

cos ��y
d! or

P 0(k;m)(�x;��x) =
Wk

m(�x;��x)

cos ��x
+

Z

�y

fr(�y;��x;��y) cos ��yP
0(k;m)(�y;��y)d! (15)

where P 0(k;m)(�x;��x) =
P(k;m)(�x;��x)

cos ��x
:

Now we modify1 equation 10 to accommodate P 0(k;m)(x;�x) as:

fkm =

Z
Env

Z

�x

P 0(k;m)(�x;��x) cos ��xL
e(�x;��x)d!dA�x (16)

In this equation, Le(�x;��x) cos ��x is also a known function and can be normalised and used for sampling the
position and direction to start each random walk.

The emission function, Le, is non-zero only over the emitting surfaces and in general the emitting surfaces
make a very small fraction of the total surfaces. So we shall write equation 16 as a sum of integrals as follows:

fkm =

NsrcX
l=1

Z
emitterl

Z

�x

P 0(k;m)(�x;��x) cos ��xL
e
l (�x;��x)d!dA�x

=

NsrcX
l=1

�l

Z
emitterl

Z

�x

P 0(k;m)(�x;��x)
Lel (�x;��x) cos ��x

�l

d!dA�x

where �l =

Z
emitterl

Z

�x

Lel (�x;��x) cos ��xd!dA�x

= �Env

NsrcX
l=1

�l

�Env

Z
emitterl

Z

�x

P 0(k;m)(�x;��x)
Lel (�x;��x) cos ��x

�l

d!dA�x (17)

Nsrc, in the above equations is the number of light sources, Lel is the radiance function due to the self
emission of the source l, �l is the total emission power of source l and �Env =

P
l �l is the total emission

power of the whole environment.
Applying random walk estimation technique as given in equation 14, to the equation pair 17 and 15 we

can estimate fkm as

fkm �
�Env

n

nX
i=1

2
4 miX
j=0

Wk
m(�xi;j ;��xi;j )

cos ��xi;j

3
5 (18)

where the random samples (�xi;0;��xi;0) are generated by : �rst randomly deciding on a light source l by
sampling discrete probability distribution �

�1

�Env
; : : : ;

�Nsrc

�Env

�
(19)

and then by drawing samples (�xi;0;��xi;0) from the selected light source l by sampling the continuous dis-

tribution function
Le
l (�x;��x) cos ��x

�l
. For each i, sample (�xi;j ;��xi;j ) is generated from the previous sample

1Note that [7, 11] used the equation 15 as the expression for potential equation.
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(�xi;j�1;��xi;j�1) by equating the nearest surface point �y, from �xi;j�1 along the direction ��xi;j�1 , to �xi;j and
sampling fr(�y;��xi;j�1 ;��y) for getting the direction ��xi;j .

Thus we have derived a particle tracing algorithm for estimating fkm of a illumination function belonging
to a surface k. We initialise fkm to 0, initiate a random walk from a random position over an emitting surface,
along a random direction and continue the walk by drawing random directions from the surfaces along the

path. If the surface encountered along the path is k then increment its fkm estimate by
N

k
m(�xi;j ;��xi;j

)

cos ��xi;j
. If we

carry out a large number of such random walks we will arrive at a good estimate for fkm.
The important aspect of this technique is that at each time a random walk originates by sampling the
emission function and continues its walk by sampling the reection function. Thus the walk at no stage
has any preference towards any surface. So the same random walk can be used for the estimation

of all fkm's corresponding to the illumination functions over all the surfaces, and thus for the

estimation of the approximation of the illumination function over all surfaces. Figure 2 shows
the resulting algorithm.

At this point it may be worthwhile to recall the particle tracing technique described in [6, 7]. It followed
an almost similar procedure and estimated the total ux over every surface. The di�erence is only in the
�nal estimation strategy, i.e. the action taken as each particle left a surface. In the earlier method the
ux estimate associated with surface was incremented, whereas in the new method the estimates of fkm's
associated with the surface are incremented and the increment requires the evaluation of a function at the
point from where the particle leaves the surface. Thus we can look at the current method as an improved

particle tracing technique. We have actually generalised the particle tracing method so as to be able to
choose any basis function and weight function to better approximate the illumination function. The full
mechanism of the existing particle tracing algorithm remains unchanged. We reemphasise here that, unlike
the early particle tracing algorithm, in the modi�ed particle tracing algorithm, the increment is not 1, but
is related to evaluated value of the weight function. Also the number of increments per each particle leaving
a surface is upto M where M is the number of basis function chosen for approximation of the illumination
function (equation 1). This increase in computation time must be taken into account while choosing the
number of basis functions.

