Design and Analysis of Algorithms

Instructor: Sharma Thankachan

Lecture 9: Binomial Heap

About this lecture

- Binary heap supports various operations quickly: extract-min, insert, decrease-key
- If we already have two min-heaps, A and B, there is no efficient way to combine them into a single min-heap
- · Introduce Binomial Heap
 - · can support efficient union operation

Mergeable Heaps

- Mergeable heap: data structure that supports the following 5 operations:
 - Make-Heap(): return an empty heap
 - Insert(H,x,k): insert an item x with key k into a heap H
 - Find-Min(H): return item with min key
 - Extract-Min(H): return and remove
 - Union(H₁, H₂): merge heaps H₁ and H₂

Mergeable Heaps

- Examples of mergeable heap:
 Binomial Heap (this lecture)
 Fibonacci Heap (next lecture)
- Both heaps also support:
 - Decrease-Key(H,x,k):
 - assign item x with a smaller key k
 - Delete(H,x): remove item x

Binary Heap vs Binomial Heap

	Binary Heap	Binomial Heap
Make-Heap	Θ(1)	Θ(1)
Find-Min	Θ(1)	⊕(log n)
Extract-Min	⊕(log n)	Θ(log n)
Insert	⊕(log n)	Θ(log n)
Delete	⊕(log n)	Θ(log n)
Decrease-Key	⊕(log n)	Θ(log n)
Union	Θ(n)	⊕(log n)

- Unlike binary heap which consists of a single tree, a binomial heap consists of a small set of component trees
 - no need to rebuild everything when union is perform
- Each component tree is in a special format, called a binomial tree

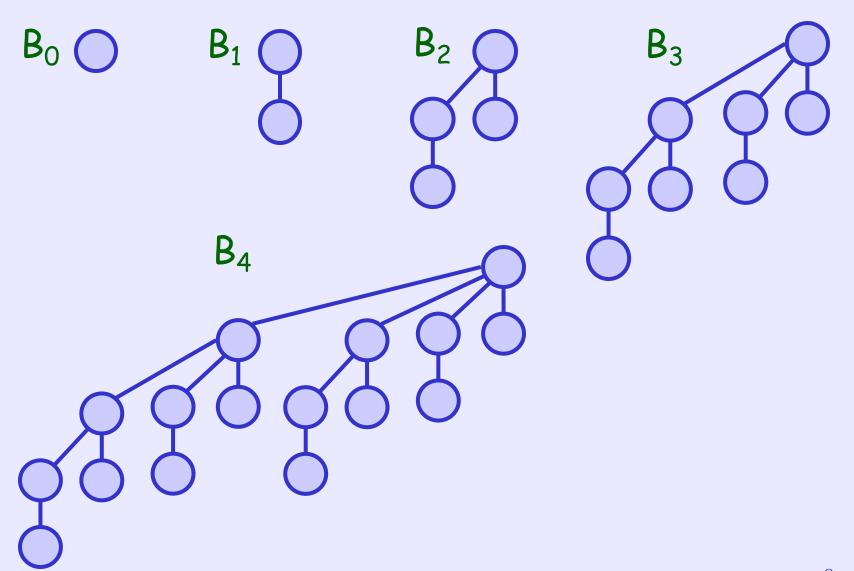
Binomial Tree

Definition:

A binomial tree of order k, denoted by B_k , is defined recursively as follows:

- B₀ is a tree with a single node
- For $k \ge 1$, B_k is formed by joining two B_{k-1} , such that the root of one tree becomes the leftmost child of the root of the other

Binomial Tree



Properties of Binomial Tree

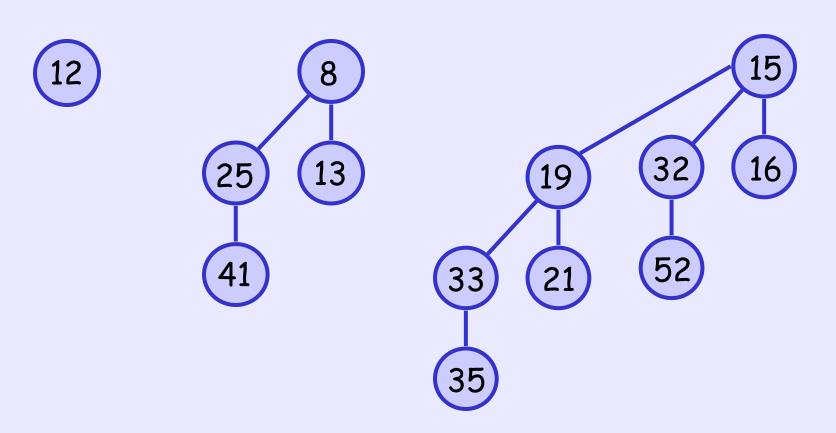
```
Lemma: For a binomial tree B_k,
```

- 1. There are 2k nodes
- 2. height = k
- 3. deg(root) = k; deg(other node) < k
- 4. Children of root, from left to right, are B_{k-1} , B_{k-2} , ..., B_1 , B_0
- 5. Exactly C(k,i) nodes at depth I

