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Abstract

This paper presents a method for solving the problem of global illumination for general

environments, using projection of the radiance function on a set of orthonormal basis

functions. Wavelet scaling functions form this basis set. The highlights of the paper

are : it (i) points out the di�culty associated with the straightforward projection of

the integral operator associated with the radiance equation and proposes a method for

overcoming this di�culty, (ii) gives the data structure and algorithm for illumination

solution in environments containing di�use and non-di�use reecting surfaces, and (iii)

proposes the use of bi-orthogonal wavelet for the radiance function reconstruction at

the time of rendering. Actual implementation has been carried out using the Haar

wavelet basis. The main reason for using Haar basis is that it makes the projection

of the integral operator, as well as the computation of the inner product of the inte-

gral kernel with its basis functions much simpler. However, the algorithm and data

structures presented are not restricted to the Haar basis alone.

1 Introduction

Computation of global illumination in an environment requires the solution of
linear integral equations. In general, closed form solution does not exist for such
equations. So, one resorts to numerical solution methods. Projection method [1]
is one such numerical solution method. One comes across the very �rst explicit
use of this method for the global illumination solution in [2]. Much recently
[3, 4, 5] there has been a greater surge of interest in application of this method
to the illumination problem. These methods defer in their choice and the num-
ber of basis functions for carrying out the projection. Of the various choices of

�To appear in 1994 EG Rendering Workshop Proceedings
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Figure 1: Three point geometry.

basis functions the wavelets seem to have the edge over others [3, 6] because (i)
the hierarchical decomposition and reconstruction characteristics [7] of wavelets
allows the use of variable number of basis functions in the projection of func-
tions involved in the same integral equation, (ii) they provide a handle [8] for
adaptively deciding on the number of basis functions. So far, the application of
wavelets (or for that matter of projection methods) to the illumination problem
has been limited to the solution of radiosity equation.

In this paper we have attempted to use wavelet projection method for solu-
tion of the general radiance equations. The work presented here may be seen as
bringing the brute-force discretisation method of [9] and hierarchical discreti-
sation method of [10] into the framework of functional projection technique. It
thus opens up scopes of using higher order basis functions for use in projection-
based illumination computation methods.

The organisation of the paper is as follows. We �rst describe the general
radiance equation. Then discuss the functional projection and pose the di�-
culty involved in projecting the integral operator involved in the equation. We
then propose a solution using wavelet basis function, in particular using Haar
wavelet basis function. We then provide the data structure and algorithm for
the solution of radiance equation using this projection.

2 Three Point Radiance Equation

Radiance from a point �x0 of a surface p towards the point �x00 of surface q,
Lpq(�x

0; �x00), can be written as [11] :

Lpq(�x
0; �x00) = �pq(�x

0; �x00) +
X
r

Z
Ar

�rpq(�x; �x
0; �x00)Lrp(�x; �x

0)d�x (1)

where �pq(�x
0; �x00) is the radiance due to emission from �x0 along �x00, �x is a point

on the surface r i.e �x 2 Ar,

�rpq(�x; �x
0; �x00) =

fp(�x
0;��x�x0 ;��x0�x00) cos ��x�x0 cos ��x0�x

j ~�x�x0j2
v(�x; �x0)

f is the surface brdf, v(�x; �x0) is the visibility between �x and �x0.
Solution of equation (1) using projection method will require the expansion
of the functions and the integral operator involved in the equation in some
basis. Orthonormal wavelet scaling functions �J;k with compact support [12]
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at some appropriate resolution J can form such basis. For the convenience of
explanation, in the following discussions of this section, we shall assume the
environment to be 2D (atland). Also for the uniformity in the variable space,
we shall change the radiance equation to a parametric form as follows:

Lpq(u
0; u00) = �pq(u

0; u00) +
X
r

Z 1

u=0

Krpq(u; u
0; u00)Lrp(u; u

0)du (2)

where Krpq(u; u
0; u00) = �rpq(x; x

0; x00) dxdu and the parameters u; u0; u00 ranging
between 0 and 1 span the atland surfaces r, p and q respectively. By similar
reasoning, in 3D space Krpq() will be a 6 variate function with parameters
u; v; u0; v0; u00; v00 and each u; v pair taking the value in a unit square will span
the full area of the surface.
Now the expansion of the radiance and the kernel functions can simply be
written as:

L(u0; u00) =
X
k;l

LJk;l�J;k(u
0)�J;l(u

00) (3)

K(u; u0; u00) =
X
k;l;m

KJ
k;l;m�J;k(u

0)�J;l(u
00)�J;m(u) (4)

where coe�cients of expansion LJk;l and KJ
k;l;m are inner product of the func-

tions L() and K() respectively with their corresponding basis functions. i.e.