6 Improved Random Walk Estimation

A general guideline for a random-walk based methods is: the more a walk contributes towards the estimated
result better is the performance. Some of the proven methods are : next event estimation, absorption

supression and importance sampling. In this section we discuss only the next event estimation. More detail
discussion on the other two can be found in [11]. Next event estimation changes the estimator without
causing any change to the random walk.

In equation 14 of section 4 we describe the simplest of the random walk estimator. Section 5 used this
estimator to estimate the coe�cients fkm. We shall propose here an improved estimator [11] known as next
event estimator, which uses h0(si;j) in the place of h(si;j) of equation 14. h0(si;j) in this case being

h0(si;j) =

Z b

a

T (si;j ; t)h(t)dt:

This estimator can be derived easily by an one level expansion of the integral equation 13 as follows:

g(s) = h(s) +

Z b

a

T (s; t)g(t)dt = h(s) +

Z b

a

T (s; t)

"
h(t) +

Z b

a

T (t; u)g(u)du

#
dt

= h(s) +

Z b

a

T (s; t)h(t)dt+

Z b

a

T (s; t)

Z b

a

T (t; u)g(u)dudt

= h(s) + h0(s) +

Z b

a

T (s; t)g0(t)dt
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main

begin
- Initialise;
- Normal Particle Trace;
- Compute Coe�cients;

end main.
Initialise

begin
- For each surface k initialise its fkm's to zero.
- Compute the discrete power distribution (equation 19).

end Initialise;
Normal Particle Trace

begin
- do

/*. . . Emit a particle . . . */
- Choose an emitter by sampling the discrete power distribution.
- Choose the position and direction (�xi;0;��xi;0 ) for a particle on the emitter surface

by sampling its emitted power distribution function.

- Increment all fkm's corresponding to the emitting surface k by
W

k
m(�xi;0;��xi;0

)

cos ��xi;0
.

/*. . . Track the particle until the particle is absorbed. . . /*.
- do

- Find the nearest surface k and the surface point y along the particle path.
- Choose the type of interaction i.e. absorption or reection, by sampling the discrete

interaction distribution function f��y, 1� ��yg where ��y is the reection coe�cient at �y.
- If the interaction is reection

- Set �xi;j = y.

- Assign a reected direction, ��xi;j to the particle by sampling
fr cos ��y

��y
.

- Increment all fkm terms corresponding to the reecting surface k by
W

k
m(�xi;j ;��xi;j

)

cos ��xi;j
.

while(interaction is not absorption);
until(a large number of particles are emitted);

end Normal Particle Trace;
Compute Coe�cients

begin
- For each surface k do

- Evaluate all Kk
l;m

's and compute
�
Kk
��1

.

- Evaluate ak, the coe�cients of illumination function from computed Kk
l;m

's and estimated

fkm's as ak = �Env
n

�
Kk
��1

fk, where n is the total number of emitted particles.

end for;
end Compute Coe�cients;

Figure 2: Normal Particle Tracing Algorithm with higher order function estimation.
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where g0(t) =

Z b

a

T (t; u)g(u)du and h0(s) =

Z b

a

T (s; t)h(t)dt

= h(s) + g0(s)

g0(s) = h0(s) +

Z b

a

T (s; t)g0(t)dt

To this modi�ed version of the integral equation, we can apply random walk estimator (equation 14) to
arrive at the new estimate of G as

G �
1

n

nX
i=1

2
4h(si;0) + miX

j=0

h0(si;j)

3
5

This is an improved estimator, because at each step of the walk it contributes towards the estimate an average
quantity that would result due to all possible next steps from the current step. Using such estimator, the
estimate of fkm will be :

fkm �
�Env

n

nX
i=1

2
4Wk

m(�xi;0;��xi;0)

cos ��xi;0
+

miX
j=0

Z

�y

fr(�y;��xi;j ;��y) cos ��y
Wk

m(�y;��y)

cos ��y
d!

