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Abstract. We present a simple and inexpensive method for computing
the estimates of error in a hierarchical linear radiosity method. Similar to the
approach used in [1] for constant radiosity method, we compute lower and upper
linear bounds of the actual radiosity function over the surface elements. We
carry out this by computing linear upper and lower bounds of the kernel of the
radiosity equation. Also we compute these bounds in a form which makes trivial
the e�ort of projecting the integral equation involving such kernels. We provide
the hierarchical algorithm for computing the radiosity bounds. We derive the
expression for computing error-estimates from these bounds. Finally we propose
a re�nement indicator for carrying out the link re�nement.

1 Introduction

Radiosity in an environment is governed by an integral equation of the following
form [2]:

B(i)(s; t) = E(i)(s; t) + �(i)
nX

j=1

Z Z
K(i j)(s; t; u; v)B(j)(u; v)dudv (1)

where i and j are the indices of the surface elements, n is the total number
of surface elements in the environment, (u; v) and (s; t) are respectively the
parametric coordinates of a point on i and a point on j, andK(i j)(s; t; u; v), the
kernel of the integral equation, gives the radiosity contribution of the di�erential
area around (u; v) on element j towards the di�erential area around (s; t) on
element i, and has an expression as given below.

K(i j)(s; t; u; v) =
cos ��xs;t cos ��xu;v

[r(�xs;t; �xu;v)]
2 V is(�xs;t; �xu;v)Aj(u; v):

where �xs;t and �xu;v are the points on the surface element i and j, ��xs;t and
� �xu;v are respectively the angles made by the surface normals at the above
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points with the line joining them, r(:; :) is distance and V is(:; :) is the visibility
between the points �xs;t and �xu;v , and Aj(u; v) is the area function of the surface
j and has the following expression:

Aj(u; v) =





��xu;v�u
� ��xu;v

�v






One of the widely followed approach of solving this integral equation is the

projection of the continuous equation onto a �nite set of basis functions. This
projection gives rise to a discrete system of linear equations which can be solved
to compute an approximation of the unknown radiosity function. As in any nu-
merical method, there is bound to be a di�erence between the computed solution
and actual solution. One wants that this di�erence (or error) remains smaller
than a prede�ned amount, called threshold. If under the given setup the error
is not under this threshold then one has to re�ne the setup and incrementally
recompute the solution. However, error computation requires the knowledge of
the actual solution which in general does not exist. Hence, instead of trying to
compute the actual error, one aims to compute an estimate of its upper bound.
Though theoretical expressions of error estimates for integral equation solution
methods exist [3], they do not lend themselves to practical use. That is why the
adaptive re�nement of radiosity via error estimation has not been a common
practice. More recently we have come across the interesting work of Lischinski
et al [1] where they have proposed a practical method of estimating this er-
ror. They have applied this to the constant radiosity computation method, and
have demonstrated that the error estimation approach can lead to an improved
method for computing radiosity solution. Our e�ort in this paper has been to
extend such error estimation work to linear radiosity computation.

We shall here brie
y discuss the implication of the terms constant or lin-
ear radiosity. As said earlier, radiosity solution proceeds by projection onto a
set of basis functions. Piecewise polynomial functions are oftenly used for this
projection. Among the various polynomials, piecewise constants, the lowest
degree polynomials, have been the widely used basis functions[4] for radiosity
computations. Use of piecewise constants leads to constant radiosity solution
over surface elements. Radiosity functions are in general continuous and it is
well known that piecewise constants make poor approximations to a continuous
function. In general, higher the degree of polynomial the better is the approx-
imation. However, the expenses involved in the projection and in subsequent
solution also grow with the degree of polynomial. Though there have been var-
ious attempts with piecewise polynomials of di�erent degrees [5, 6, 7, 8, 2], it
is not very clear what is the most optimal degree of choice for radiosity com-
putation. In this paper we have preferred to use a piecewise linear basis set.
A piecewise linear basis set leads to linear (more correctly, bi-linear) radiosity
over surface elements. Thus, in this paper we describe a method for e�ciently
estimating the error between this computed linear function and the actual ra-
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diosity function and using this error estimate we propose an adaptive re�nement
strategy for improving the solution.