LJk;l = hL(u0; u00); �J;k(u
0)�J;l(u

00)i

KJ
k;l;m = hK(u; u0; u00); �J;k(u

0)�J;l(u
00)�J;m(u)i

However, unlike in the case of di�use radiance equation [3, 6], such straight-
forward expansion of the integral operator in equation (2) is di�cult. This
di�culty arises because the integration is over one variable where as the radi-
ance function inside is a function of two variables. Thus the expansion leads
to: Z

u

K(u; u0; u00)L(u; u0)du

=

Z
u

2
4X
k;l;m

KJ
k;l;m�J;k(u

0)�J;l(u
00)�J;m(u)

X
m0;k0

LJm0;k0�J;k0(u0)�J;m0(u)

3
5 du

=
X
k;l;m

KJ
k;l;m�J;k(u

0)�J;l(u
00)
X
m0;k0

�J;k0(u0)LJm0;k0

Z
u

�J;m(u)�J;m0(u)du

=
X
k;l;m

KJ
k;l;m�J;k(u

0)�J;l(u
00)
X
k0

�J;k0 (u0)LJm;k0
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The derivation of the last step is due to the orthonormality of the function �,
which implies that

R
u
�J;m(u)�J;m0(u)du = �m;m0 . So the summation term over

m0 disappears. However, unlike the expansion of other functions in the equation
(2), the right hand side of the above equation is not a linear combination of only
�J;k(u

0)�J;l(u
00)'s.

The compact support of the function � simpli�es the above equation a bit
further to give:

Z
u

K(u; u0; u00)L(u; u0)du =
X
k;l;m

KJ
k;l;m�J;l(u

00)
k+M�1X

k0=k�M+1

�J;k(u
0)�J;k0 (u0)LJm;k0

where M is the number of vanishing moments of the wavelet function.
Luckily, it is possible to express each of the �J;k(u

0)�J;k0 (u0) terms in the above
equation as a linear combination of �J;n(u

0)'s [13]. Particularly, with scaling
function in the Haar basis, such expansion is simply the following.

k+M�1X
k0=k�M+1

�J;k(u
0)�J;k0(u0) = �J;k(u

0)�J;k(u
0) = 2J=2�J;k(u

0)

Here k0 takes only one value which is k. This is because in the Haar basisM = 1
and �J;k(u

0) has a constant value of 2J=2 within its support.
Thus, now we can write the expansion of the integral operator as:Z

u

K(u; u0; u00)Lrp(u; u
0)du = 2J=2

X
k;l

�J;k(u
0)�J;l(u

00)
X
m

KJ
k;l;mL

J
m;k (5)

As the integral term in equation (2) actually represents the reected radiance,
we shall refer to it as L̂rpq(u

0; u00) and will thus have the following expression.

L̂rpq(u
0; u00) = 2Jrpq=2

X
k;l

�Jrpq;k(u
0)�Jrpq;l(u

00)
X
m

K
Jrpq
k;l;mL

Jrpq
m;k (6)

L̂rpq() carries subscript rpq because it represents reected radiance from a point
u0 on surface p towards the point u00 on surface q, due to the incoming radiance
from all the points u of surface r. Similarly, Jrpq is the appropriate resolution
for the expansion of the kernel Krpq using the wavelet scaling function. The
method of �nding appropriate Jrpq will be given in the subsequent section.

Now we can rewrite equation (2) for the geometry in �gure 1 as:

Lpq(u
0; u00) = �pq(u

0; u00) + L̂rpq(u
0; u00) (7)

Using the expansions given in equations (3) and (6) we arrive at the following
set of linear equations.

