Design and Analysis of Algorithms

Instructor: Sharma Thankachan

Lecture 9: Binomial Heap
About this lecture

• Binary heap supports various operations quickly: extract-min, insert, decrease-key

• If we already have two min-heaps, A and B, there is no efficient way to combine them into a single min-heap

• Introduce Binomial Heap
 • can support efficient union operation
Mergeable Heaps

• **Mergeable heap**: data structure that supports the following 5 operations:

 • **Make-Heap()**: return an empty heap
 • **Insert(H, x, k)**: insert an item \(x\) with key \(k\) into a heap \(H\)
 • **Find-Min(H)**: return item with min key
 • **Extract-Min(H)**: return and remove
 • **Union(H_1, H_2)**: merge heaps \(H_1\) and \(H_2\)
Mergeable Heaps

• Examples of mergeable heap:
 Binomial Heap (this lecture)
 Fibonacci Heap (next lecture)

• Both heaps also support:
 • Decrease-Key\((H,x,k)\):
 • assign item \(x\) with a smaller key \(k\)
 • Delete\((H,x)\):
 remove item \(x\)
Binary Heap vs Binomial Heap

<table>
<thead>
<tr>
<th>Operation</th>
<th>Binary Heap</th>
<th>Binomial Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make-Heap</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Find-Min</td>
<td>$\Theta(1)$</td>
<td>$\Omega(\log n)$</td>
</tr>
<tr>
<td>Extract-Min</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Decrease-Key</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
<tr>
<td>Union</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
</tr>
</tbody>
</table>
Binomial Heap

• Unlike binary heap which consists of a single tree, a binomial heap consists of a small set of component trees
 • no need to rebuild everything when union is perform

• Each component tree is in a special format, called a binomial tree
Definition:

A binomial tree of order k, denoted by B_k, is defined recursively as follows:

- B_0 is a tree with a single node
- For $k \geq 1$, B_k is formed by joining two B_{k-1}, such that the root of one tree becomes the leftmost child of the root of the other
Binomial Tree

B_0

B_1

B_2

B_3

B_4
Properties of Binomial Tree

Lemma: For a binomial tree B_k

1. There are 2^k nodes
2. height = k
3. $\text{deg}(\text{root}) = k$; deg(other node) < k
4. Children of root, from left to right, are B_{k-1}, B_{k-2}, ..., B_1, B_0
5. Exactly $C(k,i)$ nodes at depth I

How to prove? (By induction on k)
Binomial Heap

- Binomial heap of \(n \) elements consists of a specific set of binomial trees
 - Each binomial tree satisfies min-heap ordering: for each node \(x \),
 \[\text{key}(x) \geq \text{key}(\text{parent}(x)) \]
 - For each \(k \), at most one binomial tree whose root has degree \(k \)
 (i.e., for each \(k \), at most one \(B_k \))
Binomial Heap

Example: A binomial heap with 13 elements
Binomial Heap

• Let $r = d \log (n+1)e$, and
 \[\langle b_{r-1}, b_{r-2}, \ldots, b_2, b_1, b_0 \rangle \]
 be binary representation of n

• Then, we can see that an n-node binomial heap contains B_k if and only if $b_k = 1$

• Also, an n-node binomial heap has at most $d \log (n+1)e$ binomial trees
Binomial Heap

E.g., \(21_{(\text{dec})} = 10101_{(\text{bin})} \)

\[\Rightarrow \text{any 21-node binomial heap must contain:} \]

\[B_0 \quad B_2 \quad B_4 \]
Binomial Heap Operations

• With the binomial heap,
 • Make-Heap(): $O(1)$ time
 • Find-Min(): $O(\log n)$ time
 • Decrease-Key(): $O(\log n)$ time

[Decrease-Key assumes we have the pointer to the item x in which its key is changed]

• Remaining operations : Based on Union()
Union Operation

• Recall that:

\[
\text{an } n\text{-node binomial heap corresponds to binary representation of } n
\]

• We shall see:

\[
\text{Union binomial heaps with } n_1 \text{ and } n_2 \text{ nodes corresponds to adding } n_1 \text{ and } n_2 \text{ in binary representations}
\]
Union Operation

• Let H_1 and H_2 be two binomial heaps

• To Union them, we process all binomial trees in the two heaps with same order together, starting with smaller order first

• Let k be the order of the set of binomial trees we currently process
Union Operation

There are three cases:

1. If there is only one $B_k \rightarrow$ done

2. If there are two B_k

 \rightarrow Merge together, forming B_{k+1}

3. If there are three B_k

 \rightarrow Leave one, merge remaining to B_{k+1}

After that, process next k
Union two binomial heaps with 5 and 13 nodes
after processing k = 0
after processing $k = 1, 2$
Done after processing $k = 3$
Binomial Heap Operations

- So, Union() takes $O(\log n)$ time
- For remaining operations, Insert(), Extract-Min(), Delete() how can they be done with Union?

- Insert(H, x, k):
 ➔ Create new heap H', storing the item x with key k; then, Union(H, H')
Binomial Heap Operations

• Extract-Min(H):
 ➔ Find the tree B_j containing the min;
 Detach B_j from $H \rightarrow$ forming a heap H_1;
 Remove root of $B_j \rightarrow$ forming a heap H_2;
 Finally, Union(H, H')

• Delete(H, x):
 ➔ Decrease-Key($H, x, -1$); Extract-Min(H);
Extract-Min(H)

Step 1: Find B_j with Min

H

B_j with Min
Extract-Min(H)
Step 2: Forming two heaps
Extract-Min(H)

Step 3: Union two heaps

Diagram of two heaps with nodes 25, 13, 41, 12, 15, 16, 32, 33, 35, 19, 21, 52.