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Abstract

There are two basic strategies used for carrying out the illumi-

nation computation - the gathering strategy in which light reaching

a point from all directions is simulated and the shooting strategy in

which light emitted from a point in all directions is simulated. Based

on the strategy used, all the existing methods can be classi�ed into

two broad categories, namely gathering methods and shooting meth-

ods. The radiance equation provides the mathematical basis for the

gathering methods and the potential equation provides the mathemat-

ical basis for the shooting methods. They together form an adjoint

system of equations. In this paper, using the mathematical framework

of the adjoint equations we review illumination computation methods,

categorising them as using the gathering or shooting strategy or both.

Another basis for categorisation is the basic equation solution strategy

used, namely deterministic or nondeterministic.

1 Introduction

There are basically two approaches used for the computation of global illumi-
nation. In one the luminous ux reaching a surface or eye point is estimated
by sampling its surroundings. Ray tracing, path tracing and full matrix
radiosity solution are extensively researched methods[1, 2, 3, 4] based on
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this approach. The other approach is based on simulating the propagation of
light starting from the light sources of which progressive radiosity[5] and par-
ticle tracing[6] are representative methods. While illumination computation
methods for computing the ux reaching the surface or the eye are primarily
based on the radiance equation, the potential equation provides the basis for
methods which simulate light propagation starting from the light sources.
In this paper we �rst derive the radiance and potential equations and then
review the existing methods within the framework of these two equations,
particularly by considering the basic equation solving strategy adopted in
the methods.

2 The Radiance Equation

The radiance from any surface point of an opaque object in a nonparticipating
environment is due to emission from that point and due to reection of
incident radiation from the incoming hemisphere around the point. So the
expression for the outgoing radiance Lo from surface point x along direction
�x can be given as:

Lo(x;�x) = Le(x;�x)+Lr(x;�x) = Le(x;�x)+
Z

x

fr(x;�x;�i)Li(x;�i) cos �id!i

where

Lo(x;�x), Le(x;�x) and Lr(x;�x) are respectively the outgoing,
emitted and reected radiance from point x along �x direction,
Li(x;�i) is the incident radiance at x from the incoming �i di-
rection,
�i is the cone angle of the incoming direction,
d!i is the di�erential solid angle around the incoming direction,

x is the incoming hemisphere around x and fr is the surface
brdf.

This equation is one of the fundamental equations used in illumination com-
putation. In an environment, incoming radiance at x is due to the outgoing
radiance at some point y visible to x along that direction. So we may rewrite
the above equation as follows:

Lo(x;�x) = Le(x;�x) +
Z

x

fr(x;�x;�y)Lo(y;�y) cos �xd!x (1)



where Lo(y;�y) is the outgoing radiance at point y visible to x along the
direction �y. We shall hence forth refer to Eq.1 as the Radiance Equation1.

3 Potential Equation

The potential equation provides an expression for the potential capability,
W, of any (x;�x) towards the illumination of S, a set of points and directions
around those points. Emission from a point x along �x can directly and/or
indirectly illuminate S. The emitted radiance from (x;�x) can directly ac-
count for the illumination of the set S if (x;�x) itself belongs to the set.
So to represent the direct component we shall use a function g de�ned over
all the surface points and all the directions around those points such that
g(x;�x) is 1 if (x;�x) 2 S, and 0 otherwise.

The quantity of emitted light from (x;�x) responsible for the outgo-
ing component at S due to one or more reections may be expressed re-
cursively as follows. The emission from any (x;�x) will reach the nearest
surface point y and then possibly be reected. The fraction of the inci-
dent ux getting reected in any one of the hemispherical directions �y

around y is fr(y;�y;�x)cos�yd!y. Then this fraction times the potential
of the point y along �y integrated over the outgoing hemisphere around y,
i.e.

R

y

fr(y;�y;�x)W (y;�y)cos�yd!y, will represent the indirect compo-
nent. Thus the complete expression for the potential function is given by:

W (x;�x) = g(x;�x) +
Z

y

fr(y;�y;�x)W (y;�y)cos�yd!y (2)

4 Illumination Computation

In most of the illumination computations one is interested in computing ux
from a small region in a small spread of directions. For example: in image
rendering the color of a pixel is assigned by computing the radiance from all
the surface points visible to the eye through that pixel and in a spread of
directions made by each such point with the aperture of the eye.