The key to estimation of error is the computation of the lower and the upper
bound of the radiosity function over the elements. Lischinski et al [1] have chosen
to use the lower and upper bounds of the form-factor between the elements, i.e.
the double integral of the kernel function of the integral equation, to compute
the bounds of the radiosity function. In this paper we have chosen, instead, to
use the lower and upper bounds of the kernel function itself for the computation
of the radiosity bounds. Particularly, we use the linear (perhaps better called
tetra-linear) upper and lower bounds of the kernel function. Approaching in
this fashion, we reduce the subsequent complexity of the projection process. In
fact, in our method the e�ort involved in the bound computation process is
very much compensated by the gain during the projection process. Our initial
�ndings show that the resulting linear radiosity method promises to outperform
the constant radiosity method in the overall cost and quality measure.

The organisation of the paper is as follows. We �rst brie
y describe the
basis functions and the projection method. Then we describe the method of
computing the kernel bounds. We follow it with the algorithm for computing
radiosity bounds from the kernel bounds. We then derive the expression for
the estimation of error from the bounded radiosity values and the expression
of a re�nement indicator to carry out error-driven re�nement in the context of
hierarchical radiosity. Finally we show some results of the application of our
algorithm to two simple environments. We compare the results of the linear
radiosity method with that of the constant radiosity to emphasize the improve-
ments.

2 Basis Functions and Projection

The work presented in this paper is based on the use of Legendre polynomials
(polynomials of degree 0 and 1) as the piecewise linear basis set. That means
we use two 1D basis functions

N0(u) =
1p
2

and N1(u) =

r
3

2
u;

which are only de�ned over the parametric domain �1 � u � +1 and unde�ned
outside.
These functions are orthonormal and the 2D function set�
Nk(u; v) j k = 1 : : : 22; N1(u; v) = N0(u)N0(v); : : : ;N4(u; v) = N1(u)N1(v)

	
; (2)

formed by combining these functions, is also orthonormal. If we assume that u; v
in the range [�1;+1], are the parameters de�ned over a surface element, then
we can construct the following orthonormal basis set for the whole environment:n

N
(i)
k (u; v) j k = 1 : : : 22 i = 1 : : : n

o
(3)
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where
n
N

(i)
k (u; v)jk = 1 : : : 22

o
is the basis set over the surface element i, and

n is the total number of elements.
Projecting the radiosity equation given in equation 1 on this basis we will get
the following linear equations:

B
(i)
k = E

(i)
k + �(i)

nX
j=1

22X
l=1

K
(i j)
k;l B

(j)
l for k = 1 : : : 22 and i = 1 : : : n (4)

where E
(i)
k =

Z 1;1

�1;�1

E(i)(s; t)N
(i)
k (s; t)dsdt

and K
(i j)
k;l =

Z 1;1

�1;�1

Z 1;1

�1;�1

K(i j)(s; t; u; v)N
(j)
l (u; v)N

(i)
k (s; t)dudvdsdt:

The equations can be set up by evaluating E
(i)
k and K

(i j)
k;l values. From the

solution of these equations, i.e. B
(i)
k 's, one can construct an approximation to

the unknown radiosity function as

B(i)(s; t) � B
(i)
computed(s; t) =

X
k

B
(i)
k N

(i)
k (s; t):

As the basis functions are polynomials of degree � 1 the resulting approximation

B
(i)
computed() will be a bilinear function over the surface element i.

Using the coe�cients K
(i j)
k;l and the basis functions we can also set up an

approximation to the kernel function.

K(i j)(s; t; u; v) �
X
k

X
l

K
(i j)
k;l N

(i)
k (s; t)N

(j)
l (u; v) (5)

Better is this approximation, more accurate is the radiosity solution. In the
limit if the approximation can be made exact then we can have the exact ra-
diosity function. The kernel functions de�ned between a pair of surfaces of the
environment is so complicated that to get its exact expansion as given in equa-
tion 5, we may have to breakup the surfaces in the environment to in�nitesimal
elements. This will lead to a in�nite linear system and hence will give rise to
an impracticable solution method.

3 Computation of Linear Kernel Bounds

We have said in the beginning that the key to the error computation is the
computation of the radiosity bounds and we propose to compute these bounds
using the bounds of the kernel function. In this section we describe the method
for computing the bounds of the kernel function, i.e. we wish to compute two
tetra-linear functions which will completely bound the kernel function.
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In the above paragraph we indicated that if we had an integral equation
whose kernel can have an exact expansion using a �nite set of basis function
then the resulting the solution of the resulting linear system will be exact value
for the unknown function. Here we shall �nd two such kernels and using them
we shall compute the exact solution of the integral equation.

