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Abstract

In this paper we propose an extension to the work of Lischinski et al [?] on combining hierarchical
radiosity method and discontinuity meshing. The extension proposed here supports higher order radiosity
function at the estimation step itself. We have carried out this extension using Multi-Wavelet basis
functions. Unlike the multi-wavelet radiosity work of Gortler et al [?] which uses regular quadtree
subdivision, we carry out the subdivision along the discontinuity boundary. In other words, instead of
deriving the �ner basis functions by uniform parametric dilations of a mother basis function, we derive
the �ner basis by mapping the mother basis to arbitrary subdomains created during the subdivision
along the discontinuity boundary. To carry out push and pull operations, which are crucial to the
hierarchical algorithm, we compute the necessary �lter functions. Our method combines the advantages
of wavelet radiosity and discontinuity meshing. The preliminary result shows signi�cant computational
improvement.

1 Introduction

As of today, hierachical method is the state of the art method of solving radiosity in any general environment.
This method was �rst introduced in [?, ?] to estimate radiosity as piece-wise constant functions over the
environment. Subsequently by using multi-wavelet basis functions with higher vanishing moments (> 1)
the method was extended [?] to directly estimate radiosity as piecewise higher order polynomial functions.
Directly computing higher order functions implies lesser amount of discretisation and hence lesser overall
e�ort in the illumination computation. These methods require a regular discretisation of surfaces. The
surfaces needing subdivisions were subdivided by half in each of their parametric dimensions. This type of
subdivision gives the best average performance when it is not at all possible to derive the complexity of the
underlying radiosity function. However, in certain cases it may be possible to derive some information on the
complexity of the function. In such case, instead of carrying out the regular subdivision to �nally localise
on the complex region it will be most appropriate to use the derived complexity information to directly
localise the complexity. We shall take an example of a shadow discontinuity shown in �gure 1. Localising
this discontinuity by regular subdivision will require a very large number of subdivisions. However, if the
discontinuity can be known by some other extraneous method (say discontinuity meshing) then a single
subdivision of the surface will be su�cient to capture the complexity. This example tends to suggest that
at the pre-processing stage we carry out the subdivision of the environment using a discontinuity mesher.
However, such preprocessing approach are extremely expensive because,

� in the absence of the knowledge of the actual illumination distribution in the environment, the pre-
discretisation step is likely to create far more number of discrete surfaces than actually required, and

� pre-discretisation would mean an increase in the number of individual interacting elements in the
environment, hence a quadratic increase in the illumination computation time.

Figure 1: Discontinuity and Wavelet Dilation Functions.
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To overcome this problem Lischinski et al [?] introduced the discontinuity driven hierarchical radiosity method
in which they combined the advantages of hierarchical radiosity and discontinuity meshing. They carried out
the normal hierachical radiosity algorithm to compute interaction between surfaces in the environment, but
at the subdivision step of the hierarchical algorithm, instead of using the regular quadtree subdivision, they
used irregular subdivision of surfaces along discontinuity boundaries. However, they restricted their method
to the estimation of piece-wise constant radiosity functions. For better visual reconstruction of the estimated
radiosity function, only in a post-processing step they carried out higher order (quadratic) interpolation.

We extend this work of Lischinski et al by directly estimating piecewise higher order radiosity function.
Thus work combines the advantages of wavelet-radiosity and discontinuity meshing. As in Gortler et al [?]
we have used Multi-wavelet basis function to carry out the extension.

The organisation of the paper is as follows. We brie
y introduce the function approximation and hi-
erarchical radiosity. Then we derive the �lters to carry out the crucial push/pull operation. Finally we
demonstrate its successful application to a simple test environment.

2 Radiosity Function Approximation and Hierarchical Algorithm

In an environment with di�usely re
ecting and/or emitting surfaces the radiosity of any surface p can be
expressed using the following equation:

Bp(�x) = Ep(�x) +

NX
q=1

Z
Aq

�q!p(�x; �y) Bq(�y)d�y (1)

where N is the number of surfaces in the environment, �x and �y are points and B(�x), B(�y) the radiosity
functions over the surfaces p and q respectively, Ep(�x) is the emittance function over the surface p and �q!p,
the kernel of the integral operator, represents the interaction between surfaces q and p and can be expressed
as

�q!p(�x; �y) = �p(�x)
cos �x cos �y

�r2
V (�x; �y) (2)

where � is the di�use re
ectivity at a point, r the distance between �x, �y and V the visibility between �x, �y,
and �x, �y respectively are the angles between the line joining �x and �y, and the surface normals at those
points.