1Kajiya's rendering equation[3] is basically a slightly di�erent form of this equation.



An expression for this ux using the radiance function will therefore be
an integral of the form:

� =
Z
position spread

Z
direction spread

Lo(x;�x)cos�xd!xdx

If we assume that this ux represents the outgoing ux from S then we can
use the earlier de�ned function g(x;�x) which evaluates to 1 in the limits
of the integration and 0 everywhere else, and rewrite the above equation as
follows:

� =
Z
A

Z

x

Lo(x;�x)g(x;�x)cos�xd!xdx (3)

where A represents all the surface points and 
x represents the incoming
hemispherical directions around all such points.

On the other hand an expression for the same ux using the potential
function and radiance of the emitting points in the environment is as follows:

� =
Z
A

Z

x

W (x;�x)Le(x;�x)cos�xd!xdx (4)

To sum up
� We have two di�erent equations, Eq.3 and Eq.4, to express the same quan-
tity � using two di�erent functions L and W .
� Eq.3 and Eq.4 are similar in form and so also are Eq.1 and Eq.2 for L and
W .

The equations thus form an adjoint system of equations. The ux com-
putation equations Eq.3 and Eq.4 may be seen respectively as mathemati-
cally representing the process of gathering illumination coming in from all
directions of the incoming hemisphere, and the process of shooting the illu-
mination in all directions into the outgoing hemisphere2. In this paper we
show that all the illumination computation methods either follow a gathering
strategy or a shooting strategy or a combination of two.

Both radiance equation and the potential equation are linear integral
equations of the second kind. A closed form solution for a general equation
of this kind does not exist. One has to resort to various numerical quadrature

2The terms gathering and shooting were �rst introduced by Cohen et al in the context
of explaining the di�erence in the strategy used by the full radiosity solution and the
progressive radiosity algorithms[5].



techniques to get a reasonably accurate solution for this integral equation.
Such methods may be considered as being deterministic or nondeterministic.
Nondeterministic methods are generally based on principles of Monte Carlo
quadrature. A method speci�c to the solution of integral equation of the
second kind is the random walk. Monte Carlo quadrature and random walk
techniques are briey discussed in later sections. The choice of any particular
method depends on its ability to handle a range of surface geometries, surface
brdfs and surface emission properties.

5 Gathering by Deterministic Methods

5.1 Local Illumination Model and Ray Tracing

For the solution purpose it is often convenient to break up the incoming
illumination in the integral part of Eq.1 into two components: illumination
due to emission and due to reection. Then we can have the following form
for the radiance equation:

Lo(x;�x) = Le(x;�x)+
Z


fr(x;�x;�y) [Le(y;�y) + Lr(y;�)] cos �xd!x(5)

The simplest approach towards solving the radiance equation is to approxi-
mate the integration over the hemisphere by a summation. If we assume that
the light sources are di�erential elements and the indirect illumination from
the incoming hemisphere is not very signi�cant and hence may be considered
as uniform then from Eq.5 we arrive at the following simpli�ed form of the
radiance equation:

Lo(x;�x) = Le(x;�x)+La�a(x)+
nsX
j=1

fr(x;�y(j);�x)Le(j) cos �(j)�!(j)(6)

where

La is the uniform inter-reection radiance (ambient term), �a is
the average hemispherical reectance of point x,
ns denotes the number of visible light sources,
Le(j), �(j), �!(j) and �(j) are all de�ned with respect to the
di�erential j-th light source.



The earliest illumination computation methods use equations similar to
Eq.6 and are popularly known as being based on local illumination models.
The term local is because the illumination predicted by the equation is due
to the direct or local e�ects of the light sources, with little consideration of
e�ects such as inter-reection amongst objects in the environment. Because
of the computational simplicity these methods have been used very widely
for many years, to produce shaded pictures of 3D objects. The very �rst
equation of this kind is due to Bouknight[7] who gives the expression for the
radiance3 from di�use surfaces as follows:

Lo(x) = �a(x)La + kd(x)
nsX
j=1

Le(j) cos �(j) (7)

As the outgoing radiance is considered from a perfectly di�use surface Lo is
independent of the outgoing direction,
kd is the di�use reection coe�cient, which take values from 0 to 1.