How to prove? (By induction on k)

- Binomial heap of n elements consists of a specific set of binomial trees
 - Each binomial tree satisfies min-heap ordering: for each node x, key(x) ≥ key(parent(x))
 - For each k, at most one binomial tree whose root has degree k (i.e., for each k, at most one B_k)

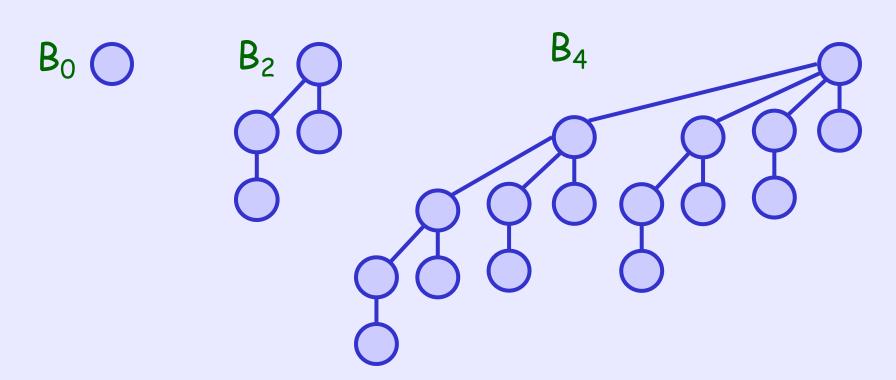
Example: A binomial heap with 13 elements



- Let r = dlog (n+1)e, and $\langle b_{r-1}, b_{r-2}, ..., b_2, b_1, b_0 \rangle$ be binary representation of n
- Then, we can see that an n-node binomial heap contains B_k if and only if $b_k = 1$
- Also, an n-node binomial heap has at most dlog (n+1)e binomial trees

E.g.,
$$21_{(dec)} = 10101_{(bin)}$$

→ any 21-node binomial heap must contain:



Binomial Heap Operations

- · With the binomial heap,
 - Make-Heap(): O(1) time
 - Find-Min(): O(log n) time
 - Decrease-Key(): O(log n) time

[Decrease-Key assumes we have the pointer to the item x in which its key is changed]

Remaining operations: Based on Union()

Union Operation

Recall that:

an n-node binomial heap corresponds to binary representation of n

· We shall see:

Union binomial heaps with n_1 and n_2 nodes corresponds to adding n_1 and n_2 in binary representations

Union Operation

- Let H₁ and H₂ be two binomial heaps
- To Union them, we process all binomial trees in the two heaps with same order together, starting with smaller order first
- Let k be the order of the set of binomial trees we currently process