L
Jrpq
k;l = �

Jrpq
k;l + 2Jrpq=2

X
m

K
Jrpq
k;l;mL

Jrpq
m;k (8)
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Allowing for the contribution from more than one surface r, i:e:,

Lpq(u
0; u00) = �pq(u

0; u00) +
X
r

L̂rpq(u
0; u00) (9)

we will have the linear equation set :

L
Jrpq
k;l = �

Jrpq
k;l +

X
r

2Jrpq=2
X
m

K
Jrpq
k;l;mL

Jrpq
m;k (10)

Similarly for every pair of surfaces p; q in the environment we will have its
corresponding linear set. All these linear equations can be solved together by
using an iterative method discussed in the following section.

We have come across similar linear equation formulations for the global
illumination involving glossy surfaces in [10]. However, there is a signi�cant
di�erence between the formulations. The linear expression of [10] has been
derived by multiplying both sides of equation (2) by a term G(�x0; �x00)dx00dx0

and integrating the resulting equation over the surface p and surface q. i.e.:

Z
Ap

Z
Aq

Lpq(�x
0; �x00)G(�x0; �x00)d�x00d�x0 =

Z
Ap

Z
Aq

�pq(�x
0; �x00)G(�x0; �x00)d�x00d�x0

+
X
r

Z
Ap

Z
Aq

Z
Ar

�rpq(�x; �x
0; �x00) Lrp (�x; �x0)d�xG(�x0; �x00)d�x00d�x0 (11)

where G(�x0; �x00) = cos �
x0x

cos �
x0x00

j ~�x0�x00j2
v(�x0; �x00).

This integration actually leads to an expression of the total ux reaching surface
q due to the surface p. If the surfaces p, q and r are very small (i.e. the en-
vironment has been prediscretised to small patches) and the radiance function
over patch p towards the patch q is constant and that over patch r towards
the patch p is constant then the both side of the equation (11) can be divided
by

R
Ap

R
Aq

G(�x0; �x00)d�x00d�x0 to give a simple linear radiance equation. Thus, in

[10] the linear equations represent the expressions for the pre-assumed constant

radiance over a small patch towards another small patch in an prediscretised
environment; whereas in our derivation the linear equations represent the ex-
pression for the coe�cients of expansion of the radiance function projected over
the wavelet basis functions.

3 Environment with Di�use and Non-di�use Sur-

faces

The formulations derived in the previous section assumes general reection prop-
erties for all the surfaces in the environment. As far as the computational com-
plexity is concerned, it may be bene�cial to assume that the environment also
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contains surfaces with di�use reection/emission properties. The bene�t arises
from the directional independence of the radiance from the di�use surfaces. So
for di�use surfaces the general radiance expression (2) simpli�es to:

Lp(u
0) = �p(u

0) +

ndXZ 1

u=0

Krp(u; u
0)Lrp(u; u

0)du+

dXZ 1

u=0

Krp(u; u
0)Lr(u)du

where nd and d are respectively the number of non-di�use and di�use surfaces
in the environment and p is the di�use surface,

Krp(u; u
0) = �p(x

0)
cos �x0x cos �xx0

�
�� �xx0��2

dx

du

and �p(x
0) is the di�use reectivity.

Similar equation can be written for the non-di�use surface. Projecting such
equations on the wavelet basis, we will arrive at the following linear set of
equations

L
Jrp
k = �

Jrp
k +

ndX
r

2Jrp=2
X
m

K
Jrp
k;mL

Jrp
m;k +

dX
r

X
m

K
Jrp
k;mL

Jrp
m for p di�use (12)

and

L
Jrpq
k;l = �

Jrpq
k;l +

ndX
r

2Jrpq=2
X
m

K
Jrpq
k;l;mL

Jrpq
m;k +

dX
r

X
m

K
Jrpq
k;l;mL

Jrpq
m for p nondi�use:

(13)
We now proceed to give a solution method for the global illumination in an
environment, using equations (12) and (13).

4 Solution

The data structure and algorithm given in this section are the extensions to our
earlier work for di�use environment [6].
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4.1 Data Structure

We start with the data structure for the surface.
typedef struct f

Geom geometric information;

Opt optical information;

typedef struct INTERACTIONf
void *kernel; /* Pointer to 2Point=3Point struct.*/

struct INTERACTION *next;
gInteraction *interaction;

structf
int Jpq; /* Max interaction resolution.*/

oat *[L
Jpq
k;l ], *[�

Jpq
k;l ]; /* Projection Coeffs.*/

g*radiance;
gSurface;

[L
Jpq
k;l ] and [�

Jpq
k;l ] in the data type Surface are the coe�cients of projection of

radiance and emittance function respectively and have an hierarchical structure.
There are (Jpq + 1) levels in the hierarchy. Each level J 2 [0; Jpq] has up to1

24J coe�cients. The values of [L
Jpq
k;l ] are set after each gathering by the surface.