Phong[8] subsequently introduced an important improvement to this model
for supporting shiny surfaces. Reection from every surface is assumed to
have a di�use reection component and an imperfect specular reection com-
ponent which is modelled by Phong's reection model. With this extension
Eq.7 takes the following form:

Lo(x;�x) = �a(x)La+
nsX
j=1

Le(j) [kdiffuse(x) cos �(j) + kspecular(x) cos
n �(j)](8)

where

�(j) is the angle between the mirror reection direction of the
j-th light source and the outgoing direction �x,
kspecular is the specular reection coe�cient, which take values
from 0 to 1 subject to the condition that kdiffuse + kspecular < 1,
n is a an empirical surface roughness parameter.

Cook et al[9] proposed another equation using Phong's reection model
which was very much like Eq.6 and had the following form:

Lo(x;�x) = �a(x)La+
nsX
j=1

Le(j) [kdiffuse(x) + kspecular(x) cos
n �(j)] cos �(j)d!(j)

3Intensity (I) was the actual term used instead of radiance (L), but with the same
meaning. The term intensity is still used by many for radiance. However they are not the
same according to their de�nitions.



We see in the above that light is gathered accurately only from point
light sources and for gathering from everywhere else in the hemisphere a
very approximate term called ambient illumination has been used. For a
more accurate solution of the radiance equation it is essential that more
precise methods of gathering illumination from everywhere else be used. The
basic ray tracing method attempts to do this by providing a mechanism to
gather information from some other dominant directions also. In particular,
for calculating illumination from a shiny surface it probes along the mirror
reection direction by sending a reected ray. So if a signi�cant amount of
indirect light is incident from a mirror reection direction then it is accounted
for. Thus for computing the interreection component, a ray is traced[1]
along ��1

y , the mirror reection direction of �x, where y is the visible point
when viewed from x along ��1

y . The radiance from y, Lo(y;�y), is added
to Lo(x;�x) after taking into account the losses due to absorption at x. By
incorporating the modi�cation suggested above into Eq.6 we arrive at the
following expression for computing illumination using ray tracing.

Lo(x;�x) = �a(x)La+�s(x)Lo(y;�y)+
NX
j=1

fr(x;�y(j);�x)�!(j)Le(j) cos �(j)(9)

where �s(x) is the specular reectance of the surface at x.
The di�culty with evaluating this expression is that Lo(y;�y) is also an
unknown and hence needs further evaluation. If this calculation is carried
out again using Eq.9 then it is called as recursive ray tracing.

The ray tracing method geometrically speaking is basically a visibility
computation method. If the ray is intersected with all the objects in the en-
vironment then the nearest of all the intersections points is the visible point
from the origin of the ray along the direction in which the ray is traced.
Ray-object intersections play a major role in ray-tracing based methods.
Fortunately, a ray is a simple 1D linear geometric primitive. E�cient algo-
rithms for computing the intersection of a ray with a large number of object
shapes have been devised. That is why a ray tracing method in general does
not impose any restriction on the type of object shapes that it can handle.
In ray tracing most of the time is spent in computing ray-object intersec-
tion. A very large number of extensions are basically acceleration methods
for speeding up the ray object intersection computations. A good description
of various ray-object intersection and acceleration techniques may be found
in [10].



5.2 Radiosity

The basic radiosity method[4] provides a solution for an environment with
surfaces exhibiting di�use behaviour. The improvements to the basic ra-
diosity method are in the form of extensions to support specular surface
behaviour and general surface reectance property.

