Design and Analysis of Algorithms

Instructor: Sharma Thankachan
Lecture 8: Order Statistics
About this lecture

- Finding \max, \min in an unsorted array (upper bound and lower bound)
- Finding both \max and \min (upper bound)
- Selecting the k^{th} smallest element

k^{th} smallest element $\equiv k^{th}$ order statistics
Finding Maximum in unsorted array
Finding Maximum (Method I)

• Let \(S \) denote the input set of \(n \) items

• To find the maximum of \(S \), we can:

 Step 1: Set \(\text{max} = \text{item 1} \)

 Step 2: for \(k = 2, 3, \ldots, n \)
 if (item \(k \) is larger than \(\text{max} \))
 Update \(\text{max} = \text{item } k \);

 Step 3: return \(\text{max} \);

\# comparisons = \(n - 1 \)
Finding Maximum (Method II)

Define a function \texttt{Find-Max} as follows:

\texttt{Find-Max}(R, k) /* R is a set with \(k \) items */

1. if \((k \leq 2)\) return maximum of \(R \);
2. Partition items of \(R \) into \(b\frac{k}{2} \) pairs;
3. Delete smaller item from \(R \) in each pair;
4. return \texttt{Find-Max}(R, k - b\frac{k}{2});

Calling \texttt{Find-Max}(S, n) gives the maximum of \(S \)
Finding Maximum (Method II)

Let $T(n) = \#$ comparisons for Find-Max with problem size n

So, $T(n) = T(n - bn/2c) + bn/2c$ for $n \geq 3$

$T(2) = 1$

Solving the recurrence (by substitution), we get $T(n) = n - 1$
Lower Bound

Question: Can we find the maximum using fewer than $n - 1$ comparisons?

Answer: No! To ensure that an item x is not the maximum, there must be at least one comparison in which x is the smaller of the compared items. So, we need to ensure $n-1$ items not max

\Rightarrow at least $n - 1$ comparisons are needed.
Finding Both Max and Min in unsorted array
Finding Both Max and Min

Can we find both max and min quickly?

Solution 1:
First, find max with \(n - 1 \) comparisons
Then, find min with \(n - 1 \) comparisons
\[\Rightarrow \text{Total} = 2n - 2 \text{ comparisons} \]

Is there a better solution ??
Finding Both Max and Min

Better Solution: (Case 1: if n is even)

First, partition items into $n/2$ pairs;

Next, compare items within each pair;

\[\bigcirc = \text{larger} \quad \bullet = \text{smaller} \]
Finding Both Max and Min

Then, $\max = \text{Find-Max}$ in larger items

$\min = \text{Find-Min}$ in smaller items

$\# \text{ comparisons} = \frac{3n}{2} - 2$
Finding Both Max and Min

Better Solution: (Case 2: if n is odd)

We find \max and \min of first $n - 1$ items;
if (last item is larger than \max)
 Update $\max = \text{last item}$;
if (last item is smaller than \min)
 Update $\min = \text{last item}$;

$\#$ comparisons $= \frac{3(n-1)}{2}$
Finding Both Max and Min

Conclusion:
To find both max and min:
if n is odd: $3(n-1)/2$ comparisons
if n is even: $3n/2 - 2$ comparisons

Combining: at most $3bn/2c$ comparisons

→ better than finding max and min separately
Lower Bound

Textbook Ex 9.1-2 (Very challenging):

• Show that we need at least $d3n/2e - 2$ comparisons to find both max and min in worst-case.

Hint: Consider how many numbers may be max or min (or both). Investigate how a comparison affects these counts.
Selecting k^{th} smallest item in unsorted array
Selection in Linear Time

• In next slides, we describe a recursive call $\text{Select}(S, k)$ which supports finding the k^{th} smallest element in S

• Recursion is used for two purposes:
 (1) selecting a good pivot (as in Quicksort)
 (2) solving a smaller sub-problem

Select(S, k)

/* First, find a good pivot */

1. Partition S into $\frac{|S|}{5}$ groups, each group has five items (one group may have fewer items);
2. Sort each group separately;
3. Collect median of each group into S';
4. Find median m of S':

\[m = \text{Select}(S', \frac{d|S|}{5e}/2e); \]
4. Let $q = \# \text{ items of } S \text{ smaller than } m$;
5. If ($k == q + 1$)
 return m;
/* Partition with pivot */
6. Else partition S into X and Y
 $X = \{\text{items smaller than } m\}$
 $Y = \{\text{items larger than } m\}$
/* Next, form a sub-problem */
7. If ($k < q + 1$)
 return Select(X, k)
8. Else
 return Select(Y, $k-(q+1)$);
Selection in Linear Time

Questions:

1. Why is the previous algorithm correct? (Prove by Induction)

2. What is its running time?
Running Time

• In our selection algorithm, we chose \(m \), which is the median of medians, to be a pivot and partition \(S \) into two sets \(X \) and \(Y \).

• In fact, if we choose any other item as the pivot, the algorithm is still correct.

• Why don’t we just pick an arbitrary pivot so that we can save some time??
Running Time

- A closer look reviews that the worst-case running time depends on $|X|$ and $|Y|$

- Precisely, if $T(|S|)$ denote the worst-case running time of the algorithm on S, then

$$T(|S|) = T(d |S|/5e) + \Theta(|S|) + \max\{T(|X|), T(|Y|)\}$$
Running Time

• Later, we show that if we choose m, the “median of medians”, as the pivot,

 both $|X|$ and $|Y|$ will be at most $3|S|/4$

• Consequently,

 $$T(n) = T(d \cdot n / 5e) + \Theta(n) + T(3n/4)$$

 $\Rightarrow T(n) = \Theta(n)$ (obtained by substitution)
Median of Medians

• Let’s begin with $d \frac{n}{5}e$ sorted groups, each has 5 items (one group may have fewer)

= larger
= median
= smaller
Median of Medians

• Then, we obtain the median of medians, m
Median of Medians

Then, we know that all items marked with X have value at most m
Median of Medians

The number of items with value at most m is at least

$$3\left(\frac{dn}{5e/2} - 1\right) - 2$$

- each full group has 3 'crossed' items
- one group may have only 1 'crossed' item
- n: number of items: at least $3n/10 - 5$
Median of Medians

Previous page implies that at most

\[\frac{7n}{10} + 5 \text{ items} \]

are greater than \(m \)

\[\Rightarrow \text{For large enough } n \text{ (say, } n \geq 100) \]

\[\frac{7n}{10} + 5 \leq \frac{3n}{4} \]

\[\Rightarrow |Y| \text{ is at most } \frac{3n}{4} \text{ for large enough } n \]
Median of Medians

Similarly, we can show that at most
\[\frac{7n}{10} + 5 \] items are smaller than \(m \)

\[|X| \] is at most \(\frac{3n}{4} \) for large enough \(n \)

Conclusion:
The “median of medians” helps us control the worst-case size of the sub-problem

\(\Rightarrow \) without it, the algorithm runs in \(\Theta(n^2) \) time in the worst-case