These two functions are K(s; t) and K(s; t), and are de�ned as follows:

K(i j)(s; t) =

22X
k=1

22X
l=1

K
(i j)
k;l N

(i)
k (s; t)N

(j)
l (u; v)

and K
(i j)

(s; t) =

22X
k=1

22X
l=1

K
(i j)
k;l N

(i)
k (s; t)N

(j)
l (u; v) (6)

where K(i j)(s; t) � K(s; t) and K
(i j)

(s; t) � K(s; t) 8(s; t):
If we substitute them in the equation 1 and the resulting integral equation will
be as follows:

B(i)(s; t) = E(i)(s; t) + �(i)
nX

j=1

Z Z
K(i j)(s; t; u; v)B(j)(u; v)dudv;

B
(i)
(s; t) = E(i)(s; t) + �(i)

nX
j=1

Z Z
K

(i j)
(s; t; u; v)B

(j)
(u; v)dudv: (7)

If solution exist for each of these integral equations then we can solve them by
the projection method. The solution will give us two functions B(i)(s; t) and

B
(i)
(s; t). They will be bilinear and because of the de�nitions in equations 6

and 7 they will have the following property:

B(i)(s; t) � B(i)(s; t) and B
(i)
(s; t) � B(i)(s; t):

Or in other words they will be the linear bounds of the actual radiosity solution.
The important factor now is that we can compute the bounds only if solutions

to the substituted integral equations exist. AsK(i j)(s; t; u; v) � K(i j)(s; t; u; v),
if there is a solution to the integral equation with K as kernel then there will be
a solution to the integral equation with K as kernel. But same cannot be true
for the integral equation with K as kernel. In the later section we shall bring
in some transformation to the projected linear system of this integral equation
to arrive at a solution.

4 Computation of K and K

We shall now proceed to compute the kernel functions given in equation 6. The
method presented here has a similar 
avor of the kernel approximation principle
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used in the oracle process of [7]. The oracle approximates the kernel between
an interacting surface element pair and used the magnitude of error in this
approximation to decide on whether the link can be established or not. In a
similar fashion, we �rst �nd out a linear approximation of the kernel. Instead
of trying to �nd out the error in the approximation, we go on to determine
the maximum and minimum deviation of the actual kernel function from this
approximation and use these deviations and the approximation to derive the
kernel bounds.

The various steps of computation of kernel bounds are follows:
Step I Computation of linear approximation of the kernel:
The emphasis in this step is to �nd a linear approximation with minimal e�ort.
Finding a linear approximation of a 1D function requires at least the evaluation
of the function at an arbitrary pair of non-coincident points. Extending this to
4D kernel will involve the evaluation of the kernel at 24 points. So we evaluate
the kernel at 24 points and set up a linear system of the following form

K̂(si; ti; ui; vi) =
X
k

X
l

Kk;lNk(si; ti)Nl(ui; vi) for i = 1 : : : 24 (8)

Solution of this system will give the values of Kk;l.
Choosing 24 points amounts to choosing 2 noncoincident points each in the
parametric domains of s, u, v and t. We have chosen the extremes of their
parametric domain i.e. -1 and +1 as the required points. Thus we have the
necessary 16 kernel evaluation points as:
f(-1,-1,-1,-1),. . . ,(1,1,1,1)g. Gortler et al [7] used Gauss quadrature points for
the polynomial approximation in their oracle. This choice facilitated the sub-
sequent Gauss quadrature for the evaluation of kernel coe�cients. As we are
making sure that the kernel functions are linear, we do not have to perform the
Gauss quadrature for the evaluation of those coe�cients. Further, choice of the
extreme points of the parametric domain may prove to be better because the
linear kernel function passing though them seems to be an extrema (i.e. either
a minima or a maxima). We compute the coe�cients Kk;l by solving the linear
system in equation 8.
If the kernel at any of the evaluated points is singular then its reevaluated by
shifting the position of that point.
Step II Compute the maximum and minimum kernel deviation:
Using a searching technique [9] we compute the maximum and minimum devia-
tion, respectively dmax and dmin, of the original kernel function from K̂(s; t; u; v).
Step III Compute the bounds of the kernel:
We de�ne our minimal and maximal kernel functions as