In an environment every object surface can be considered as being com-
pletely surrounded by an envelope of surfaces of other solid objects or open
areas. This envelope is the enclosure for the surface and it accounts for all
directions surrounding the surface. By considering the radiation from the
given surface to all parts of the enclosure and the radiation arriving at the
surface from all parts of the enclosure, all the radiative contributions are
accounted for. Because of this enclosure assumption every solid angle in the
incoming or outgoing hemisphere around a point will be covered by a sur-
face. If the environment is discretised to a number of small surface patches
then the hemisphere around any surface point can be represented as a sum
of solid angles occupied by each visible surface patch on the hemisphere. In
general we may represent it as a sum of solid angles due to each of the sur-
face patches,

P
N �!(j) where N is the total number of surface patches. A

surface patch, j, completely hidden to a point will have �!(j) = 0. With
the assumptions of di�use reection behaviour and uniformity of radiance
over a patch we get the following simpli�ed form for Eq.1.

Lo(i) = Le(i)+fdiffuse(i)
NX
j=1

Lo(j)
Z
�!(j)

cos �d! = Le(i)+fdiffuse(i)
NX
j=1

Lo(j)�F (ij)(10)

where F (ij) = 1
�

R
�!(j) cos�d!.

We may interpret F (ij) as the fraction of the total outgoing ux from the
i-th patch reaching the j-th patch. So

PN
j=1 F (ij) = 1. F (ij) contains only

geometry related terms and hence is termed as geometric factor, or form-
factor. Eq.10 is a simple linear equation, containing geometry dependent
and geometry independent terms for obtaining the radiance value at a point
on the i-th patch of a di�use 3D environment. The original equations used
in radiosity methods contain radiosity, B, in the equation instead of the
outgoing radiance Lo. The term radiosity means the rate of radiant energy
outgoing per unit area from a surface. For a di�use surface radiosity and
radiance are related by the expression: B = �Lo. So we can easily convert



the above equation to the radiosity equation by multiplying � on both sides
to obtain:

B(i) = E(i) + �d(i)
X
j

B(j)F (ij) (11)

where

B(i) and E(i) are respectively the total radiosity and the radiosity
due to emission from the i-th surface patch,
�d(i) = �fdiffuse(i) is the di�use surface reectance of the i-th
patch.

Writing down one equation for each of the surface patches in the environment
results in a set of linear equations which can be solved for obtaining the
equilibrium radiosity values.

If the environment consists of N patches, then we get a system of N linear
equations with N unknowns of the form:2

666666666664

1� �d(1)F (11) : : : ��d(1)F (1i) : : : ��d(1)F (1N)
: : : : : : : : :

: : : : : : : : :

��d(i)F (i1) : : : 1� �d(i)F (ii) : : : ��d(i)F (iN)
: : : : : : : : :

: : : : : : : : :

��d(N)F (N1) : : : ��d(N)F (Ni) : : : 1� �d(N)F (NN)

3
777777777775

2
666666666664

B(1)
:

:

B(i)
:

:

B(N)

3
777777777775
=

2
666666666664

E(1)
:

:

E(i)
:

:

E(N)

3
777777777775

or in short AB = E.
This set of equations has the unique characteristic of being diagonally dom-
inant and hence is amenable to e�cient solution by iterative methods such
as Gauss-Seidel's. The major problem in using this method is the setting up
of the system of equations. This amounts to calculating all the F (ij) values.
As shown in the derivation, F (ij) is related to the solid angle subtended by
the visible portion of the j-th patch over the points of the i-th patch. This
turns out to be the most expensive step in radiosity methods.

The simpli�cation of Eq.1 to a system of linear set of equations with
geometry dependent and geometry independent terms was possible only due
to the assumption of the di�use reecting nature of the surface patches. Such
a simpli�cation is no more possible if we assume a more general form for the



surface brdf and the fr term can not be taken out from inside the integration.
Further, because of the directional independence of the radiance from di�use
surfaces, a single radiosity value was good enough to represent the outgoing
radiance in any direction. However such simpli�cation is not possible for
surface patches with general reectance behaviour because the complex brdf
gives rise to complex directional distribution of radiance over the surface
patches. We shall briey discuss below a few of the computational strategies
that have been suggested for extending the radiosity method to environments
with non-di�use surfaces.

