
EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel
(Guest Editors)

Volume 21 (2002), Number 3

Using Perceptual Texture Masking for Efficient Image
Synthesis

Abstract

Texture mapping has become indispensable in image synthesis as an inexpensive source of rich visual detail. Less
obvious, but just as useful, is its ability to mask image errors due to inaccuracies in geometry or lighting. This
ability can be used to substantially accelerate rendering by eliminating computations when the resulting errors
will be perceptually insignificant.
Our new method precomputes the masking ability of textures using aspects of the JPEG image compression stan-
dard. This extra information is stored as threshold elevation factors in the texture’s mip-map and interpolated
at image generation time as part of the normal texture lookup process. Any algorithm which uses error toler-
ances or visibility thresholds can then take advantage of texture masking. Applications to adaptive shadow testing,
irradiance caching, and path tracing are demonstrated.
Unlike prior methods, our approach does not require that initial images be computed before masking can be
exploited and incurs only negligible runtime computational overhead. Thus, it is much easier to integrate with
existing rendering systems for both static and dynamic scenes and yields computational savings even when only
small amounts of texture masking are present.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture
Keywords: Visual Perception, Perceptual Rendering, Texture Mapping, JPEG

1. INTRODUCTION

In the 25 years since their introduction, texture maps 2 have
become an indispensable part of image synthesis and a re-
quired feature in modern rendering systems. They are widely
used to represent fine visual detail and produce more realis-
tic looking images. Just as valuable is their ability to hide,
or mask, image artifacts (e.g., due to approximations in the
geometry or illumination) that would otherwise be visible.
Modelers have long used this effect in an ad hoc manner by
adding or modifying textures to hide rendering artifacts.

If it can be exploited systematically and efficiently, this
same ability can be used to accelerate rendering algorithms.
Rendering algorithms often waste effort on illumination
components whose effect is too small for human viewers to
perceive. This is especially true for textured regions where
the threshold of visibility is generally higher. This represents
both a challenge and an opportunity to efficiently identify
and eliminate such unnecessary computation.

In this paper we present a new method to inexpensively
find visual error tolerances that include masking due to tex-
ture. Unlike prior methods, our threshold computations in-
cur only negligible runtime overhead and do not require the
computation of initial approximate images. Only a simple
preprocess of each texture map is required, which can be
done offline and is based on elements of the well-known,
widely-used JPEG image compression standard 16. Thresh-
old elevation factors are stored in a standard mip-map struc-
ture along with the texture and can be rapidly accessed as
part of the normal texture lookup process. Thus our method
can easily be added to existing rendering systems.

To show its generality, we have applied our method
to accelerate three different rendering algorithms: adaptive
shadow testing, irradiance caching, and path tracing.

submitted to EUROGRAPHICS 2002.



2 / Texture Masking

2. PREVIOUS WORK

Many researchers have used visibility thresholds as the ter-
mination criteria for rendering computations. The simplest
and most common approach is to use Weber’s law, which
states that the visibility threshold is a fixed fraction of the
base luminance. However, while humans can sometimes per-
ceive luminance changes of less than 1%, visibility thresh-
olds are typically much larger in textured regions.

Drawing on results from the perception literature, Fer-
werda et al. 5 presented the most comprehensive model of
masking in computer graphics. However, their method re-
quires an exact reference image as input, making it imprac-
tical for use in rendering acceleration. Ramasubramanian et
al. 14 modified their technique to use an approximate image
instead, but their approach has not been widely adopted due
to the high computational overhead and lack of solid percep-
tual validation.

Bolin and Meyer 3, 4 use perceptual models, including
masking, to control adaptive sampling 13 in the image plane.
They initially used some JPEG-like operations 3, but later
switched to a more sophisticated visual model 4. Since their
visual model is updated after each sample is taken, limiting
computational overhead was a major concern in its design.
Volevich et al. 15 also use a detailed perceptual model 12, but
use it only for algorithm selection due to its high cost, and
thus do not exploit masking effects.

Unlike these methods, we have not tried to include the
evaluation of a full perceptual model during image genera-
tion. Instead we concentrated exclusively on texture masking
and providing a way for existing algorithms to take advan-
tage of the presence of textures with minimal modifications
and negligible overhead.