3
5 (20)

The physical interpretation of this estimation strategy is that now for each incident particle there is a con-
tribution towards the estimated value. In the earlier strategy the particle contributed to the estimated value
only if underwent a non-absorption event, whereas in the current technique the contribution is independent
of the absorption. Accommodating this technique requires a little modi�cation to the above algorithm and
the modi�ed algorithm is as follows: This algorithm di�ers from that shown in �gure 2 on when the update
takes place. In earlier case the update was taking place only when the particle is reected, whereas in the
later case update takes place independent of the absorption or reection of the particle. Also instead of a
simple increment, now we have an integration result as the increment. All the functions in the integration are
known. So, in principle one can compute this increment. Also, note that this increment is being carried out
for every particle incident, independent of whether it is absorbed or reected. Thus every particle incident on
the surface makes a contribution and hence is preferable. In general this improvement comes at an additional
cost of evaluation of an integral. However, we shall see in the next section that, in the special case, where
one is estimating the surface radiosity function, the integral computation is simpli�ed to an evaluation of a
function and hence does not involve any extra cost.

7 Implementation

In the above sections we have given algorithms for general illumination function estimation. We can adapt it
to any particular case. In this section we shall adapt it to the evaluation of the radiosity function. We shall
�rst compute the radiance functions by approximating them with direction independent basis functions. Then
we shall derive the radiosity function by using the simple relationship between radiosity(B) and radiance(L)
for di�use surfaces, B = �L.

7.1 Basis Functions

So far in the discussions we have made no restrictions on the basis function and the weight function used.
Because the algorithm evaluates the weight function for each particle hit, it is evident that we cannot use a
delta function for the weight function as done in point collocation methods. Apart from this any combination
of weight and basis function known can be used. We have carried out implementation of Galerkin error
minimisation technique with various basis functions. Here we show the results of the implementation using
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Next Event Particle Trace

begin
- do

/*. . . Emit a particle . . . */
- Choose an emitter by sampling the discrete power distribution.
- Choose the position and direction (�xi;0;��xi;0) for a particle on the emitter surface
by sampling its emitted power distribution function.

- Increment all fkm's corresponding to the emitting surface k by
W

k
m(�xi;0;��xi;0

)

cos ��xi;0
.

/*. . . Track the particle until the particle is absorbed. . . /*.
- do

- Find the nearest surface k and the surface point �xi;j along the particle path.
- Increment all fkl terms corresponding to the surface k byR


�y
fr(�y;��xi;(j�1)

;��y)W
k
m(�y;��y)d! where y is the nearest surface

from �xi;j along ��y.
- Choose the type of interaction i.e. absorption or reection, by sampling the discrete
interaction distribution function f��y, 1� ��yg where ��y is the reection coe�cient
at �y.

- If the interaction is reection

Assign a reected direction, ��xi;j to the particle by sampling
fr() cos ��y

��y
.

while (interaction is not absorption);
until (a large number of particles are emitted);

end Normal Particle Trace;

Figure 3: Algorithm with Next Event Random Walk Estimator
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orthogonal scaling functions of the multi-wavelet basis. We have used the simplest construction for generating
direction independent basis functions for the radiance function de�ned over a biparametric surface from 1D
multi-wavelet basis functions as follows:

W(�x;��x) = N (�x;��x) = N (�x) = S(u)R(v)

where u; v are the parameters corresponding to the surface point �x, S and R are respectively the 1D
multiwavelet functions of u and v.
Using such functions, the increments for the algorithm in �gure 2 becomes:

N (�x;��x)

cos ��x
=
S(u)R(v)

cos �u;v

and using the fact that for di�use surfaces fr(�y;��x;��y) = fr(�y) = �(�y)=� where � is the surface reectivity,
the increments for the algorithm in �gure 3 becomesZ


�y

fr(�y;��x;��y)N
k
m(�y;��y)d! =

�(s; t)

�
S(s)R(t)

Z

s;t

d!