5.2.1 Extensions to Non-Di�use environment

(i) Two-Pass Solutions: Two-pass solutions[11, 12, 13] are based on the
assumption
that in an environment majority of the surfaces are di�use and only a few of
the surfaces are non-di�use. With this assumption it is possible to formulate
a set of linear radiosity equations for the di�use surfaces of the environment in
which the non-di�use surfaces play a role in light propagation by providing
indirect light transport paths. The radiosity equations must now include
geometry terms, called as extended form-factors. The extended form-factor
is the fraction of total outgoing ux from the i-th surface patch reaching
j-th surface patch directly and indirectly due to one or multiple reections
of this light by non-di�use surfaces in their propagation path. Though not
computationally simple it is possible to compute these extended form factors
if we assume that the non-di�use surfaces in the environment exhibit perfect
specular behaviour.

The solution proceeds in two passes. In the �rst pass the equilibrium
radiosity values for the di�use surfaces of the environment are computed by
solving the linear set of equations corresponding to the di�use patches. In
the second pass the radiance values for the non-di�use surfaces in speci�c
directions are computed by sampling the brdf of the non-di�use surfaces. As
most of the surfaces in the environment are di�use, the sampled directions
largely lead to di�use surfaces whose radiance values are already known as a
result of the �rst pass.

(ii) Direction Discretisation: This method[14] attempts to solve the
directional distribution problem by discretising the hemispherical directions
around a non-di�use patch into a �nite number of solid angles, in which the



brightness is assumed uniform. Surfaces are also divided into small discrete
patches. For each discrete direction around the patch, a radiosity like linear
equation is formulated. Energy leaving every discrete solid angle is obtained
by solving the linear set of equations.

For an accurate solution by this method one has to resort to very �ne
discretisation of the surfaces and the directions around the surface patches.
Memory and computational expenses then become very high making it prac-
tically impossible to carry out the solution even for moderately complex en-
vironments. The discrete representation of directions also gives rise to severe
aliasing problems.

6 Gathering by Nondeterministic Methods

Monte Carlo quadrature and RandomWalk are the two main non-deterministic
methods that have been used for gathering illumination from the incoming
hemisphere. These methods are called nondeterministic or probabilistic be-
cause repeated applications of a solution method to the same problem are not
guaranteed to give identical results. The methods include steps that depend
not only on the input but also on results of some random events.

6.1 Monte Carlo Solution of Radiance Equation

The main principle behind a Monte Carlo quadrature for computing the
integral

R
F (x)dx is as follows:

1. Rewrite F(x) as a product f1(x)f2(x) such that
R
f1(x)dx = 1, i.e.

f1(x) is a pdf.

2. Sample f1 for a xi.

3. For each such sample xi evaluate f2(xi).

4. Carry out the steps (2) and (3) for a large number, say n, of times.
The average, 1

n

Pn
i=1 f2(xi), is the estimate of the integral.

Using Monte Carlo quadrature techniques, estimates for the integral part
of the radiance equation can be arrived at by simply averaging the radiance



from a number of sampled directions from the incoming hemisphere. How-
ever, there are problems in this approach similar to the ones observed in ray
tracing. Radiance at the visible point along the sampled direction is also not
known and can only be obtained by a similar integration of the hemispherical
contributions at that point. Along any sample direction, contribution due to
emission is only known. The light sources are often localised and contribution
from any point on the source is almost always signi�cantly more as compared
to the contribution from a reector. Cook et al[2, 15] have presented a Monte
Carlo solution to estimate the integral term in two stages. In the �rst stage,
the source term, is estimated by sampling the light source surfaces and in
the second stage, the inter-reection term, is estimated by sampling the sur-
face brdf. This technique is widely known today as distribution ray tracing.
Thus the distribution ray tracing method is a modi�ed recursive ray tracing
method, where:
(i) For gathering the contribution from each light source illumination rays
are not traced towards a single light direction, but are distributed according
to the emission distribution function of the light source.
(ii) Again for the inter-reection component, reected rays are not traced
in a single mirror direction but are distributed in the incoming hemisphere
according to the bidirectional reectance distribution function of the surface
point.