3. VISUAL MASKING

The ability of a (base) visual stimulus to obscure or hide
a superimposed (test) stimulus is called visual masking 5.
The degree of masking depends on many factors including
the intensities and spatial frequencies of the stimuli. For a
fixed base stimulus, the intensity at which the test stimulus
becomes noticeable is called the visibility threshold. Sam-
ple plots of how the visibility threshold varies with intensity
and frequency are shown in Figure 1. The observation that
visibility thresholds vary roughly linearly with the intensity
of the base stimulus is known as Weber’s law 6. Thresh-
olds increase significantly for higher spatial frequencies and
stronger base contrasts.

3.1. Exploiting Masking by Textures

Masking can be used to hide approximation errors and ac-
celerate rendering algorithms. The visibility threshold can
be used as a quantitative measure of the amount of error than
can be visually tolerated in any rendered image. Textures are

Figure 1: (a) Visibility threshold (∆L) vs. base luminance
L for uniform stimuli. The roughly linear pattern is known
as Weber’s law 6. (b) Visibility thresholds (∆L/L) for test
stimuli of varying frequency against a uniform base stim-
uli. Notice there is a large increase in visibility thresholds at
high frequencies. This plot is the inverse of the well known
contrast sensitivity function (CSF) (c) Visibility threshold vs.
base contrast for stimuli of a similar frequency. The relation
between threshold for target and base pattern contrast is si-
miliar to the Weber’s Law relation shown in (a). See 14 and
references for more detail.

important ingredients in many synthetic scenes and often the
most important sources of high frequency and high contrast
patterns and hence exhibit a high degree of visual masking.
By precomputing and storing visbility threshold factors with
each texture, we can take advantage of texture masking with
extremely low overhead at image generation time. Moreover,
each texture need only be preprocessed once, regardless of
how many times it is used.

We cannot simply store visibility thresholds or error tol-
erances as these depend on the base intensity, which is not
known until the illumination is computed. Instead we fol-
low Ramasubramanian 14 and store threshold elevation fac-
tors, or the multiplier by which the threshold is raised by the
presence of the texture.

Another difficulty is that the visual frequency content of
a texture map changes as a function of viewing distance and
angle. It would be impractical to store values for every possi-
ble viewing configuration. Instead we precompute elevation
factors for the texture at a fixed set of resolutions and in-
terpolate at image generation time from the resolutions that
most closely match the texture’s apparent resolution in the
image plane. This can be done quickly and easily using the
mip-map20 pyramidal scheme. For systems that already sup-
port mip-mapping for texture anti-aliasing, the elevation fac-
tor lookup can be done as part of the normal texture lookup
procedure.

Compared to previous visual masking computation meth-
ods, this approach is orders of magnitude less expensive be-
cause it does not require the computation of initial images or
evaluation of visual models during image generation. While
we do not include masking due to occlusion (e.g., silhouette
edges) or illumination (e.g., shadow boundaries) changes,

submitted to EUROGRAPHICS 2002.



/ Texture Masking 3

these are frequently less important sources of masking and
much more expensive to compute.

4. TEXTURE PREPROCESSING

For each texture and each resolution in its mip-map repre-
sentation, we need to compute the corresponding threshold
elevation map. This computation requires a method to find
the various frequency components in the texture and their
contrast levels, and then a mathematical model to convert
frequency and contrast information to visibility thresholds.

While we initially experimented with using a Laplacian
pyramid approach similar to 14, we have instead used an ap-
proach based on elements of the JPEG compression stan-
dard 16, 7 with some extensions. This allows us to draw on
the wealth of experience, trust, and optimized code associ-
ated the JPEG standard, or more specifically, the DCT-based
lossy image compression which is the most widely used part
of the JPEG standard. The DCT transform is the fundamen-
tal step in the perception based JPEG compression standard.

4.1. Some JPEG Basics

The first step in JPEG encoding is the transformation of
the color values from RGB to a luminance/chrominance
space. Because the human visual system is more sensitive
to changes in luminance than in chrominance, we will only
consider the luminance channel processing in computing
our error thresholds. Next, the image is divided into 8x8
blocks and each block is transformed using a discrete cosine
transform (DCT) which converts it from the spatial to the
frequency domain. The first coefficient of the transformed
block is proportional to the average luminance within the
block and the other coefficients reflect the content of succes-
sively higher frequency components. Typically many of the
coefficients will be near zero.