=
�(s; t)

�
S(s)R(t)2� = 2�(s; t)S(s)R(t)

where s; t are the surface parameters corresponding to the point y.
We see from the above that the next event estimation algorithm for radiosity function estimation is quite
simple. For every particle hit at a surface k, the estimates of fkm of the surface are incremented by twice the
reectivity times the basis function evaluated at that point.

7.2 Evaluation of Kk
l;m

Because of the orthogonality of the multi-wavelet basis functions, Kk
l;m's vanish for l 6= m. It leaves us to

compute only Kk
m;m values2.

Kk
m;m =

Z
surfacek

Z

x

Nk
m(�x;��x)N

k
m(�x;��x)d!dA�x

=

Z
surfacek

Nk
m(�x;��x)N

k
m(�x;��x)

�Z

x

d!

�
dA�x

= 2�

Z
surfacek

Nk
m(�x;��x)N

k
m(�x;��x)dA�x

= 2�

Z 1

0

Z 1

0

Sm(u)Rm(v)Sm(u)Rm(v)

��x�u �
��x

�v

 du dv
Because of the polynomial nature of the multi-wavelet basis functions it is possible to �nd a closed form
evaluation of this integral when the parametric area is de�ned as a simple polynomial function s.a. spline.
Otherwise some numerical quadrature technique must be used for the evaluation. However, these values can
always be computed o�ine, so, are not too much of a botheration. It only su�ces here to say that one has
to make the appropriate variable transformation in the equation before applying the quadrature.

In �gures 4 and 5 we show the application results in a simple room. Figure 4 shows the side view of a
room. The illumination function of all the surfaces of this room has been captured using lowest resolution
MultiWavlet basis functions with 4 vanishing moments. Figure 5 shows the same room with a few furnitures
at the centre. The resolution of the basis functions for the oor has been increased by 1. The shadow below
the furnitures have been very crudely captured.

2It must be noted that in Multi-wavelet basis each of these coe�cients Kk
m;m represents a matrix of M2

�M2 terms, where

M is the number of vanishing moments of the basis function. So in fact, one would be computing M2
�M2 terms of the type

Kk
m;m[i; j] =

R
surfacek

R

x

Nk
m[i](�x;��x)Nk

m[j](�x;��x)d!dA�x.

12



8 Function Re�nement

In particle tracing, we are using a nondeterministic method for estimating values related to the illumination
function. Any estimation based on a nondeterministic method is subject to a random noise. The only
remedy to this problem is to make sure that the estimate be derived from a large number of samples. In
our case, it amounts to saying that the estimates of fkm be based on a large number of particle incidences.
The problem we address here is, if the estimates are based on a smaller number of particle incidences, other
than saying that they are not acceptable, what better can be done. This particular problem comes, when
one has carried out a particle tracing operation within a prespeci�ed time constraint. At the end of such
operation we will certainly �nd surfaces whose fkm estimates are based on only smaller number of particle
incidences (If time were not a constraint one could continue tracing more particles till have any such o�ending
surface.). The illumination function derived using these noisy estimates are very likely to be incorrect. The
end goal of most of the illumination computation method is image creation. Thus the images created using
these incorrect illumination functions are bound to be unacceptable. If we have to derive visually acceptable
images with the estimates at hand, we must carry out some post-processing operation. We propose below
some such technique based on reprojection. Before we proceed we must say that the concept of largeness is
not prede�ned, i.e. there does not exist a unique number which can be said to be large. It depends on what
one is estimating and how much variation one can tolerate. In the particular case of our particle tracing
operation, the estimates of fkm's are based on the multiwavelet basis functions. Multi-wavelet is a class of
basis functions which di�er from each other depending on the number of their vanishing moment. If we are
using a set with M as the vanishing moment that means we are approximating our illumination function
with piece-wise polynomials of degree upto M � 1. In the context of statistical error one must understand
that a sample number which may be considered large the use of multi-wavelet with M = 1 is very likely to
be not large for the use of multi-wavelet with M = 4.

8.1 Reprojection

Reprojection is a general technique, which involves deriving an approximation to a function using a given
set of basis functions from the approximation already obtained using another set of basis functions. This is
easier to achieve, because we already have one approximation of the function in hand. All that remains to
it is choosing the new basis function set. Using scaling functions of multi-wavelet basis of vanishing moment
M we have two choices in hand for carrying out reprojection.