Solution of this type of equations is often carried out by using funcion approximation technique. This
method seeks for the exact solution by projecting the involved functions onto a �nite dimensional space, i.e.
the radiosity function B is approximated by a linear combination of basis functions:

B(u; v) =
nX

k=1

bkNk(u; v)

where n is the number of basis functions, bk's are unknown approximation coe�cients and Nk's are the
chosen basis functions.
A set of linear equations [?] of the type

bp;i =

NX
q=1

nqX
j=1

Kq!p;ijbq;j (3)

where i = 1::np and np; nq are the number of approximation terms for Bp(u; v) and Bq(s; t);

bq;j =

Z 1

u=0

Z 1

v=0

Nj(u; v)Bp(u; v)dudv; bq;i =

Z 1

s=0

Z 1

t=0

Ni(s; t)Bq(s; t)dsdt

and Kq!p;ij

Z 1

u=0

Z 1

v=0

Z 1

s=0

Z 1

t=0

�q!p(u; v; s; t)Ni(u; v)Nj(s; t)





�x�s � �x

�t





 dsdtdudv
2



Figure 2: Push-Pull operation.

are then derived by using orthogonal basis functions and Galerkin error minimisation techqnique, and the
solution is carried out by following an iterative method such as Gauss-Seidel method or Southwelll relaxation
method till convergence. The complexity of solving this system for the whole environment is O(

P
np)

2. The
accuracy of the resulting solution depends on how correctly the radiosity function on each surface has been
approximated to arrive at the linear equation. The brute force method of improving the accuracty is to
increase the number of basis function np for the approximation of radiosity function of each surface p.
However, as the complexity of the technique indicates the quadratic increase in computation time with the
increase in the number of basis function, one must make optimal use of the number of basis function for any
appromixation.

Hierarchical algorithm [?] addresses this problem by making some crucial observations. They are :

� To write an expression for the unknown radiosity function of surface p of the type given in equation
(3), we need the expression of radiosity function of all other surfaces q which are fully or partially
visible to p.

� It is possible to decide on the maximum discretisation of each surface for any given accuracy in the
solution of the radiosity function.

� If a particular accuracy in computation of radiosity of surface p requires a �ner discretisation of surface
q, then it is not necessary that for the same computational accuracy in radiosity of another surface r
will require the discretisation of q to the same �neness. Probably a coarser discretisation or much �ner
discretisation may be required.

The last observation is very crucial because if we can use di�erent levels of discretisation of a particular
surface to set up the system of equations of the type (3) then the overall complexity of the solution is bound
to be much less than O(

P
np)

2 where np is the maximum discretisation of the surface p. Making use of this
observation demands that one must

� associate a hierarchy of subdivisions with each surface and

� at anytime during the iterative solution of radiosity, maintain with each level of the hierarchy the
radiosity information commensurate to the level.

Maintaining radiosity function at di�erent levels during the iteration requires 2 operation known as push
and pull operation. In the next section we describe the basic ingradients necessary for these operations.

3 Push/Pull Operation

Let us consider the simplest case of an one-level surface discretisation shown in �gure 2, where we have only
2 levels of discretisation associated with a surface. Given the appoximation of a function, B(�x), de�ned over
the level 0, the push operation computes the approximation of the the function at level 1. And similarly,
given the approximation at level 1, the pull operation computes the approximation of the function at level 0.

Let us de�ne three sets of orthonormal basis functions N
(m;n)
0 (�x), N

(m;n)
1 (�x) and N

(m;n)
2 (�x) such that they

are zero outside the domains 
0, 
1 and 
2, and if we assume that a unit square in parametric domains
(u; v), (u0; v0) and (u00; v00) span 
0, 
1 and 
2 respectively then

N
(m;n)
0 (�x(u; v)) = M(m;n)(u; v)

N
(m;n)
1 (�x(u0; v0)) = M(m;n)(u0; v0)

N
(m;n)
2 (�x(u00; v00)) = M(m;n)(u00; v00)
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whereM(m;n)'s are the scaling function of a multiwavelet basis of vanishing moment M .
With these de�nitions we can write the approximation of the radiosity function at the given two levels

as follows:

Approximation at Level 0 :