K(s; t; u; v) = K̂(s; t; u; v)� dmin ; K(s; t; u; v) = K̂(s; t; u; v) + dmax:

Using this de�nition we can derive for each of them an expansion form similar
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to equation 5

K(s; t; u; v) =
X
k

X
l

Kk;lNk(s; t)Nl(u; v)

and K(s; t; u; v) =
X
k

X
l

Kk;lNk(s; t)Nl(u; v)

where

Kk;l =

8<
:

K1;1 ��Kmin i� (k = l = 1),

Kk;l otherwise.
Kk;l =

8<
:

K1;1 +�Kmax i� (k = l = 1),

Kk;l otherwise.
(9)

and �Kmin = dmin

N1(s;t)N1(u;v)
= 4 � dmin (from de�nition of basis function in

equation 3) and similarly �Kmax = 4 � dmax.
So if these kernel bounds are used in the radiosity equation then the pro-

jection of the resulting equation now becomes trivial. Furthermore, another
important consequence of the above derivation is that the di�erence between
these two bounds of the kernel, �K(s; t; u; v) = (�Kmin +�Kmax)=4 = �K,
is independent of (s; t) and (u; v).

We bring to attention that such computation of bounds may give rise to a
certain problem. The kernel of the radiosity equation is always nonnegative.
However, the lower bound computed in the above fashion can lead to a function
which is negative in some part of its domain and hence is not acceptable. Though
we cannot avoid such happening we must detect it and take corrective measures.
Because of the linear nature of the function one can detect this by checking the
value of Kmin(s; t; u; v) at its parametric corner points. We do not at this
moment know what best corrective measure must be taken. However, we take
a very simple measure. It is: we redo the bound computation by switching over
the degree of the kernel approximation from linear to constant at the step I and
then we proceed as if we are dealing with linear function. We must emphasize
that this event happens very infrequently, so should not cast any doubt on the
usefulness of the linear approximation.

5 Radiosity Bounds

We have shown in the previous section that if we use the kernel bounds, K and
K, in the radiosity equation then the resulting radiosity will be the upper and
lower bounds of the actual radiosity function. The form of these functions has
been chosen in such a way that the projection follows without much e�ort. That
means we can right away proceed, without any computation e�ort, to set up
the linear systems

B
(i)
k = E

(i)
k +

nX
j=1

X
l

B
(j)
l K

(i j)
k;l and B

(i)
k = E

(i)
k +

nX
j=1

X
l

B
(j)
l K

(i j)
k;l :(10)
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The B
(i)
k 's and B

(i)
k 's in the above expression are the unknown expansion coe�-

cients of B(s; t), the lower bound and B(s; t), the upper bound of the radiosity
function, i.e.

B
(i)
(s; t) =

X
k

B
(i)
k N

(i)
k (s; t) and B(i)(s; t) =

X
k

B
(i)
k N

(i)
k (s; t)

All we have to do now is to write an algorithm to compute the unknown B
(i)

k s

and B
(i)
k s.

5.1 Algorithm for Computing Radiosity Bounds

In [1] we have seen the adaptation of both the standard full matrix [4] and
hierarchical radiosity [10] methods to the computation of the constant radiosity
bounds. Here we shall extend the method of [1] to support the computation of
linear radiosity bounds.

Before discussing the extension, we must see what fundamental changes are
brought in by the use of piecewise linear basis functions in place of piecewise
constant ones.

� Over each surface element we have 22 basis functions instead of 1 basis
function in constant case and one of these 22, i.e. N1(), is exactly same
as the basis function used in constant case. Consequently there are 22

radiosity coe�cients in the linear case. If we set to zero all except one
(i:e:B1) of the radiosity coe�cients of each surface element then we shall
get the piecewise constant approximation of the environment radiosity.
Thus these other coe�cients actually represent the linear variation of the
radiosity function from this constant radiosity over an element.

� Over each interacting surface element pair, there are 24 basis functions
instead of 1 in constant case. Again, as in the radiosity coe�cients, one
of the coe�cients i.e. K1;1, is exactly same as the coe�cient in constant
case. Thus all the coe�cients de�ne the various deviations of the kernel
function from a constant kernel determined by the �rst coe�cients.