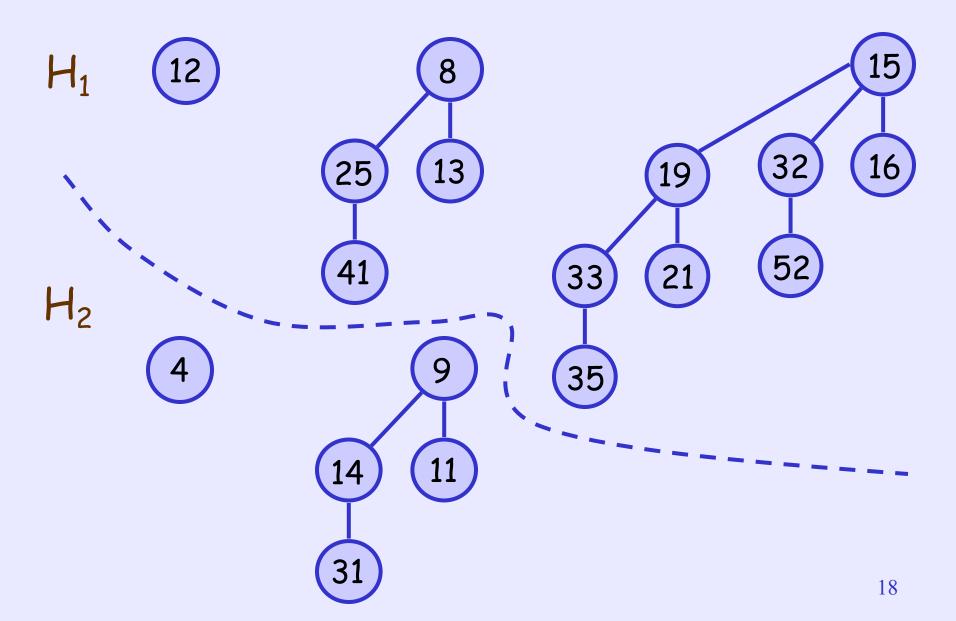
Union Operation

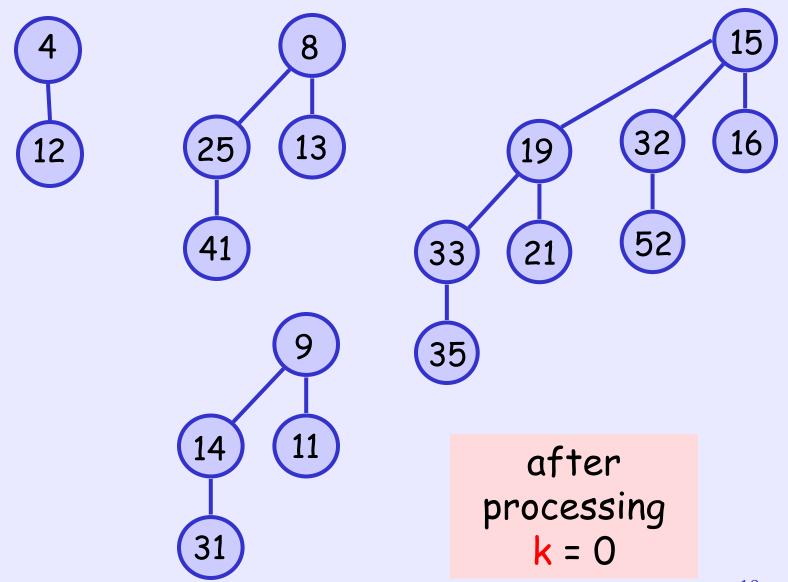
There are three cases:

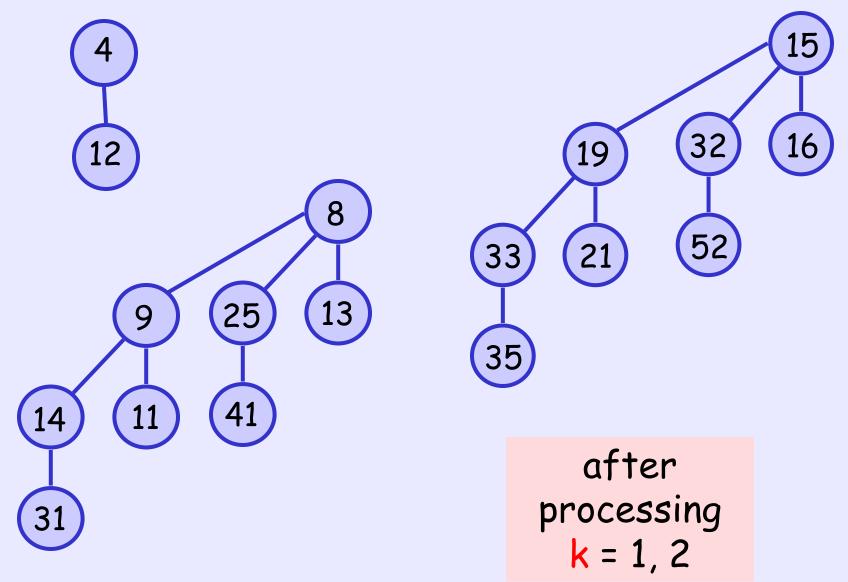
- 1. If there is only one $B_k \rightarrow done$
- 2. If there are two B_k
 - \rightarrow Merge together, forming B_{k+1}
- 3. If there are three B_k
 - \rightarrow Leave one, merge remaining to B_{k+1}