For di�use surfaces only a single structure of radiance is necessary. Whereas
for each specular surface there will be n such structures where n is the number
of surfaces visible to the specular surface.
/* Structure to hold relevant 2 point interaction informations.*/

typedef struct f
int Jpr; /* Resolution of interaction.*/

int p, k; l; /* p : surface-id, k; l 2 [1; 2Jpr ] its indices.*/

int r, i; j; /* r : surface-id, i; j 2 [1; 2Jpr ] its indices.*/

oat K
Jpr
i;j;k;l; /* Coeff of 2 point interaction p$ r */

g2Point; /* = hK(); �J;i()�J;j()�J;k()�J;l()i.*/
/* Structure to hold relevant 3 point interaction informations.*/

typedef struct f
int Jrpq; /* Resolution of interaction.*/

int k, l; /* k; l 2 [1; 2Jrpq ] indices of p.*/
int q, m;n; /* q : receiver, m;n 2 [1; 2Jrpq ] its indices.*/

int r, i; j; /* r : emitter, i; j 2 [1; 2Jrpq ] its indices.*/

oat K
Jrpq
i;j;k;l;m;n; /* Coeff of 3 point interaction r! p! q */

g3Point; /* =hK(); �J;i()�J;j()�J;k()�J;l()�J;m()�J;n()i.*/

1As we shall see later, though in principle there can be so many coe�cients the actual
number will depend on the interaction of the 2Point or 3Point kernel.
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4.2 Algorithm

wavelet radiance()
begin

compute kernel();

Initialise radiance coefficients();

Compute radiance solution();

end.

compute kernel()
begin

for each mutually visible surface pair (p; r) do

if diffuse(p) or diffuse(r) then

Compute 2point Kernel(0; r; 1; 1;p; 1; 1);
if non diffuse(p)

Compute 3point Kernel(0; r; 1; 1;p; 1; 1;q; 1; 1) 8 q visible to p;
if non diffuse(r)

Compute 3point Kernel(0;p; 1; 1; r; 1; 1;q; 1; 1) 8 q visible to r;
endif;

endfor; /* for each surface pair */

end;

The procedures Compute 2point Kernel and Compute 3point Kernel compute
the resolution for projection and compute the projection coe�cients of the ker-
nel.
The resolution computation is carried out adaptively starting with J = 0 and
progressively incrementing the J till the kernel smoothness condition is satis�ed
[6]. The outline of these two algorithms are as follows:

Compute 2point Kernel(J;p; k; l; r; i; j)
begin

Compute KJ+1
i0;j0;k0;l0 /* by Numerical quadrature. */

8 i0 2 [2i� 1; 2i], j0 2 [2j � 1; 2j], k0 2 [2k � 1; 2k] and l0 2 [2l� 1; 2l];

Compute
h
�DJ

i;j;k;l

i�=I;II;:::;XV

from KJ+1
i0;j0;k0;l0's

2 ;

/* Hierarchical Decomposition*/

if
�
�DJ

i;j;k;l � Threshold
�
8� then

Compute KJ
i;j;k;l from KJ+1

i0;j0;k0;l0 ;/* Hierarchical Decomposition*/
set Jpr = J;

2point = new(2Point); *2point =
n
Jpr;p; (k; l); r; (i; j);K

Jpr
i;j;k;l

o
;

(p):interaction = new(struct Interaction);

(r):interaction = new(struct Interaction);

2�
D

J
i;j;k;l

is the inner product of K() with the wavelet function �	. In wavelet basis for

each multi-variate scaling function there are 2m � 1 number of wavelet basis functions where
m is the number of variates.
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Figure 2: The data-structure to handle Directional Radiance.