From this above, we understand intuitively that as in the constant case the
convergence of the iterative solution of the radiosity system (equation 4) de-

pends on the fact that
P

j K
(i j)
1;1 � 1: As the condition

Pn

j=1K
(i j)
1;1 � 1 is

trivially satis�ed, the method for full matrix constant radiosity bound compu-
tation can be used for linear bound computation without any modi�cation. For
the upper bound computation, a little change is required to take care of the
additional kernel elements. As in [1], for each node element i we zero out all

the K
(i j)

k;l coe�cients corresponding to the dimmer elements till the condition�P
j K

(i j)
1;1 � 1

�
is satis�ed. If we permute the columns such that the non-zero
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GatherLowerBounds(node,B)
f
foreach link 2 node:links do

for k = 1 : : : 22 do

Bk += node:� �
P

l
Kk;l � link:source:Bl

if IsLeaf(node) then
for k = 1 : : : 22 do node:Bk = Bk + node:Ek

else

foreach child 2 node:child do

ConstructChildBoundFromParentBound(child; B; newB)
GatherLowerBounds(child; newB)

ConstructLowerBoundFromChildrenBounds(node:B; child1:B; child2:B; : : :)
g

Figure 1: Gathering Lower Bounds.

K
(i j)

k;l s are in the beginning of the row then we can write the expression for
the radiosity coe�cients of the i-th element during any iteration step as:

B
(i)

k = E
(i)
k + �(i)

2
4 mX
j=1

X
l

K
(i j)

k;l B
(j)
l +

�
1�Pm

j=1K
(i j)
1;1

�

K
(i (m+1))

1;1

X
l

K
(i (m+1))
k;l B

(m+1)
l

3
5 (11)

wherem is the largest item in the permuted row of i such that

mX
j=1

K
(i j)
1;1 � 1:

We shall now consider the computation of linear radiosity bounds in the
hierarchical framework. The two main operations in the hierarchical solution
method are: gathering at nodes and push/pull operation. Lower bound gath-
ering at the nodes of the hierarchy are same as that in [1]. The upper bound
gathering and the associated push/pull operations require special attention.

We saw above, in the full matrix computation of upper bound, the con-
vergence of the iterative solution requires ordering of contributors before any
gathering is done. One must do the similar ordering while gathering at the
nodes of the hierarchy. For any node element in a hierarchy, the contributors
are not only the ones speci�ed in its links but also all those speci�ed in the
links of its parent and its ancestor nodes. That is why the algorithm in [1]
collects all such links in a list called contribList. We have to do the same thing.
But it is not enough. We must take note that the kernel function between the
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GatherUpperBounds(node,contribList)
f
foreach link 2 node:links do

add node and link to contribList

if IsLeaf(node) then
KSum = 0
for k = 1 : : : 22 do node:Bk = node:emissionk
CreateNewSortedList(contribList;NewContribList)
foreach pair (p node; p link) 2 NewContribList do

ConstructKernelFromParentKernel(p node:K; p link:source; node; newK)
if KSum+ newK1;1 � 1 then

KSum += newK1;1

for k = 1 : : : 22 do

node:Bk += node:� �
P

l
newKk;l � p link:source:Bl

else

factor = (1�KSum)

newK1;1

for k = 1 : : : 22 do

node:Bk += node:� � factor �
P

l
newKk;l � p link:source:Bl

break

else

foreach child 2 node:child do

GatherUpperBounds(child; contribList)
ConstructUpperBoundFromChildrenBounds(node:B; child[1]:B; child[2]:B; : : :)

g

Figure 2: Gathering Upper Bounds.
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parent/ancestor element and a source is not the same as that between the child
element and the source, because there is now a change in the domain of the
kernel function. We are using a parametric expression for the kernel function.
A parametric expression changes with the change of the parametric domain. So
we must carry out the re-parameterisation of this kernel function. We take care
of this by introducing a function called ConstructKernelFromParentKernel().

The push operation, that we know of in hierarchical radiosity, is only done
in the case of lower bound computation. The pushing operation also amounts
to a re-parameterisation of the radiosity function de�ned in parent domain, to
get the function de�ned in child's domain. This re-parameterisation is same as
applying a push �lter as done in the wavelet radiosity method[7].