Next a quantization matrix is applied to reduce the pre-
cision (and hence bits) with which these coefficients are
stored. Quantization is the only lossy step in JPEG compres-
sion (where error is introduced); the rest of the encoding is
lossless and not relevant for us. During decoding, this pro-
cess is reversed, producing frequency coefficients which are,
in general, different from the original ones. After applying
the inverse DCT, we can get a luminance block which is per-
ceptually very close to the original if the quantization matrix
was well chosen.

We can express this using matrix algebra as follows:

F = TY Tt (1)

|F†
i, j −Fi, j| ≤ 1

2
Qi, j (2)

Y † = TtF†T (3)

where Y is the 8x8 matrix of original luminance values, T
is the matrix form of the 8x8 DCT shown below, and F is




16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99




Table 1: The luminance quantization matrix from Annex K
of the JPEG standard 7. The standard allows any quanti-
zation matrix to be used, but most encoders use this ma-
trix or scaled versions of it. Each row represents coeffi-
cients for increasing horizontal frequencies and each col-
umn for increasing vertical frequencies. These coefficients
reflect threshold vs. frequency relation shown in Figure 1.
Thus this quantization matrix accounts for threshold eleva-
tion due to frequency.

the matrix of frequency coefficients. F† is the perturbed ma-
trix of coefficients obtained after decompression due to the
quantization process. Its maximum deviation from the orig-
inal F is controlled by the quantization matrix Q as shown
in Equation 2. Applying the inverse DCT transform to F†
yields the decompressed luminance values Y †.

Ti, j =




1
2
√

2
if i = 0

1
2 cos

(
(2 j+1)iπ

16

)
otherwise

(4)

The quantization values should be below the mask-
ing threshold for the appropriate frequency and luminance
content of the image to preserve image quality. Masking
thresholds are dependent on the image content. Luminance-
dependent masking depends on the local intensity and the
frequency-dependent masking depends on the contrast in the
frequency component of the image block. Empirical rela-
tionships between the image content and the threshold have
been established from subjective experiments 11, 1. Strictly
following this relationship would result in a different quan-
tization matrix for each image block. For simplicity, a sin-
gle image independent quantization matrix is usually used
in standard JPEG compression.

Although the JPEG standard does not mandate the use of
a particular quantization matrix, most algorithms use the lu-
minance quantization table shown in Table 1 from Annex
K of the standard 7. The values are derived from the as-
sumption that the average luminance is that of a mid-gray
level. For an 8-bit image with a mid-gray value of 128, the
8x8 DCT transform produces a DC component of 1024. The
DC component of the quantization matrix contains the value
16, which is roughly 1.5% of the mid-gray DC level as we
would expect from Weber’s Law without frequency compo-
nents (see Figure 1a). The other elements of the quantization

submitted to EUROGRAPHICS 2002.



4 / Texture Masking

matrix vary with the visibility thresholds for successively
higher frequncy components against a mid-gray background
signal in the way we would expect from Figure 1b.

4.2. Basic Algorithm

Although JPEG is lossy and introduces error into images, it
is widely accepted because at moderate compression rates
those errors are largely imperceptible. Intuitively, it should
be equally acceptable to allow errors of a similar magnitude
during rendering, especially if this can result in significant
computational savings.

To compute the visibility threshold for a texture at a par-
ticular resolution, we convert the RGB texel values to lu-
minances and apply a DCT transform just as in Equation 1.
Next we create a matrix of perturbed frequency components
as follows:

F†
i, j =

{
Fi, j if Fi, j < Qi, j

Fi, j + 1
2 sign(Fi, j)Qi, j otherwise

(5)

Note that these values are within the maximum deviation al-
lowed in the JPEG encoding/decoding process (See Equa-
tion 2).

We do not perturb frequency components which are below
the quantization threshold, because such components are as-
sumed not visible and hence do not contribute to masking.
Moreover, the presence of subthreshold patterns can actually
increase the eye’s sensitivity to similar patterns (Figure 1c).