1. Generate the estimates with lesser M from the already obtained estimates. This is the simplest of all.
Carrying out this reprojection amounts to saying that at a lesser M , the number of samples on which
the estimate is based could be considered large. With this operation we can go upto the limit M = 1.
Even if at this vanishing moment the number of samples are not signi�cant then we have not achieved
much. In fact we are back to the same problem as we had with the early particle tracing technique.

2. Carry out a method similar to that used in Mallat's hierarchical signal decomposition [15].
Hierarchical signal decomposition technique carries out reprojections of the signal to lower resolution
from the approximation of the signal at a higher resolution. However, the reprojection is localised to
the region of low frequency, leaving the high frequency regions unaltered. This operation is carried
out recursively till no more such reprojection is possible. Using multi-wavelet basis at su�ciently high
resolution we have fkmestimates over a surface k which can be seen as a signal at higher resolution.
Carrying out similar hierarchical operation means we reproject the regions with statistical noise so
that the noise is smoothed out and at the same time the region with noise-free information and even
discontinuities remain unaltered. This technique applies as well to the early particle tracing algorithm.

To demonstrate the usefulness of the proposed technique, we took the scene of the �gure 5 and attempted
to capture the shadow properly. The illumination function was estimated using the multi-wavelet coe�cients
with vanishing moment 4 at a very �ne resolution (26). Figure 6 shows how well the illumination complexity
of the oor has been captured. At the same time it shows the extreme statistical noise in the estimated
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results. Figure 7 shows the result after a combination of above reprojection techniques. The resulting
illumination function is much better. However, still there are some ugly artifacts remaining. These are due
to the lack of continuity along the border of the multi-wavelet function. We are trying to see if we can further
reproject using a set of basis functions which have continuity along the boundary, for example splines which
will remove this problem.

9 Importance Driven Particle Tracing

In an accompanied paper [16], we have provided a further development, the importance driven particle
tracing algorithm, which provides an e�cient method of view dependent illumination computation. The
e�ciency is derived by bringing changes to the particle emission pattern.

In the algorithms discussed so far, we have generated particles by sampling the light source according
to their emitting strength. Thus, if we have a number of light sources with equal emission power, then
statistically the same number of particles will be emitted from each of the light sources. Generating particles
in this fashion is essential so as to estimate the illumination of the whole environment. However, when we
are interested in computing illumination for a subset of the regions of the total environment, we can do
something better than the above. One of the possibility is: we can �nd out the importance I associated
with each light source towards the region of interest and use this I to modify the emission probability of
the light sources. The change in the natural emission probability must be compensated in order to have a
proper illumination estimation. Also to make the algorithm attractive one must �nd a very fast method of
estimating I. In [16] we have provided a very e�cient algorithm to carry out all this.

10 Discussion

Having provided a number of improvements to the particle tracing technique to make it more attractive we
shall now discuss some of the problems still remaining. The one problem is that the stochastic uncertainty
still remains with surface elements which do not even have enough number of outgoing particles for reasonable
estimation of the lowest order illumination function (i.e. constant illumination over the whole surface). For
such surfaces one can carry out a one level deterministic/stochastic gathering from the bright and already
estimated surfaces. This one level gathering can be justi�ed by saying that the surfaces are either small
or dark enough to have any important illumination contribution over the environment and to have a large
variation in their illumination distribution.

Further more, though we are able to capture the discontinuity in the illumination function to some extent,
it may not be always satisfactory. The captured discontinuity will depend very much on the resolution of
the basis used. The higher resolution results in a memory overhead. Also the �nal function is likely to
be somewhat blurred because of the multi-resolution decomposition. So carrying out discontinuity meshing
before the particle tracing will certainly give much better results.

11 Acknowledgements

We have made use of a few scenes from a database made available to us by Peter Shirley. We are thankful to
him. We are thankful to Eric Lafortune to have pointed out the advantages of using the incoming particles
for the estimation as compared to using the outgoing particles. This insight gave rise to the development of
the presented next-event estimator. One of the authors is thankful to Alan Chalmers to have arranged for
him a British Council grant to spend some time in Bristol University where much of the interest, for directly
estimating non-constant illumination function by particle tracing, originated.