The pull operation for lower/upper bound radiosity can be viewed as con-
structing the minimum/maximum bound of the radiosity function resulting from
the combination of the child functions. So this can be performed exactly as was
done for the kernel bound computation. As the child functions are also linear,
in this case �nding the minimum/maximum deviation is much simpler. Here
again, we check for the possibility of lower radiosity bound becoming negative
at the extremities and on its detection switch over to constant bounds as the
corrective measure. The routines ConstructLowerBoundFromChildrenBounds()
and ConstructUpperBoundFromChildrenBounds() carry out this pulling opera-
tion.

Now we have all the modi�cation necessary for writing a gathering algorithm
for the lower and upper radiosity bound in a hierarchical framework. We have
given these algorithms in �gures 1 and 2.

6 Error Norms

One of the main contributions of [1] is relating the error in the computed ra-
diosity to the upper and lower bounds of the radiosity. Assuming that we are
taking out computed radiosity as the average of the lower and upper bound ra-
diosity functions then we can use the same relationship as [1] and derive below
a quantitative error estimate over each surface element.

�(i) �
1

2




B(i)
(s; t)�B(i)(s; t)




 � 1

2

X
k

���B(i)
k �B

(i)
k

���



N(i)

k (s; t)





where k:k is a functional norm. Once we decide which norm to use, for that

norm we can precalculate the kN
(i)
k (s; t)k values. Using them we can compute

the upper bound of the error.
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7 Error-Driven Re�nement

The error norm computed above gives us an estimate of the error in the com-
puted radiosity function and thus indicates if the solution is acceptable or re-
quires further improvement. If we �nd that the solution is not acceptable then
we must �nd the strategy to carry out the re�nement so as to get the optimal
e�ect. In this section we discuss such a strategy.

The radiosity over an element is the result of the gathering over the various
links which connect it to other elements. So any improvement in the solution
can only be carried out by re�ning the links. So here we must address two
questions. First, which of the links need re�nement ? Second, how do we re�ne
the link ? Re�ning a link means subdividing one of the elements of the link.
So, in this context the second question becomes: which of the two elements of
a link should be subdivided?

In order to be able to decide which of the links to re�ne, now we must turn
our attention to the error associated with each individual link. If �(i j)(s; t)
is the error function over element i due to the gathering link connecting it to
element j then its expression will be:

�(i j)(s; t) �
1

2

�
B

(i j)
(s; t)�B

(i j)
l (s; t)

�

=
1

2

�Z
K

(i j)
(s; t; u; v)B

(j)
(u; v)dudv�

Z
K(i j)(s; t; u; v)B(j)(u; v)dudv

�

adding and subtracting

Z
K(i j)(s; t; u; v)B

(j)
(u; v)dudv on the right we get

=
1

2

Z h
K

(i j)
(s; t; u; v)�K(i j)(s; t; u; v)

i
B

(j)
(u; v)dudv

+
1

2

Z h
B

(j)
(u; v)�B(j)(u; v)

i
K(i j)(s; t; u; v)dudv

In the above we have an expression of the error due to the link i j as a sum of
two terms: the 1st term is due to the error in the kernel approximation between
i and j, and the 2nd term is due to the error in the radiosity of the element j.
Written in this fashion makes the following points clear:

� The link error is nonzero even when the kernel approximation is exact i.e.
even when �

K
(i j)

(s; t; u; v)�K(i j)(s; t; u; v)
�
= 0:

� If we decide on a re�nment based on the magnitude of �(i j) the sub-
sequent solution may not at all give any reduction in the magnitude of
�(i j). It is because, re�nement of a link can at best improve the kernel
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approximation. If the kernel approximation is already correct the re�ne-
ment cannot do anything better.

From these statements we infer that though the full expression of �(i j) is not
a good indicator for re�nement, the 1st term of its expression can serve the
purpose. So here we derive a quantity �(i j), which we shall call re�nement
indicator of a given link, by integrating the above 1st term over the element i,
i.e

�(i j) =
1

2

Z
x

Z
u;v

h
K

(i j)
(s; t; u; v)�K(i j)(s; t; u; v)

i
B

(j)
(u; v)dudvdx

=
1

2
Areai�K(i j)

X
k

B
(j)

k

Z
u;v

N
(j)
k (u; v)dudv = Areai�K(i j)B

(j)

1 :

Thus we can re�ne all those links for which �(i j) is more than a threshold.
The solution obtained after this re�nement is most likely to be an improvement
over the current solution.