Distribution ray tracing results in a very accurate solution to the radiance
equation albeit, at a very high cost due to the excessively large number of
rays that need to be traced. A number of attempts have been made to
increase the e�ciency of distribution ray tracing. One such attempt is the
caching mechanism proposed by Ward et al[16] for di�use environments. In
a di�use environment the brdf over a point is uniform in all the hemispherical
directions. So the inter-reection integration component of the Eq.9 can be
written as a product of the surface reectance and the incident hemispherical
irradiance given below:Z

x

fr(x;�x;�y)Lr(y;�y) cos �xd!x = fd(x)�
Z

x

Lr(y;�y) cos �xd!x = fd(x)�irradiance

Computation of the inter-reection component at any point requires the eval-
uation of the incident hemispherical irradiance by distribution ray tracing. A
cache is used to store previously computed irradiance values at various points
in the environment. When calculating radiance at any point the stored ir-



radiance of the nearby cached point(s) is used. Wherever possible, pixel to
pixel illumination coherence is used to estimate the irradiance at any point
from the stored irradiance.

6.2 Random Walk Solution of Radiance Equation

The radiance equation is an integral equation of the second kind. Estimates
of the solutions of such equations can be carried out by random walk. A
random walk is basically a sequence of steps. Each step is a random sample
of the pdf de�ned over its previous step. Given an integral equation of the
second kind, say �(s) = f(s)+

R
K(s; t)�(t)dt, if

R
K(s; t)dt = 1, then K(s; t)

at s can be used as a pdf . Given a starting point s, the random walk can
proceed by sampling the pdf to arrive at a random t, and at the point t

sample its associated pdf, K(t; u) to arrive at a random point u and so on.
Based on this we can provide an estimate for �(s) as follows:

�(s) = f(s) +
Z
K(s; t)�(t)dt = f(s) + f(t) +

Z
K(t; u)�(u)du

= f(s) + f(t) + f(u) + : : :

If
R
K(s; t)dt < 1 then also one can use the same method by introducing

an additional event of absorption into the pdf. That means at every step
either a next step is chosen according to the probability K(s; t) or absorp-
tion is chosen according to the probability 1 �

R
K(s; t)dt. The random

walk is bound to terminate and hence the sequence of steps is always �nite.
So the sum of these �nite number of f terms will provide an estimate of
�(s). Applying this technique to the solution of radiance equation whereR

 fr(x;�x;�y) cos �xd!x < 1 would mean estimating the radiance as a sum
of �nite number of emission radiance values as follows:

< Lo(x;�x) >= Le(x;�x) + Le(x
0;�x0) + Le(x

00;�x00) + : : : (12)

where

�x0 is the direction chosen from the incoming hemisphere by sam-
pling the brdf at x and x0 is the surface position visible to x along
�x0,
�x00 is chosen by sampling pdf at x0 and x00 is the surface position
visible to x0 along �x00, and so on.



The average of such estimates computed over a large number of paths pro-
vides a more accurate estimate of the actual solution. Kajiya proposed such
a solution method for the rendering equation and the method is widely known
as path tracing[3].

Path tracing di�ers from distribution ray tracing in that in path tracing
a single ray emerges from each point where as in distribution ray tracing a
large number of rays emerge from a single point. However, the requirement
of tracing a large number of paths to get a reasonable estimate of the solu-
tion makes it as expensive as distribution ray tracing. Though path tracing
in general cannot be considered as being very e�cient, Kajiya[3] suggests
careful use of various variance reduction techniques such as hierarchical and
nonuniform sampling to make path tracing as an e�cient and acceptable
alternative for accurate illumination computations.

7 Deterministic Shooting Methods

As we said earlier the shooting process simulates the physical process of light
distribution. As the sources are the ones responsible for illumination in the
environment, intuitively a method based on the shooting strategy would be
natural for computing illumination of the whole environment. However, the
very �rst use of such a method in illumination computation, widely known
as progressive radiosity[5], was proposed only in 1988. The method came as
an extension to the standard radiosity method for increasing e�ciency and
is based on the observation that:
Radiosity computation of any patch requires the gathering of radiosity from
every other patch in the environment. However, only a few of these gathered
values are signi�cant enough to contribute towards the brightness of the patch
of interest. The signi�cant contributions are mainly due to light sources and
bright reector surfaces (often highly reecting surfaces which receive light
directly from the light sources). So a method which can consider only those
signi�cant patches and ignore the rest is likely to be more e�cient.
This makes �nding the set of major contributors important. Light sources
are undoubtedly included in this set. The other contributors are the ones
receiving maximum emitted light directly or indirectly and hence can be
found by shooting the light from the source(s) and keeping track of the
quantity of light reaching every other surface patch of the environment.