14



References

[1] Paul Heckbert. Simulating Global Illumination Using Adaptive Meshing. PhD thesis, June 1991.

[2] Steven Gortler, Peter Schroder, Michel F. Cohen, and Pat Hanrahan. Wavelet radiosity. Computer
Graphics (SIGGRAPH '93 Proceedings), 27(4):221{230, 1993.

[3] Roy Troutman and Nelson L. Max. Radiosity algorithms using higher order �nite element methods.
Computer Graphics (SIGGRAPH '93 Proceedings), 27(4):209{212, 1993.

[4] Harold R. Zatz. Galerkin radiosity. Computer Graphics (SIGGRAPH '93 Proceedings), 27(4):213{220,
1993.

[5] Peter Schroder and Pat hanrahan. Wavelet methods for radiance computation. 5th Eurographics Ren-
dering Workshop, 1994, pages 303{311, June. 1994.

[6] Sumanta N. Pattanaik and S. P. Mudur. Computation of global illumination by monte carlo simulation
of the particle model of light. In Proceedings of the Third Eurographics Workshop on Rendering, pages
71{83, Bristol, UK, May 1992.

[7] Sumanta N. Pattanaik. Computational Methods for Global Illumination and Visualisation of Complex
3D Environments. PhD thesis, Feb 1993.

[8] R. L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. Computer Graphics (SIG-
GRAPH '84 Proceedings), 18(3):137{145, July 1984.

[9] James T. Kajiya. The rendering equation. Computer Graphics (SIGGRAPH '86 Proceedings),
20(4):143{150, Aug. 1986.

[10] O. C. Zienkiewicz and K. Morgan. Finite Elements and Approximation. McGraw-Hill Book Company.

[11] Sumanta N. Pattanaik and S. P. Mudur. Adjoint equations and random walks for illumination compu-
tation. ACM Transactions on Graphics, 14(1):77{102, January 1995.

[12] Malvin H. Kalos and Paula A. Whitlock. Monte Carlo Methods. Volume I. John Wiley & Sons, 1986.

[13] Per Christensen, David Salesin, and Tony De Rose. A continuous adjoint formulation for radiance
transport. In Proceedings of 4th Eurographics Rendering Workshop, Paris. June 1993.

[14] Reuven Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons, 1981.

[15] Stephane G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation.
IEEE Transactions on PAMI, 11(7):674{693, 1989.

[16] Sumanta N. Pattanaik and Kadi Bouatouch. Interactive walk-through using particle tracing. In Rae A.
Earnshaw and John A. Vince, editors, Proceedings of CG International 1995. CG International 95,
Leeds, UK, Academic Press, London, 25-30 June 1995.

15



A Potential Equation and its derivation

For computing illumination radiance equation is fundamental. It expresses the radiance leaving a point �x
along a direction ��x and is given in equation 4 as:

L(�x;��x) = Le(�x;��x) +

Z

�x;in

fr(�x;��y;��x) cos ��x;inL(�y;��y)d!in (21)

Any illumination in an environment is due to the emission from the emitting surface(s). However, the
expression above does not directly relate the expression of the radiance to the emission of the emitters.
Sometimes it may be bene�cial to relate them. One can always expand the above equation to get an
expression relating to emitters but with in�nite terms.

L(�x;��x) = Le(�x;��x) +

Z

�x;in

fr(�x;��y;��x) cos ��x;inL
e(�y;��y)d!in

+

Z

�x;in

fr(�x;��y;��x) cos ��x;in

Z

�y;in

fr(�y;��z;��y) cos ��y;inL
e(�z;��z)d!in

+ : : : (22)

The same relationship can be expressed in a compact fashion by using the concept of potential. This concept
was introduced in [11, 7]. It may be worth while to briey reintroduce this concept. It is as follows:
Let �y be a point on the light source and ��y a direction at �y. Then we de�ne a quantity, P 0(�y;��y), to be the
di�erential radiance at �x along ��x due to a unit amount (1 watt) of light power emitted from the di�erential
area dA�y around �y, along a di�erential direction d!�y around ��y.
The actual emission power leaving �y along ��y is L

e(�y;��y) cos ��yd!�ydA�y . So

d2L(�x;��x) = Le(�y;��y) cos ��yd!�ydA�yP
0(�y;��y)