Now we shall address here the second question of the re�nement, i.e. which
element of the link should be subdivided so that the resulting re�nement would
give the maximum improvement? Intuitively, the subdivision which would re-
duce the magnitude of overall �K should be the choice. To �nd this we have
taken a simple approach. We �nd the maximum variation d(j) of the kernel as
a function of position on the element j and the variation d(i) as a function of
position on the element i. If d(i) > d(j) we subdivide i, otherwise we subdivide
j.

8 Results

We have implemented the algorithm discussed above to compute the linear
radiosity bounds. For e�ciency comparison we have also implemented the error
bound computation with constant basis functions. We have created various plots
of the computed radiosity values along the dotted line drawn on the surfaces of
the simple environments given in �gure 3. We have used a very simple method
of computing maximum and minimum deviation of the kernel i.e. dmin and
dmax, by �nding the minimum and maximum over the di�erence between the
actual and approximated kernel at a �nite number of random points.

In �gures 4,5 we have shown the error bound computation results for the
environment in �gure 3(a) as a function of surface discretization. For this il-
lustration the source dimensions have been kept very small so as to remove the
source size dependent error in kernel approximation computation. In the legend
of the �gures, the levels indicate the discretization. Level 0 corresponds to the
full surface as the element and in each subsequent level each element has been
equally subdivided into 4 child elements. No attempt has been made to carry
out adaptive re�nement.
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Figure 3: Simple test environments.

Figures 6 show the adaptive re�nement of a similar environment but this
time with a larger source, so that source also is subdivided if required. The
resulting number of elements along the indicated line of the surface are: 106 for
constant radiosity and 16 for linear radiosity.

Finally in �gure 7 we show the results of the enclosure shown in �gure 3(b).
The outer most curves belong to the constant bounds, the inner most curve
belongs to the actual radiosity and the curves in between belongs to linear
bounds. This actual radiosity value has been obtained by carrying out a full
matrix solution of the �nely subdivided environment. This plot contains 5 sets
of results, each set belonging to the radiosity over the dotted line on a surface,
starting at the left the emitting source in the ceiling and moving along the
dotted line in counterclockwise fashion. For comparison we give the execution
time here. They are: 104 seconds for the constant bounds and 32 seconds for
the linear bounds. The plots and the execution time respectively show that
bounds computed in the linear case are tighter and the computation is faster
compared to the constant case.

9 Discussion and Conclusion

We have described a hierarchical radiosity method for computing linear radiosity
with tight upper and lower bounds for the actual radiosity function. We compute
the radiosity bounds by creating linear upper and lower bounds to the radiosity
kernel function. This computation is simple and fast. Further, we derived
an error indicator to re�ne the inter-element links to reduce the error in the
computed radiosity functions.

In this paper we have not brought occlusion into consideration. At the oc-
clusion point kernel evaluates to zero. An immediate strategy to accommodate
occlusion will be: for a link with occlusion (i) to switch over to constant kernel
approximation, (ii) to compute the upper bound by evaluating kernel without
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Figure 4: Upper and lower bounds of constant radiosity for environment in
�gure 3(a) at various levels of subdivision.

the occlusion, and (iii) to set the lower bounds to zero. This strategy will
increase the �K values for such links and hence force their re�nement in subse-
quent iterations. We have to get a feel for the performance of the method based
on this strategy. We believe that, for environments with sparse occlusion or
for the ones prediscretised along the shadow boundaries, our method will work
without any problem and give superior performance compared to the method
based strictly on constant basis. However, for highly occluded environments we
may have to �nd out some other strategy to bound the kernels.

We have only made use of non-overlaping linear basis functions. Thus the
computed radiosity functions over a surface element is not likely to have any con-
tinuity with that over the neighbouring elements even if the elements belonged
to the same surface. Thus prior to rendering an image, this discontinuity must
be resolved by a reprojection. Because of their con
ict with the hierarchical ad-
vantages, overlapping basis functions are generally not used for the projection
of the radiosity equation. It may be worthwhile to reexplore with them in the
error-bounding setup.
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