(p):interaction:kernel = (r):interaction:kernel = 2point;
else Compute 2point Kernel(J + 1;p; k0; l0; r; i0; j0)

8 i0 2 [2i� 1; 2i], j0 2 [2j � 1; 2j], k0 2 [2k � 1; 2k], l0 2 [2l� 1; 2l];
endif;

end;

Compute 3point Kernel(J; r; i; j;p; k; l;q;m; n)
begin

Compute KJ+1
i0;j0;k0;l0;m0;n0 /* By numberical quadrature technique. */

8 i0 2 [2i� 1; 2i], j0 2 [2j � 1; 2j], k0 2 [2k � 1; 2k], l0 2 [2l� 1; 2l],
m0 2 [2m� 1; 2m], n0 2 [2n� 1; 2n];

Compute
h
�DJ

i;j;k;l;m;n

i�=I;II;:::;CXIII

from KJ+1
i0;j0;k0;l0;m0;n0's

3 ;

/*Hierarchical Decomposition*/

if
�
�DJ

i;j;k;l;m;n � Threshold
�
8� then

Compute KJ
k;l;m;n from KJ+1

i0;j0;k0;l0;m0;n0's;/*Hierarchical Decomposition*/
set Jrpq = J;
3point = new(3Point);

*3point =
n
Jrpq; (k; l);q; (m;n); r; (i; j);K

Jrpq
i;j;k;l;m;n

o
;

(p):interaction = new(struct Interaction);

(p):interaction:kernel = 3point;
else Compute 3point Kernel(J + 1;p; k0; l0; r; i0; j0;q;m0; n0)

8 i0 2 [2i� 1; 2i], j0 2 [2j � 1; 2j],k0 2 [2k � 1; 2k],
l0 2 [2l � 1; 2l], m0 2 [2m� 1; 2m], n0 2 [2n� 1; 2n];

endif;

end;

In the procedure given above the increment in the resolution of the wavelet
basis means the regular subdivision of the surface in the parametric domain.
Depending on whether a two-point or a three-point kernel is being handled, 2
or 3 surfaces will be subdivided simultaneously. This seems to be inappropriate
when some of the surfaces involved in the interaction are disproportionately
small. This problem arises because of the uniform parameterisation of the sur-
faces. Each of the interacting surfaces is a unit square in the parameter space.
However, the actual area may be signi�cantly di�erent from each other. To
minimise the problem we use a concept of virtual resolution. When re�nement
is necessary, the resolution of the largest of the interacting surfaces is actually

3As discussed earlier, for a function with 6 variables there are 26 � 1 = 63 wavelet basis
functions.
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incremented, (i.e. it is subdivided) whereas for the other two only the virtual
resolution is incremented (i.e. they are not subdivided. If originally a surface
is assumed to span a unit area in the parametric domain, after the increment
of the virtual resolution the same surface is assumed to span one a quarter area
in the same parametric domain). As the resolution of only one of the surfaces
is actually incremented, the computational complexity of the adaptive kernel
projection is substantially reduced, but care must be taken while computing
the projection. To be precise, both for specular and di�use interaction kernel
only 22 operations are carried out at each iteration step instead of the 26 in
the case of specular and 24 in the case of di�use kernel. The consequence of
this change is that the data-structure for handling the directional radiance in
surface becomes a bit more complicated. Figure 2 gives the pictorial represen-
tation of this modi�ed data structure.

compute radiance solution()
begin

repeat

done = true;

for each surface p do/*Gather radiance through all interaction links.*/
if diffuse(p) then

[T J
k;l] = [(p):�Jk;l]; /* T : temp struct to gather.*/

for each interaction of p do

from (p):interaction get
n
Jpr; (k; l); r; (i; j);K

Jpr
i;j;k;l

o
;

K = K
Jpr
i;j;k;l;

if diffuse(r) then L from r = (r):L
Jpr
i;j

else L from r = 2Jp � (r):L
Jrp
i;j;k;l[p];

T
Jpr
k;l += K � L from r;

endfor; /* for each interaction of p */

2d resonstruct decompose(Jp; T);
if ABS(T 0

1;1 � (p):L01;1) > Threshold then

done = false;h
(p):LJ

k;l

i
=
h
T J
k;l

i
;

endif;

else /* non-diffuse surface */h
T J
k;l;m;n[q]

i
=
h
(p):�Jk;l;m;n[q]

i
8 q ; /* T : temp struct to gather.*/

for each interaction of p do

from (p):interaction get
n
Jrpq ; (k; l);q; (m;n); r; (i; j);K

Jrpq
i;j;k;l;m;n

o
;