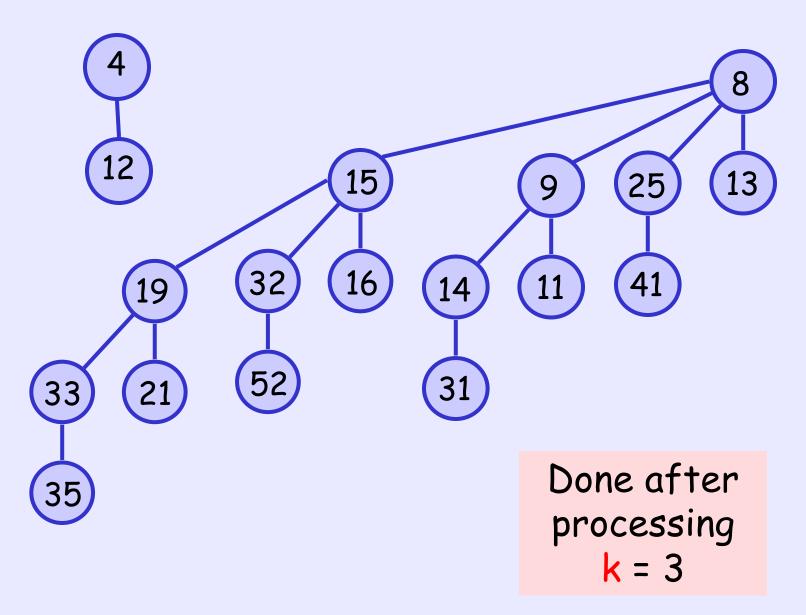
After that, process next k

Union two binomial heaps with 5 and 13 nodes









Binomial Heap Operations

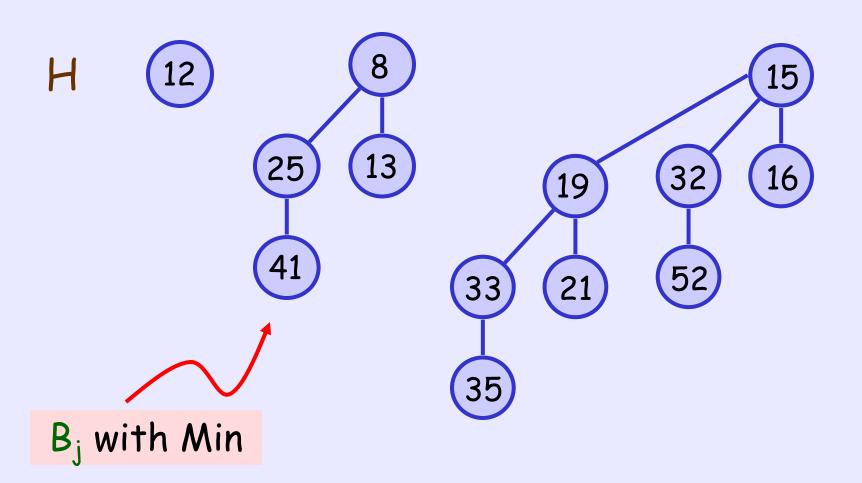
- So, Union() takes O(log n) time
- For remaining operations,
 Insert(), Extract-Min(), Delete()
 how can they be done with Union?
- Insert(H, x, k):
- → Create new heap H', storing the item x with key k; then, Union(H, H')

Binomial Heap Operations

- Extract-Min(H):
- → Find the tree B_j containing the min; Detach B_j from $H \rightarrow$ forming a heap H_1 ; Remove root of $B_j \rightarrow$ forming a heap H_2 ; Finally, Union(H, H')
- Delete(H, x):
- → Decrease-Key(H,x,-1); Extract-Min(H);

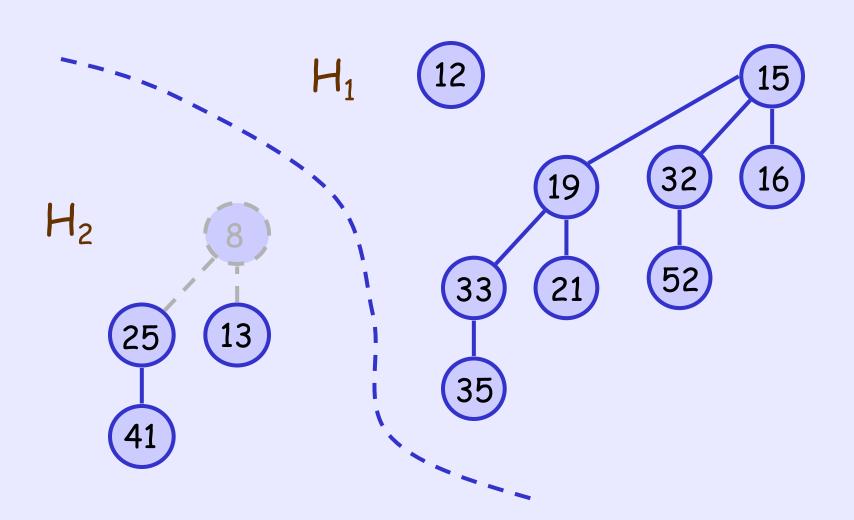
Extract-Min(H)

Step 1: Find B_j with Min



Extract-Min(H)

Step 2: Forming two heaps



Extract-Min(H)

Step 3: Union two heaps