The distinguishing feature of the progressive radiosity method is that
while one surface is shooting light the outgoing ux of all other surfaces are
simultaneously updated. The surfaces are processed in sorted order according
to their ux contribution to the environment. The sorted list of surfaces
initially contains only the emitters. As the shooting progresses, the receivers
with acquired ux are added into the list. From the radiosity equation,
Eq.11, the amount of light received by the i-th patch after a single shooting
operation from a bright patch, say j, is given by

�B(i) = �d(i)F (ij)B(j)

where F is the geometric factor. Thus the total radiosity of the i-th surface
patch is computed as follows:

B(i) = E(i)+
nsX
j=1

E(j)

"
�d(i)F (ji) +

NX
k=1

�d(k)F (jk)�d(i)F (ki) + : : :

#
(13)

To derive the analytical approximation of � using the potential function we
introduce a hemispherical potential function over any point of patch i, W(i),
as the average potential of the surface points in any hemispherical direction.
If the patches are su�ciently small this hemispherical potential function may
be assumed to be independent of the position on each patch. The expression
for this hemispherical potential function will be:

W(i) =
1

�

Z

xi

W (xi;�xi) cos �xid!xi

=
1

�

Z

xi

"
g(xi;�xi) +

Z

y

fr(y;�y;�xi)W (y;�y) cos �yd!y

#
cos �xid!xi

=
1

�

Z

xi

[g(i) + �fr(j)W(j)] cos �xid!xi

=
1

�
g(i)

Z

xi

cos �xid!xi +
Z

xi

fr(j)W(j) cos �xid!xi

= g(i) +
NX
j=1

fr(j)W(j)
Z
!ij

cos �xid!xi

= g(i) +
NX
j=1

fr(j)W(j)�F (ij) = g(i) +
NX
j=1

�d(j)F (ij)

"
g(j) +

NX
l=1

�d(l)WlF (jl)

#



= g(i) +
NX
j=1

�d(j)F (ij)gj +
NX
j=1

�d(j)F (ij)
NX
l=1

�d(l)W(l)F (jl)

If we assume that the set S represents the points of the k-th surface patch
and all the directions over those points then g(i) is 1 only for i = k and zero
otherwise. So the expression for W(i) further simpli�es to

W(i) = g(i) + �d(k)F (ik) +
NX
j=1

�d(j)F (ij)�d(k)F (jk) + : : :

Using this hemispherical potential function we can derive the simpli�ed ex-
pression for the ux over the k-th patch as follows:

� =
Z
A

Z

x

W (x;�x)Le(x;�x) cos �xd!xdx =
nsX
i=1

Z
Ai

Z

x

W (x;�x)Le(x;�x) cos �xd!xdx

= �
nsX
i=1

Le(i)W(i)
Z
Ai

dx = �
nsX
i=1

Le(i)A(i)W(i)

= �
nsX
i=1

Le(i)A(i)

2
4g(i) + �d(k)F (ik) +

NX
j=1

�d(j)F (ij)�d(k)F (jk) + : : :

3
5 (14)

And this is same as Eq.13.

Extensions to Nondi�use Environment The shooting strategy can also
be used for two pass methods and the directional discretisation method dis-
cussed in the earlier section. An important extension[17] that has been pro-
posed for dealing with non-di�use surface reectance behaviour is the use
of spherical harmonics for the representation of the directional variation in
the outgoing radiance of a point on a non-di�use surface. The extension is
important because it maintains a continuous representation of the radiance
distribution around a point.