B(�x) �
MX
m=1

MX
n=1

b
(m;n)
0 N

(m;n)
0 (�x) (4)

b
(m;n)
0 =

Z 1

u=0

Z 1

v=0

B(�x)N
(m;n)
0 (�x)dudv

Approximation at Level 1 :

B(�x) �
MX
m=1

MX
n=1

b
(m;n)
1 N

(m;n)
1 (�x) +

MX
m=1

MX
n=1

b
(m;n)
2 N

(m;n)
2 (�x) (5)

where b
(m;n)
1 =

Z 1

u0=0

Z 1

v0=0

B(�x)N
(m;n)
1 (�x)du0dv0 and b

(m;n)
2 =

Z 1

u00=0

Z 1

v00=0

B(�x)N
(m;n)
2 (�x)du00dv00

It must be noted that �x in each of the above equations has the appropriate parametric expression.

Push Filters : As explained above, pushing amounts to computing the approximation coe�cients b
(m;n)
1 's

and b
(m;n)
2 's from the approximation coe�cients b

(m;n)
0 's.

b
(m;n)
1 =

Z 1

u0=0

Z 1

v0=0

B(�x)N
(m;n)
1 (�x)du0dv0 =

Z 1

u0=0

Z 1

v0=0

"
MX
p=1

MX
q=1

b
(p;q)
0 N

(p;q)
0 (�x)

#
N

(m;n)
1 (�x)du0dv0

=

MX
p=1

MX
q=1

�Z 1

u0=0

Z 1

v0=0

N
(p;q)
0 (�x)N

(m;n)
1 (�x)du0dv0

�
b
(p;q)
0 =

MX
p=1

MX
q=1

c
(m;n;p;q)
0!1 b

(p;q)
0

and similarly

b
(m;n)
2 =

MX
p=1

MX
q=1

c
(m;n;p;q)
0!2 b

(p;q)
0

where

c
(m;n;p;q)
0!1 =

Z 1

u0=0

Z 1

v0=0

N
(p;q)
0 (�x)N

(m;n)
1 (�x)du0dv0 and c

(m;n;p;q)
0!2 =

Z 1

u00=0

Z 1

v00=0

N
(p;q)
0 (�x)N

(m;n)
2 (�x)du00dv00

Pull Filters : These �lters are responsible for computing b
(m;n)
0 's from b

(m;n)
1 's and b

(m;n)
2 's.

b
(m;n)
0 =

Z 1

u=0

Z 1

v=0

B(�x)N
(m;n)
0 (�x)dudv

=

Z 1

u=0

Z 1

v=0

"
MX
p=1

MX
q=1

b
(p;q)
1 N

(p;q)
1 (�x) +

MX
p=1

MX
q=1

b
(p;q)
2 N

(p;q)
2 (�x)

#
N

(p;q)
0 (�x)dudv

=

MX
p=1

MX
q=1

�
b
(p;q)
1

Z 1

u=0

Z 1

v=0

N
(p;q)
1 (�x)N

(m;n)
0 (�x)dudv + b

(p;q)
2

Z 1

u=0

Z 1

v=0

N
(p;q)
2 (�x)N

(m;n)
0 (�x)dudv

�

=

MX
m=1

MX
n=1

h
c
(m;n;p;q)
1!0 b

(p;q)
1 + c

(m;n;p;q)
2!0 b

(p;q)
2

i
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where

c
(m;n;p;q)
1!0 =

Z 1

u=0

Z 1

v=0

N
(p;q)
1 (�x)N

(m;n)
0 (�x)dudv and c

(m;n;p;q)
2!0 =

Z 1

u=0

Z 1

v=0

N
(p;q)
2 (�x)N

(m;n)
0 (�x)dudv

Relation Between Push and Pull Filters : As we are using orthogonal basis functions, it may be
worthwhile to see if there exists any relationship between the push/pull �lters, which can reduce the compu-

tational e�ort for evaluating these �lters. We shall �rst try to �nd this relationship between c
(m;n;p;q)
1!0 and

c
(m;n;p;q)
0!1 . As derived above, c

(m;n;p;q)
1!0 is an integral over domain 
0 whereas c

(m;n;p;q)
0!1 is an integral over

domain 
1. As both are biparametric surfaces, it is possible to �nd a parametric mapping F from the 
0

to 
1, i.e.
F : (u; v)! (u0; v0)