K = K
Jrpq
i;j;k;l;m;n;

if diffuse(r) then L from r = (r):L
Jrp
m;n

else L from r = 2Jp � (r):L
Jrpq
i;j;k;l[p];
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T
Jrpq
k;l;m;n[q] += K � L from r;

endfor; /* for each interaction of p */

3d reconstruct decompose(Jpq; T [q]) 8 q;
for each q do

if ABS(T 0
1;1;1;1[q]� (p):L01;1;1;1)[q] > Threshold then

done = false;h
(p):LJ

k;l;m;n[q]
i
=
h
T J
k;l;m;n[q]

i
;

endif;

endfor; /* for each q */

endif;

endfor; /* for each p */

until (done);

end;
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Figure 3: Simple scene for demonstration.

5 Results

We have applied the method discussed to simple environments. For the environ-
ment shown in �gure 3 with an emitter, a reector and a receiver we have given
here two images. Images have been created to show the direction independent
radiance distribution over the receiving surface due to the changing reecting
property of the reector. The specular surface has been modeled as rolled alu-
minum using Ward's reection model [14]. Figure 4 is created by associating
di�use reection property with the reector. For this the algorithm generated
4616 two point nodes and 205346 two point interactions. Figure 5 is created
by associating specular reection property to the reector. It required 986 two
point nodes, 16301 two point interactions, 420625 three point directional nodes
and 335811 three point interactions.

6 Discussions

In spite of the e�ort of making the projection as accurate as possible, one makes
the approximation by choosing a non-zero threshold and by choosing a limit
on the maximum resolution J . In our case we had chosen the threshold as
0.0001 and the maximum resolution as 8. In the process, we have been able
to capture the di�use radiance distribution almost accurately when the reec-
tor is di�use (Figure 4). However, the same is not true when the reector is
specular (Figure 5). So for a better rendering of the computed image, smooth-
ing in some form or other is necessary. Instead of choosing some extraneous
smoothing procedure, we propose to carry out the function reconstruction us-
ing bi-orthogonal wavelets[15], with which smoothing comes naturally. Using
bi-orthogonal wavelets the expansion of a function is as follows:

f =
X

< f; �J;k > �0

J;k

where each of the basis sets f�J;kg and f�
0

J;kg is not necessarily orthogonal in
itself but they are orthogonal to each other. i.e.

< �J;k; �
0

J;k0 >= �kk0

In our application, as one of the basis set is already Haar basis (f�J;kg), all we
need is another wavelet basis set which is orthogonal to Haar. At present we
are experimenting with spline wavelet basis, which is orthogonal to Haar [16],
as the f�0

J;kg for the radiance reconstruction during rendering.
The radiance function computed by the method discussed in this paper is

de�ned from a point on a surface to a point on another surface. So if the �nal
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purpose of the computation is rendering, which is most often the case, then it
is necessary that the computation be carried out in an enclosure. However, if
one is interested in rendering only one or a few number of particular view(s),
then the enclosure requirement can be avoided by introducing the eye piece as a
hypothetical surface into the environment [11, 10]. This hypothetical surface is
capable of receiving illumination, so takes part in the 3 point interactions, but
does not obstruct or reect the illumination.

The algorithm discussed above is still not fast enough for a general envi-
ronment. We attribute is to the fact that the surface subdivision is entirely
dependent on the kernel. Though theoretically it seems to be correct, it may be
an overkill in the cases where the real contribution of the interacting surfaces to
each other is not very signi�cant. The knowledge of this information may help
us in deciding on a coarser subdivision (i.e. lower resolution) by appropriate
choice of the threshold in the kernel computation. As we do not have the exact
information, one better way will be to carry out the kernel determination in-
teractively along with the process. That is, we follow an illumination shooting
step instead of a gathering step. As in the usual shooting operation we start
with the emitting surface(s) and then proceed to the bright-most surface till the
unshot energy is minimum. The kernel computation also precedes in the same
fashion, starting along with the emitter and then with the brightmost surface
and so on. Adapting the algorithm given above to shooting requires minimal
change.
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