8 Nondeterministic Shooting Methods

Particle tracing[6], the Monte Carlo simulation of the particle model of light,
is a nondeterministic shooting method. In this method, particles carrying
a �nite amount of energy are emitted in random directions from random



positions on the surfaces of the light sources. The emitted particles move in
a straight path and hit other objects, hence forward termed receivers. At
the surface of the receiver a particle is randomly absorbed or reected. If
reected, the particle is assigned a random direction. The particle continues
its ight until it is eventually absorbed. All the random choices are made by
sampling the pdfs associated with the behaviour which is being simulated.
Shooting a reasonable number of particles will result in a simulated particle
ux on all the surfaces in the environment. This simulated ux is an estimate
of the actual ux in the real environment. This solution method may be seen
as the random walk solution of the potential equation in which random walk
starts in a state (xi0 ;�xi0

) drawn from the emission function, Le(x;�x). A
random walk may terminate at the state (xik ;�xik

) with probability

�(xik ;�xik
) = 1�

Z

y

fr(y;�y;�xik
) cos �yd!y

or proceed to the next state (xik+1 ;�xik+1
) chosen with probability

fr(xik+1 ;�xik+1
;�xik

) cos �xik+1 and so on. For each such sample W is eval-
uated by carrying out the random walk. The potential estimated from this
walk is given by

< W (xi;�i) >= g(xi0;�xi0
) +

miX
k=1

g(xik ;�xik
)

� is estimated from n such walks as:

� =
Z
A

Z

x

W (x;�x)Le(x;�x) cos �xd!xdx = E �

Z
A

Z

x

W (x;�x)L(x;�x) cos �xd!xdx

= E �
1

n

nX
i=1

"
g(xi0 ;�xi0

) +
miX
k=1

g(xik ;�xik
)

#
(15)

where E is the normalising factor which makes (1=E)
R
A

R

x

Le(x;�x)cos�xd!xdx =
1. Thus the method of evaluating � by �rst shooting from the light source
is the essence of the particle tracing or light ray tracing.

We have come across two random walk based illumination computation
methods, viz. the path tracing and the particle tracing. An important ob-
servation is that both the random walk processes attempt to solve the same
problem and are subject to similar statistical errors which in MonteCarlo



studies is known as variance. But one thing which makes the particle trac-
ing more attractive is that the simulation proceeds by sampling the source
function. If we partition the position and directions in the environments
into a �nite number of sets S1; S2; S3; : : :, and formulate equal number of g
functions g1; g2; g3; : : :, such that gi is nonzero in the respective set Si and
zero otherwise, then each random walk originating from the emitting surfaces
contributes towards the estimation of the �i for each of the Si. At the end
of the simulation we have the estimates for �i for all the sets. Whereas in
path tracing the random walk starts by sampling a particular gi, for example:
directions through a particular pixel. So each random walk contributes to-
wards the estimation of only the �i for that region for which gi is de�ned to
be nonzero. This is not meant to be understood as saying that the compu-
tational e�orts required to compute the brightness of a pixel by path tracing
and to compute the illumination of all the subregions visible through a pixel
by particle tracing are of equal magnitude. One may arrive at a low variance
in the brightness estimate of the pixel by tracing a small number of paths
whereas it is possible that even after a large number of particle tracings the
brightness estimates of a few of the subregions continue to show high vari-
ance. All the same, for view independent illumination computations particle
tracing does have its distinctive advantages.

9 Conclusion

Illumination computation has been one of the most extensively researched
subjects in the �eld of computer graphics. The total amount of published
work is enormously large and it would not have been feasible or bene�cial to
attempt to accommodate all of these in our review. However the treatment
of these methods as being algorithmic solutions to the radiance equation, and
the categorisation of strategies into gathering vs shooting in one dimension
and deterministic vs nondeterministic along another is the �rst of its kind and
has ensured that the more signi�cant contributions have all been adequately
covered.

The gathering strategy based methods can all be treated as methods
providing solutions to the basic radiance equation and shooting strategy
based methods as methods providing solutions to the basic potential equa-
tion. While the deterministic methods are e�cient but restrictive solutions



for these equations, the nondeterministic methods are general solutions and
hence in principle can deal with all kinds of general environments in the same
manner.
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