After performing the inverse DCT on F† to get Y †, we
could get the visibility threshold at every pixel from |Y † −
Y |. However, the magnitude of the error threshold depends
on the illumination level which will not be known until im-
age generation time. Instead we compute the ratio of this
error threshold to the error threshold without including fre-
quency masking (i.e. excluding texture effects). According
to Weber’s law, both thresholds should scale roughly linearly
with illumination level, so their ratio is roughly independent
of it. This second threshold can be computed by perturbing
the DC component only (i.e. F0,0) or equivalently by per-
turbing the pixel values Yi, j directly. The visibility threshold
elevation factor c is given by:

ci, j = max

[
1,

|Y †
i, j −Yi, j|

1
2Yi, j

Q0,0
1024

]
(6)

where the denominator is derived in the same way as the
numerator except that we perturb only the DC component
instead of all its components as in Equation 2. Equivalently
we can notice that Q0,0

1024 is relative visibility threshold based
solely on Weber’s Law without frequency considerations.
(As mentioned before 1024 is the DC component of the mid-
gray level 8-bit image block assumed in the JPEG standard).

We now have a complete algorithm for computing ele-
vation factors. It is relatively inexpensive, roughly equiv-
alent to one JPEG compresssion/decompression cycle, and

can use the optimized DCT routines available on many plat-
forms. For non-transparent textures, the elevation factors
(typical range 1-16) can be quantized and stored in the alpha
channel, and otherwise we just add one additional channel
to each texture and mip-map.

4.3. Adaptive Quantization Matrices

Standard JPEG uses a single quantization matrix over an en-
tire image. While adaptive quantization matrices have been
proposed as an extension to the standard, they are not gener-
ally used because of the potential storage overhead. This is
not a problem for us, and using adaptive matrices allows us
to better model masking.

We follow an approach similar to the one suggested by
Watson 19 and model local adaptation by modifying Q ac-
cording to the local average intensity over the block to get a
new quantization matrix,Qa, which more accurately reflects
Weber’s law.:

Qa
i, j =

F0,0

1024
Qi, j (7)

The matrix still does not take proper advantage of the
fact that stronger frequency signals can mask larger errors
as shown in Figure 1c. We create a new quantization matrix
Qm that takes into account the actual frequency content in
each block as:

Qm
i, j =

{
Qa

0,0 if i = j = 0

Qa
i, j max

[
1,

∣∣Fi, j/Qa
i, j

∣∣0.7
]

otherwise
(8)

The exponent value of 0.7 agrees with the contrast mask-
ing measurements made by Legge 10. Substituting Qm for
Q in the basic algorithm gives us better threshold elevation
factors at minimal cost. A MATLAB implementation of the
algorithm has been given in the Appendix.

5. RESULTS

The threshold elevation factors for several sample textures
are shown in Figure 2 along with the average elevation fac-
tor for each. As expected, the largest elevation factors corre-
spond with the regions of high frequency and contrast. How-
ever, all these textures contain enough masking to produce
significant computational savings.

As an example of these savings, we have adapted three
different rendering algorithms to use our elevation maps and
measured the performance gains when rendering the scene
from the viewpoint shown in Figure 3. This is an environ-
ment with 65636 polygons and 44 light sources. Remem-
ber that the savings are strongly dependent on the scene,
viewpoint, and rendering algorithm, so our results should be
taken as a rough indication only. Since the example scene
contains large image regions with little or no texture mask-
ing such as the untextured couch and the ceiling with its low

submitted to EUROGRAPHICS 2002.



/ Texture Masking 5

Figure 2: Several sample textures and their corresponding
threshold elevation factor maps. The average elevation for
each texture is shown in parentheses. Note that a separate
elevation map is computed for each level in a texture’s mip-
map, although we have shown only the highest resolution
level map here.

contrast and frequency texture, we should not expect overly
dramatic speedups.