Using this mapping we shall �nd the relationship as follows:

c
(m;n;p;q)
1!0 =

Z 1

u=0

Z 1

v=0

N
(p;q)
1 (�x)N

(m;n)
0 (�x)dudv

=

Z U

u0=0

Z V

v0=0

N
(p;q)
1 (�x)N

(m;n)
0 (�x)





 �u�u0 � �v

�v0





 du0dv0 where F : [0; 1]� [0; 1]! [0; U ]� [0; V ]

=

Z 1

u0=0

Z 1

v0=0

N
(p;q)
1 (�x)N

(m;n)
0 (�x)





 dudu0 � dv

dv0





 du0dv0 as 
1 � 
0

This derivation tells us that, when k du
du0
� dv

dv0
k is a constant function (C), we can �nd a simpli�ed relationship

as follows:

c
(m;n;p;q)
1!0 = C

Z 1

u0=0

Z 1

v0=0

N
(p;q)
1 (�x)N

(m;n)
0 (�x)du0dv0 = C c

(m;n;p;q)
0!1

For example, when we have subdivision by uniform dilation of a factor 2, as in [?, ?] then we have k du
du0
� dv

dv0
k

is constant and is equal to 0.25. So c
(m;n;p;q)
1!0 = 0:25 c

(m;n;p;q)
0!1 .

However, for arbitrary subdivisions, it will not be possible to �nd any such simple relationship. Thus one
has to compute the push �lters and the pull �lters separately.

So far we have discussed the operation from the top most level to the next level. The same discussion
can be extened to any pair of levels. For every level of discretisation we have to compute the equivalent �lter
function. It must be noted here that similar �lters were also required for the push/pull using multi-wavelets
with uniform dilation. But this uniform dilation allowed one

� to use pre de�ned �lter coe�cients, and

� the �lter coe�cents were same between any pair of consecutive discretisation levels.

Where as, in the push/pull operation with arbitrary discretisation

� the �lter function is likely to vary for every pair of consecutive discretisation level, and

� these must be computed at each level during the discretisation process.

4 Re-parameterisation

Subdivision of a biparametric surface along an arbitrary boundary may lead to patches which are di�cult to
directly parameterise (example: �gure 3(a)). All our above discussion assumes that we are able to map the
mother multi-wavelet basis function to the domain of the subdivided patch, we must �nd a mechanism of
reparameterisation. To do this, we use a very simple approach. The approach is demonstrated in �gure 3(b)
which avoids the parameterisation problem posed int �gure 3(a). We make sure that each discretisation step
leads to discretisation of only one parametric dimension. If it is not so, we introduce another extraneous
step to guarantee this discretisation.
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Figure 3: Re-parametrisation Issue.

Figure 4: A typical scene.

5 Results

We show here the advantages of applying higher order approximation with subdivision across discontinuity
boundary using a simple test scene given in �gure 4. Figures 5, 6, 7 and 8 compile the results obtained
with various strategies. The strategies are respectively:
(a) uniform subdivision with constant basis function (?? patches),
(b) subdivision at discontinuity boundary with constant basis function (?? patches),
(c) uniform subdivision with multi-wavelet basis function of vanishing moment 4 (262 patches), and
(d) subdivision at discontinuity boundary with multi-wavelet basis function of vanishing moment 4 (3
patches).
In all these cases the subdivision has been carried out keeping the error-bound same.
Note that working with multi-wavelet basis function of vanishing moment 4 involves about 64 times more
work for each patch in the given case. So if we compare uniform subdivision results, even though higher
order basis functions results in a smaller number patches, still then for the given error bound the overall
e�ort far exceeds that due to constant basis function. However, the result due to arbitrary subdivision with
higher order basis function performs much favourably compared to all other strategy. We are carrying out
the actual test with real large scenes.

6 Conclusion

We believe that our proposed technique can be used in the complex environments with substantial bene�ts.
We are carrying out these tests. In the discussion of the paper, we have emphacised on the subdivision along
the discontinuity boundary. However, the method is not limited to this. As long as one is able to decide on
a best boundary of subdivision one can apply the above method. We are planning to extend the method to
the adaptive mesh generation work of Campbell and Fussel [?].
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Figure 5: Uniform meshing + Constant Basis. Figure 6: Discontinuity meshing + Constant Basis.

Figure 7: Uniform meshing + Higher Order Basis. Figure 8: Discontinuity meshing + Higher Order Basis.
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