Saad Khan's Publications

Sorted by DateClassified by Publication TypeClassified by Research Category

Comparative Analysis of System Identification Techniques for Nonlinear Modeling of the NeuronMicroelectrode Junction

S.A. Khan, V. Thakore, A. Behal, L. Boloni, and J. J. Hickman. Comparative Analysis of System Identification Techniques for Nonlinear Modeling of the NeuronMicroelectrode Junction. Journal of Computational and Theoretical Nanoscience, 10(3):573–580, American Scientific Publishers, 2013.

Download

[PDF] 

Abstract

Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive. Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface. In this paper, to explore viable alternatives for a computationally inexpensive and efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). Results corresponding to a validation dataset from these models are then employed to compare and contrast the computational complexity and efficiency of the aforementioned modeling techniques with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.

BibTeX

@article{SKhan-2013-JCTN,
  title={Comparative Analysis of System Identification Techniques for Nonlinear Modeling of the NeuronMicroelectrode Junction},
  author={S.A. Khan and V. Thakore and A. Behal and L. Boloni and J. J. Hickman},
  journal={Journal of Computational and Theoretical Nanoscience},
  volume={10},
  number={3},
  pages={573--580},
  year={2013},
  publisher={American Scientific Publishers}
   bib2html_dl_pdf = 
   {http://eecs.ucf.edu/~skhan/Publications/Download/SKhan-2012-JCTN.pdf},  
  bib2html_pubtype = {Journal},
  bib2html_rescat = {Nanotechnology},
   abstract = {
   Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, biological computation and neural prosthetic devices depend critically on an efficient decoding and processing of information retrieved from a neuron-electrode junction. This necessitates development of mathematical models of the neuron-electrode interface that realistically represent the extracellular signals recorded at the neuroelectronic junction without being computationally expensive.
   Extracellular signals recorded using planar microelectrode or field effect transistor arrays have, until now, primarily been represented using linear equivalent circuit models that fail to reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode interface. In this paper, to explore viable alternatives for a computationally inexpensive and efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). Results corresponding to a validation dataset from these models are then employed to compare and contrast the computational complexity and efficiency of the aforementioned modeling techniques with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.
   }
}

Generated by bib2html.pl (written by Patrick Riley, Saad Khan ) on Thu Jul 10, 2014 15:43:58