We first computed a direct-plus-ambient solution using a
simplified version of Ward’s adaptive shadow testing for ray
tracing 17. At each pixel, the light sources are sorted in de-
scending order of potential contribution, and successively
evaluated using shadow rays to check visibility. The com-
putation is terminated if the remaining unevaluated potential
contribution falls below an error threshold. For scenes with
many lights, this results in fewer shadow rays and large sav-
ings. Using adaptive shadow testing and an error threshold
of 1.5%, which is roughly the visibility threshold for untex-

Figure 3: A direct-plus-ambient rendering of the scene and
viewpoint used in our examples. The threshold elevation fac-
tors for this view are shown on the right. The average thresh-
old elevation factor is 2.7.

tured surfaces, we reduced the computation time from 50
to 13.5 seconds. Modulating the threshold by our elevation
maps, however, further reduced the computation time from
13.5 to 8 seconds for a speedup of 1.7 times with no loss of
image quality.

Irradiance caching 18 accelerates indirect illumination
computations by caching and reusing expensive irradiance
samples. New samples are only computed when no previ-
ous sample is sufficiently close, and otherwise inexpensive
interpolation is used. The density of these irradiance sam-
ples is controlled by the spacing parameter a. Because Ward
showed that there is a roughly linear relationship between in-
terpolation error and his spacing parameter a, we can use our
error elevation factors to modulate the a parameter at each
pixel. The result is that fewer irradiance samples are needed
in textured regions. We used this to accelerate the gathering
of diffuse indirect illumination from a photon map 8. Using
our elevation factors reduced the total number of irradiance
samples needed from 20200 to 11200, with a corresponding
speedup of 1.8.

While path tracing9 is not the most efficient way to com-
pute global illumination, it was used as an example appli-
cation in previous approaches 14, 4. We implemented a path
tracer which, at each pixel, traces paths until the estimated
standard deviation falls below an error threshold. Starting
with a base threshold of 1.5%, we computed images of our
scene both with and without using threshold elevation fac-
tors. The resulting speedup was 2 times, which although re-
spectable, is much less than that reported by 14. However,
they compared against a non-adaptive path tracer, while our
base case already contains adaptive sampling due to variance
estimation and Weber’s law. If we similarly compare against
a non-adaptive path tracer, our speedup is 15 times.

6. CONCLUSIONS

We have presented a new technique for exploiting the addi-
tional rendering error that can be tolerated in texture-mapped

submitted to EUROGRAPHICS 2002.



6 / Texture Masking

regions. We do not claim that this method is more complete
or more accurate than previous methods, but, it is less expen-
sive, simpler, and easier to integrate into existing systems.
Thus it can be used to accelerate time-critical computations
like our direct illumination example, where the overhead of
previous methods would be prohibitive.

For systems which already support texture mapping and
mip-map texture anti-aliasing, the additional implementa-
tion overhead is minimal: the storage of one additional chan-
nel per texture, a simple preprocess per texture using JPEG-
like operations, and the trilinear interpolation of the error
threshold elevation factors along with the normal texture
channels during texture lookup. With these components, vir-
tually any algorithm that uses per-pixel error thresholds can
be accelerated.

Because our error threshold elevation factors are based on
the widely used JPEG compression standard, we gain the
benefit of the collective knowledge, experience, and opti-
mized code associated with it. We can also potentially lever-
age future research and advances in perceptually-based im-
age compression.

References

1. A. J. Ahumada, Jr. and H. A. Peterson. Luminance model
based dct quantization for color image compression. In B. E.
Rogowitz, editor, Visual Processing and Digital Display III.
1992.

2. J. Blinn and M. Newell. Texture and reflection in computer
generated images. Communications of the ACM, 19(10):542–
547, October 1976.

3. M. R. Bolin and G. W. Meyer. A frequency based ray tracer.
Computer Graphics (ACM Siggraph ’95 Conference Proceed-
ings), pages 409–418, August 1995.

4. M. R. Bolin and G. W. Meyer. A perceptually based adaptive
sampling algorithm. Computer Graphics (ACM Siggraph ’98
Conference Proceedings), pages 299–310, July 1998.

5. J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Green-
berg. A model of visual masking for computer graphics. Com-
puter Graphics (ACM Siggraph ’97 Conference Proceedings),
pages 143–152, August 1997.

6. D. C. Hood and M. A. Finkelstein. Sensitivity to light. In Boff,
Kauffman, and Thomas, editors, Handbook of Perception &
Human Performance, chapter 5. 1986.