The cumulative radiance due to all the points of the light source and all the directions around them will be

L(�x;��x) =

Z
�y2Source

Z

�y

Le(�y;��y) cos ��yP
0(�y;��y)d!�ydA�y

The P 0(�y;��y) term de�ned here can be said to be a potential function, because it is the potential capacity
of the of the point y and direction �y to contribute towards the radiance at �x along ��x.
There is nothing special about the points on the light source. Any point in the environment and any direction
around that point will have its own potential. So we can as well write above equation as

L(�x;��x) =

Z
�y2Env

Z

�y

Le(�y;��y) cos ��yP
0(�y;��y)d!�ydA�y (23)

Any light leaving (�y;��y) can come out at (�x;��x) by zero or more interreection. The possibility of zero
reection comes from the fact that one cannot rule out the equality (�y;��y) = (�x;��x). Thus like the radiance
equation the expression for the potential function will have a simple direct term and an integral indirect
term. It is as follows :

P 0(�y;��y) = g(�y;��y) +

Z

�z

fr(�z;��y;��z) cos ��zP
0(�z;��z)d!�z (24)

where g(:; :) is a delta like function and is de�ned as 3

g(�y;��y) =

8<
:

1

dA�y cos ��yd!�y
i� (�y;��y) = (�x;��x),

0 otherwise.

3The term 1
dA�x cos ��xd!�x

arises in the de�nition of g because this is the radiance that you will get out of 1 watt of light

power leaving di�erential area dA�x in a di�erential direction d!�x.

16



�z is the nearest surface point visible to �y along ��y direction and the fr(�z;��y;��z) cos ��z term gives the
reected power along ��z direction due to the incidence of 1 watt of light from ��y direction.

Through the equations 23 and 24 we have arrived at a compact representation for the relationship of the
radiance to the emittance. The correctness of the relationship can be checked by expanding the equations
23 and 24 and equating each term of the expansion to each term of equation 22.

Adjoint Illumination Equations

We have so far derived two integral equations. They are

L(�y;��y) = Le(�y;��y) +

Z

�y;in

fr(�y;��z;��y) cos ��y;inL(�z;��z)d!in

P 0(�y;��y) = g(�y;��y) +

Z

�z

fr(�z;��y;��z) cos ��zP
0(�z;��z)d!

We have also shown that

L(�x;��x) =

Z
�y2Env

Z

�y

P 0(�y;��y)L
e(�y;��y) cos ��yd!dA�y

As g(�y;��y) is a delta like function we can write another expression for L(�x;��x) involving double integrations

L(�x;��x) =

Z
�y2Env

Z

�y

L(�y;��y)g(�y;��y) cos ��yd!dA�y

This last formulation4 is deliberate as it gives expression similar to the equation 7, i.e.

Z
�y2Env

Z

�y

L(�y;��y)g(�y;��y) cos ��yd!dA�y = L(�x;��x) =

Z
�y2Env

Z

�y

P 0(�y;��y) cos ��yL
e(�y;��y)d!dA�y (25)

And from the analogy given in the previous section, on the consequence of adjointness (see �gure 1), we can
say that the equation pairs

L(�y;��y) = Le(�y;��y) +

Z

�y;in

fr(�y;��z;��y) cos ��y;inL(�z;��z)d!in

P 0(�y;��y) cos ��y = g(�y;��y) cos ��y + cos ��y

Z

�z

fr(�z;��y;��z) cos ��zP
0(�z;��z)d!

form an adjoint pair of equations.
If we replace P 0(�y;��y) cos ��y by P(�y;��y) then we have an adjoint equation to the radiance equation as

P(�y;��y) = g(�y;��y) + cos ��y

Z

�z

fr(�z;��y;��z)P(�z;��z)d! (26)

The above equation gives the actual adjoint operator to the integral operator corresponding to the radiance
equation.

4The multiplication of cos ��y is to cancel out the corresponding term appearing in the denominator in the de�nition of g.
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Figure 4: Simple room, Side view.

Figure 5: Room+Furniture.

Figure 6: Discontinuity capture with high resolution
Multiwavelets

Figure 7: Improvement after the post-processing.
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