7. Digital compression and coding of continuous-tone still im-
ages. ISO/IEC 10918, Feb 1994. JPEG Standard.

8. H. W. Jensen. Global illumination using photon maps. In Ren-
dering Techniques ’96, pages 21–30. Springer-Verlag/Wien,
1996.

9. J. T. Kajiya. The rendering equation. Computer Graphics,
20(4):143–150, August 1986. ACM Siggraph ’86 Conference
Proceedings.

10. G. E. Legge. A power law for contrast discrimination. Vision
Research, 21:457–467, 1981.

11. H. Lohscheller. A subjectively adapted image communication
system. IEEE Trans. Communications, 32:1316–1322, 1984.

12. K. Myszkowski. The visible differences predictor: Applica-
tions to global illumination problems. In Rendering Tech-
niques ’98, pages 223–236. Springer-Verlag/Wien, 1998.

13. J. Painter and K. Sloan. Antialiased ray tracing by adaptive
progressive refinement. Computer Graphics, 23(3):281–288,
July 1989. ACM Siggraph ’89 Conference Proceedings.

14. M. Ramasubramanian, S. N. Pattanaik, and D. P. Greenberg.
A perceptually based physical error metric for realistic image
synthesis. Computer Graphics (ACM Siggraph ’99 Confer-
ence Proceedings), pages 73–82, August 1999.

15. V. Volevich, K. Myszkowski, A. Khodulev, and E. A. Kopylov.
Using the visual differences predictor to improve performance
of progressive global illumination computation. ACM Trans-
actions on Graphics, pages 122–161, April 2000.

16. G. K. Wallace. The jpeg still picture compression standard.
Communications of the ACM, pages 30–44, April 1991.

17. G. Ward. Adaptive shadow testing for ray tracing. In Pro-
ceedings of the Second Eurographics Workshop on Rendering
(Barcelona, May 1991), 1991.

18. G. J. Ward, F. M. Rubinstein, and R. D. Clear. A ray tracing
solution for diffuse interreflection. In J. Dill, editor, Computer
Graphics (SIGGRAPH ’88 Proceedings), volume 22, pages
85–92, Aug. 1988.

19. A. B. Watson. Perceptual optimization of dct color quantiza-
tion matrices. Proc. of International Conf. on Image Process-
ing, pages 100–104, Nov 1994.

20. L. Willams. Pyramidal parametrics. Computer Graphics,
17(3), July 1983. ACM Siggraph ’83 Conference Proceedings.

Appendix A: MATLAB Code

The MATLAB code given below implements the algorithm for com-
puting threshold elevation for any given luminance image. To keep
the code simple it has been assumed that the dimensions of the im-
age are multiples of 8. The images that do not satisfy this require-
ment may be padded by reflecting or duplicating the boundary col-
umn or row pixel values. The 8x8 DCT matrix is derived from Equa-
tion 4 except that MATLAB uses indices from 1–8 rather than 0–7.

function c = thresholdmap(Y)
%
% Input: Y - the Luminance im-
age. Range is 0-255.
% Y = 0.299*R+0.587*G+0.114*B.
% Output: c - the threshold elevation map.
%

Q = GetJPEG_QuantizationMatrix;
T = Get8x8DCTmatrix;
T_t = T’;
[rows,cols] = size(Y);
Y_dagger = Y;

for i = 1:8:rows
for j = 1:8:cols

submitted to EUROGRAPHICS 2002.



/ Texture Masking 7

F = T*Y(i:i+7,j:j+7)*T_t;
absF = abs(F);
Q_a = Q*(F(1,1)/1024);
ind = find (absF >= Q_a);
Q_m= Q_a.*max(1,(absF./Q_a).^0.7);
Q_m(1,1) = Q_a(1,1);
F_dagger = absF;
F_dagger(ind) = F_dagger(ind)+Q_m(ind)/2;
Y_dagger(i:i+7,j:j+7) = T_t*(sign(F).*F_dagger)*T;

end;
end;

diff1 = abs(Y-Y_dagger);
diff2 = Y*(0.5*Q(1,1)/1024);
diff = max(diff1,diff2);
c = ones(rows,cols);
ind=find(diff2>0);
c(ind) = diff(ind)./diff2(ind);

return;

submitted to EUROGRAPHICS 2002.


